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S1.  Spectral Overlap and estimation of Förster radius for energy transfer pairs  

*The absorption spectra here are results from solution samples, as opposed to film samples in Fig. 1 

S1a. ASSQ emission and DPSQ absorption 
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S1b. ASSQ emission and PT8, PTB7, PTB7-Th absorption 
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S1c. PT8, PTB7 emission and DPSQ absorption 
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S1d. Estimation of FRET radii, measured in dilute solution of chlorobenzene 

 

FRET Donor-Acceptor Pair Overlap Integral,  J(λ) QD* R0 

 (M-1cm
3
(nm)

4
)  (Å) 

ASSQ→DPSQ 1.038×10
16

 0.045 46.11 

ASSQ→PTB7 5.657×10
15

 0.045 41.68 

ASSQ→PT8 6.192×10
14

 0.045 28.82 

PTB7→DPSQ 2.523×10
15

 0.0097 28.81 

PT8→DPSQ 2.195×10
16

 0.126 62.03 

 

 

 

*Quantum yield for ASSQ is determined by referencing to Rhodamine 610 (QR ~ 0.015 in ethanol); while 

Indocyanine green dye (IR 125), (Anal. Chem. 83 1232 2011) (QR ~ 0.132 in ethanol; absorption at 633 

nm) is used as reference for PTB7 and PT8 quantum yield calculation according to the following equation.  

2

2

D D R
D R

R D R

I A
Q Q

A I




     (1) 



QD denotes the quantum yield of the donor (emitting) material; I represents the integrated fluorescence 

intensity; A refers the absorbance at excitation wavelength whereas the subscript R indicates the 

respective parameters of reference dye.   

 

We quantified the compatibility of these FRET pairs by measuring the Förster radius, R0, of the donor-

acceptor separation distance where FRET is 50% efficient 

 (in nm),                        (2) 

where κ is the orientation factor between donor and acceptor dipoles, QD is the quantum yield of FRET 

donor , n is the refractive index, FD is the donor emission spectrum and εA is the molar extinction 

coefficient of the acceptor
[1]

. Assuming a random orientation of the donor and acceptor molecules (κ
2
 = 

2/3) and effective refractive index, n of 1.5 of these active materials in dilute solutions. 

 

S1e. Photoluminescence (PL) of polymer-squaraine films
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The PL quenching observed in squaraine-added samples indicate that the squaraines can effectively 

induce resonance energy transfer within the multi-donor films. The role of squaraines in the films differs 

from the 1,8-diiodooctane (DIO) additive as DIO does not participate in light absorption.   
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S2 Transient absorption time- and spatial resolved images for multi-donor blend in PTB7-Th 

system excited at 500 nm  

(a) PTB7-Th 

 

 

 

(b) PTB7-Th with 2% ASSQ 

 

 

 



(c) PTB7-Th with 2% DPSQ 

 

 

(d) PTB7-Th with 1% ASSQ+1% DPSQ 

 

 

 

 

 

 



(e) DPSQ (neat film), excited at 500 nm 

 

 

 

Ultrafast transient absorption experiments were conducted on films excited at 500 nm and laser 

fluence was set below 10 μJ cm
−2

, to ensure linear response of the TA signals from ASSQ, PTB7, PTB7-

Th, and PT8. Color bars of the TA contour plots shows absorption signal changes in optical density unit.  

We show a negative signal (red region) containing two peaks at 560 and 620 nm, which corresponds to 

the PT8 absorption (or GSB) with 0–1 and 0–0 vibrational transitions, respectively (Fig 3e). Introducing 

DPSQ into PT8 causes a negative TA signal at 740 nm (Fig. 3d), accompanying with a mitigated GSB of 

PT8. In both cases for PTB7-DPSQ and PT8-DPSQ, we observe the photoinduced absorption of the 

polarons at 490 nm associated to DPSQ, inferring rapid excitation energy transfer from the polymer to the 

dye molecule.  

TA experiments on neat DPSQ film was performed to verify that the GSB of DPSQ cannot be 

triggered by 500 nm excitation source per se, even with higher fluence at ~ 20 uJ cm
-2
.  The results shown 

in S2e is rather weak compared to the strong GSB signal of DPSQ as demonstrated in figures 2d, 2k, and 

2l.   



S3   GIWAXS data 

S3a GIWAXS: Ternary blends of (a) 2% ASSQ and (b) 2% DPSQ in PTB7:PC71BM films under the same color scale. The data is further extracted 

and plotted as (c) in-plane and (d) out-of-plane line-cuts. 

(a) 

  

(b) 

  
(c) 

 

(d) 
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S3b GIWAXS: (a) Binary PTB8:PC61BM and (b) quaternary ASSQ:DPSQ:PT8:PCBM scattering patterns with the same color scale are plotted as 

(c) in-place and (d) out-of-plane linecuts   

(a) 

  

(b) 

 
(c) 
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(d) 
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Note: For PT8 systems, we observe co-crystalline phase in the quaternary blend as well. However, the changes are not as intense as in the case of 

PTB7 as host polymer (Fig. 5f, g).  Differences in polymer:fullerene ratio, processing solvents, polydispersity index, molecular weight of the 

polymer and  polymer substituents are some of the factors that we propose could alter the magnitude of co-crystalline phase formation.  

PT8:PC60BM 1%ASSQ-DPSQ PT8:PCBM 



S3d Fitting data of out-of-plane linecut of 1% ASSQ-DPSQ PTB7:PC71BM 
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S3e Summary of domain orientation percentage on binary and quaternary films 

 

PTB7 100 (lamellar) peak analysis at 0.39 Å
-1
 

Material theta (degrees) iso qr qz total isotropic face-on edge-on 

Binary 0.07 1795 637 9211 11643 15% 5% 79% 

Binary 0.10 7994 9495 11632 29122 27% 33% 40% 

Binary 0.12 3929 7378 8792 20100 20% 37% 44% 

Binary 0.15 4792 1901 4942 11636 41% 16% 42% 

Binary 0.20 4834 1153 3807 9795 49% 12% 39% 

Quaternary 0.07 5705 2957 4383 13046 44% 23% 34% 

Quaternary 0.10 7271 5912 5515 18698 39% 32% 29% 

Quaternary 0.12 5517 5310 5062 15890 35% 33% 32% 

Quaternary 0.15 2937 2997 3331 9266 32% 32% 36% 

Quaternary 0.20 3267 1680 2097 7045 46% 24% 30% 

 

 

New unique phase in quaternary films: "Co-crystal"  peak at 0.277 Å
-1
 

Material theta (degrees) iso qr qz total isotropic face-on edge-on conclusion 

Binary   
    

0% 0% 0% Peak not present (no co-crystal) 

Quaternary 0.07 0 0 178852 178852 0% 0% 100% Co-crystal is entirely edge-on 

 
0.10 0 0 147793 147793 0% 0% 100% 

 

 
0.12 0 0 112445 112445 0% 0% 100% 

 

 
0.15 0 0 76875 76875 0% 0% 100% 

 

 
0.20 0 0 63999 63999 0% 0% 100% 

  

 

In these tables, ‘theta’ refers to the incident beam angle with respect to the sample surface plane. Data displayed in Figure 5 are results of theta = 0.12.    

 

 



S3f  Description on the quantification of crystallite population analysis on GIWAXS data 

Quantification of semiconducting polymer orientation was performed using a previously-described 

procedure
[2]

. The intensity along the 100 lamellar arc was integrated at each angle (χ) with respect to the 

qz axis
[3, 4]

. The full peak width was integrated, and the local background, just outside the peak region 

subtracted, at each angle. The χ scale was corrected to account for the intersection of the Ewald sphere
[5]

. 

To account for the amount of material being probed at any given angle, assuming films were in-plane 

powders, we apply a sin(χ) correction factor
[6]

. To compute the amount of face-on vs. edge-on material, 

we distributed the integrated intensity of the corrected curve into three categories: “isotropic” (baseline 

scattering that is uniform in the uncorrected curve, and follows sin(χ) in the corrected curve), “edge-on” 

(signal above baseline for χ < 45º), and “face-on” (signal above baseline for χ > 45º). 



S4.  Hole mobility comparison for binary, ternary, and quaternary devices 
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Zero-field hole mobility is estimated by space-charge limited current model (SCLC) under low applied 

voltage where the anode is grounded. Devices studied were constructed as ITO/MoO3/Active 

layer/MoO3/Au. Device area was kept consistent with solar cells (8 mm
2
). Thickness is estimated by 

cross-section scanning electron microscope imaging after the J-V characteristics under dark conditions 

were tested. Data was fitted to the Mott-Gurney equation below, where voltage is corrected to voltage 

applied minus the bias voltage (ground) and resistive voltage. Resistive voltage accounts for loss due to 

resistance in ITO (20 Ω). L denotes the film thickness and the epsilons correspond to vacuum and relative 

permittivities. 
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S5. X-ray Photoelectron Spectroscopy (XPS) 

S5a. Surface element quantification for binary and quaternary films. Scattered dots in the element analysis 

of C 1s and S2p are raw data and the lines are fitted results.  

PTB7:PCBM with 2% ASSQ+DPSQ 
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Table S1: Quantification of carbon and sulfur of binary and quarternary films 

 

  PTB7:PCBM with 1%ASSQ+DPSQ 

   

Peak C 1s S 2p C 1s S 2p 

Area under Peak 16525.7 2395 13906.1 2677.6 

FWHM 1.696 2.195 1.751 2.247 

Max Height 29105.1 3645.5 23699.6 3980 

R.S.F. 1 1.68 1 1.68 

Area/RSF 16525.7 1425.6 13906.1 1593.8 

Ratio (C:S) 0.9206 0.0794 0.8972 0.1028 

 

 

As a surface sensitive analytical tool, X-ray photoelectron spectroscopy (XPS) was used to survey 

element distribution at the top interface. For the dual-squaraine PTB7:PC71BM system, we correlate the 

XPS data to morphological change by quantifying the carbon to sulfur ratio on the surface, as sulfur is 

only present in the thiophenyl backbone of PTB7 (Supplementary Information, S5). Close scanning of the 

carbon 1s peak at 280 to 290 eV binding energy reveals a shoulder at 288 eV which corresponds to the 

presence of C-O bonding in PCBM
[7]

 and a strong characteristic peak of C=C from the conjugated 

organics at 284 eV. By integrating the area under the carbon 1s and sulfur 2p spectra (peak at 163.4 eV) 

and normalizing to their relative sensitivity factors, we notice that the S:C ratio increases from 0.08:0.92 

to 0.10:0.9 after ASSQ and DPSQ were mixed in the polymer:fullerene matrix. Because only the polymer 

contains sulfur element, this indicates that the squaraines promote a more polymer-rich surface formation, 

resulting in a better concentration gradient for charge extraction near the cathode interface
[8, 9]

 for inverted 

solar cells. We attempted to quantify the percentage of squaraines on the surface by repetitively scanning 

the region from 395 to 408 eV binding energy, but the signal from the nitrogen 1s is not discernable 

(Supplementary Information, S5b) in 2% ASSQ-DPSQ PTB7:PC71BM film. The nitrogen 1s peak, 

however, is clearly seen in 1:1 blended ASSQ-DPSQ film. Hence, we deduce that squaraines are indeed 

present in trace amount on the film surface. 



 

S5b. Detailed XPS scans for N 1s on 1% ASSQ + 1% DPSQ PTB7:PC71BM films 

 

 Nitrogen 1s peak is not spotted in 1%ASSQ-

DPSQ PTB7:PC71BM film even after 20 
continuous scans. 

 

 

S5c. XPS spectra on 1:1 ASSQ:DPSQ films: (a) XPS full spectrum scan for equi-mass of ASSQ:DPSQ 

blended film (b) Nitrogen 1s peak shown in ASSQ:DPSQ squaraines film. 
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S6   X-SEM and TEM images 

S6a Cross section SEM images (X-SEM) in false colors for binary and quaternary cells on ITO (or glass portion of ITO substrates). Films were 

rapidly cooled in liquid nitrogen before cleavage.  

 

(a) 

 

(b) 

 
  

 

X-SEM results were used to estimate the thickness of the active layers of the PTB7:PC71BM films. Adding squaraines has little effect on the film 

thickness and hence the solar cells performance improvement is not associated with the light absorbing thickness. In this case, both binary and 

quaternary films share thickness of ~ 94 nm.   

PTB7:PCBM w/ 1% ASSQ + 1% DPSQ 
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S6b TEM: EDAX of 1% ASSQ-DPSQ PTB7:PC71BM 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
  



S6c TEM: EDAX of 1% ASSQ-DPSQ PT8:PC61BM 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
  



S7 Solar cell performance of Ternary Solar Cells, (a, c) 2% ASSQ and (b, d) 2% DPSQ in PTB7:PC71BM under 1 sun irradiation (a, b) 

and various illumination intensity (c, d). The EQE difference of ternary devices compared to the control cell without squaraine can be 

derived from Figure 4(b). This information shows in detail the contribution when only (e) 2% of ASSQ and (f) 2% of DPSQ were added to 

the control PTB7:PC71BM active layer.  
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S8 Supplemental solar cell performance of quaternary solar cells using ZnO as interlayer. (a) PCEs of 60 devices of 

ASSQ:DPSQ:PTB7:PC71BM quaternary films under AM 1.5 1 sun simulated illumination. Dark J-V curves of (b) PTB7:PC71BM, (c) 

PTB7-Th:PC71BM, and (d) PT8:PC61BM with their quaternary counterparts. (e) Comparison of EQE difference between quaternary and 

binary devices of PTB7:PC71BM. (f) EQE of binary and quaternary PTB7-Th:PC71BM cells and the inset is the EQE difference.  
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S9 Energy level alignment and device parameter statistics of quaternary systems.  

 

(a) PTB7:PC71BM with ASSQ and DPSQ 

 

 

(b) PTB7-Th:PC71BM with ASSQ and DPSQ 
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(c) PT8:PC61BM with ASSQ and DPSQ 
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S9(d) Average performance devices of PTB7-Th:ASSQ:DPSQ:PC71BM on PFN  

 

Results presented below are mean and standard deviation values of the best 6 devices with PFN after 15 minutes exposure under simulated 1sun 

illumination in nitrogen glovebox.  

Inverted Devices Efficiency 
Jsc FF Voc 

(mA/cm2) (%) (V) 

Binary PTB7:PC71BM 8.18 ± 0.16 16.74 ± 0.17 66.3 ± 1.5 0.725 ± 0.01 

Ternary 2% ASSQ:PTB7:PC71BM 8.83 ± 0.15 17.65 ± 0.17 70.4 ± 0.8 0.721 ± 0.01 

Ternary 2% DPSQ:PTB7:PC71BM 8.77 ± 0.09 17.73± 0.17 69.9 ± 0.6 0.722 ± 0.01 

Quaternary PTB7:PC71BM 9.46 ± 0.19 17.88 ± 0.15 71.1 ± 1.2 0.717 ± 0.02 

Binary PTB7-Th:PC71BM 9.22 ± 0.17 17.05 ± 0.12 68.6 ± 0.9  0.794 ± 0.03 

Quaternary PTB7-Th:PC71BM 10.45 ± 0.12 17.82 ± 0.16 71.7 ± 1.3 0.789 ± 0.04 
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