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Abstract— In this paper we characterize the impact of imperfect com-
munication on the performance of a decentralized mobile sensor network.
We first examine and demonstrate the trade-offs between communication
and sensing objectives, by determining the optimal sensor configurations
when introducing imperfect communication. We further illustrate the
performance degradation caused by non-ideal communication links in
a decentralized mobile sensor network. To address this, we propose a
decentralized motion-planning algorithm that considers communication
effects. The algorithm is a cross-layer design based on the proper interface
of physical and application layers. Simulation results will show the
performance improvement attained by utilizing this algorithm.

I. INTRODUCTION

There has recently been considerable interest in sensor networks
[1], [2]. Such networks have a wide range of applications such as
environmental monitoring, surveillance and security, smart homes and
factories, target tracking and military systems. A team of mobile
agents equipped with sensing, wireless communication and local
processing capabilities can further take advantage of the mobility to
achieve sensor configurations that result in better networked sensing.
To address and overcome technological challenges of such networks,
different and non-conventional designs and strategies should be
used. Such designs lie at the intersection of multiple disciplines
like control, communication and computation, necessitating cross-
disciplinary approaches.
Decentralized control of sensor motions is a key issue in such
networks and has gotten considerable interest [3], [4], [5]. Most of the
current research in this area, however, assumes ideal communication
links, considering only sensing objectives. Communication plays
a key role in the overall performance of such networks as each
sensor relies on improving its estimate by processing the information
received from others.
Considering the impact of communication channels on wireless
estimation/control is an emerging area of research. Authors in [6], [7],
[8] have looked at the impact of communication channels on Kalman
filtering over a wireless link and the conditions required for stability.
Authors in [9], [10], [11], [12], [13], [14] have looked at the impact
of some aspects of a communication link like noise, quantization,
fading, medium access and packet loss on wireless control of a mobile
sensor. Authors in [15] have derived the minimum required rate for
maintaining stability of control over a communication channel.
Considering the effect of communication on motion planning in a
decentralized mobile network and addressing the introduced com-
munication and sensing trade-offs, however, have not been studied
before. It is the goal of this paper to investigate the relationship
between sensing and communication in mobile sensor networks and
demonstrate how the mobility can be utilized to achieve better
overall performance. We show that without a proper interface of
physical and application layers, the performance of the network
can degrade considerably when considering non-ideal communication
links. To improve the performance, we propose a decentralized

motion-planning algorithm that considers both sensing and commu-
nication objectives. The algorithm modifies the local information-
processing and motion-planning functions of each sensor to account
for communication channels. Finally, our simulation results show the
performance improvement gained by using this algorithm.

II. SYSTEM MODEL

Consider N mobile sensors that are cooperatively estimating the
state of a target with the following dynamics:

x[k + 1] = x[k] + w[k] (1)

where x[k] ∈ �n is an n × 1 vector representing the state of the
target at time k and w[k] is the process noise. w[k] is assumed zero
mean, Gaussian and white with Q representing its covariance matrix.
Let yj [k] represent the observation of the jth sensor at time k:

yj [k] = x[k] + vj [k] (2)

where the observation noise, vj [k], is zero mean Gaussian noise with
Rj [k] representing its covariance matrix: Rj [k] = vj [k]vt

j [k] with
“superscript t” representing the transpose of a vector/matrix.

A. Sensor Fusion and Decentralized Motion Planning

Each node transmits its local measurement and measurement error
covariance to other nodes. Let ŷi,j [k] and R̂i,j [k] represent the
measurement of the jth sensor and its corresponding error covariance
matrix received at the ith sensor respectively. We will have the
following for 1 ≤ i, j ≤ N ,

ŷi,j [k] = yj [k] + ci,j [k] ci,i[k] = 0n×1

R̂i,j [k] = Rj [k] + Li,j [k] Li,i[k] = 0n×n
(3)

where ci,j [k] ∈ �n and Li,j [k] ∈ �n×n contain communication
noises occurred in the transmission of each element of yj [k] and
Rj [k] respectively and 0n×1 and 0n×n represent the zero vector and
matrix respectively. Ui,j [k] represents covariance matrix of ci,j [k]:

Ui,j [k] = ci,j [k]ct
i,j [k] (4)

Each sensor would then fuse its own measurement with the received
ones to reduce its measurement uncertainty. We assume that each
sensor uses a Best Linear Unbiased Estimator (BLUE) [16] to process
local and received information. It then makes a local decision about
where to move next to minimize its local fused estimation error. Let
pj [k] ∈ �2 represent the position of the jth sensor at time k. The
jth sensor decides its next move as follows:

pj [k + 1] = ξ(pj [k], ŷj,1[k], R̂j,1[k], . . . , ŷj,N [k], R̂j,N [k]) (5)

where ξ(·) represents the motion-planning function used locally at
each node.
In order to provide a measure for evaluating the overall performance,
in the next section we will first find optimal sensor configurations for
networked sensing. To highlight communication/sensing trade-offs,

0-7803-9201-9/05/$20.00 ©2005 IEEE 118

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216253145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


we show how the optimal locations change when considering imper-
fect communication. This analysis provides the basis of comparisons
and conclusions made later in this paper.

III. PROVIDING A BENCHMARK: OPTIMAL SENSING LOCATIONS

In this section we examine sensing and communication trade-offs
by finding the optimal locations of the sensors in the presence of
imperfect communication. This investigation will serve two purposes:

1) To give insight on how communication impacts sensing,
2) To provide a benchmark for evaluating the performance of the

decentralized network in the subsequent sections.

We are interested in finding optimal sensor locations: pj [k]. The
observation and communication noise covariances are functions of
the locations of the sensors and target. Let g(·) and h(·) represent
these functions respectively. Then,

Rj [k] = g(pj [k], pT [k]) 1 ≤ j ≤ N
Ui,j [k] = h(pi[k], pj [k]) 1 ≤ i, j ≤ N

(6)

where pT [k] represents target location at the kth time instant. The
optimal locations considering only communication costs may differ
from the optimal locations considering only sensing costs. This results
in a trade-off between communication and sensing. We will consider
the nature of these trade-offs in this section. The time index k will
be implied except when explicitly necessary.

A. Case of Perfect Communication

First we will look at the optimal locations under perfect communi-
cation to focus on sensing costs. Let Ψj represent the error covariance
matrix of the jth sensor after processing the information received
from others. We will have the following using a BLUE estimator:

Ψj = (

N∑
i=1

R−1
i )−1 (7)

Note that in the absence of communication noise, each sensor has the
same fused error covariance, Ψj . We take the determinant of Ψj to
be the cost to minimize. Then the optimal locations are the solution
to the following optimization problem:

Maximize det(Ψ−1
j ) → Maximize det(

N∑
i=1

R−1
i ) (8)

where sensor locations, p1, p2, . . . , pN , are the optimization variables
and Ri for 1 ≤ i ≤ N are functions of sensor locations as defined
in Eq. 6.

B. Case of Imperfect Communication

In this case, we will have the following error covariance matrix
after fusion at the jth sensor:

Ψj =

[
N∑

i=1

(Ri + Uj,i)
−1

]−1

(9)

where Ri and Uj,i are functions of the optimization variables:
p1, p2, . . . , pN , as indicated by Eq. 6. In this scenario, each sensor
will have a different local cost function. Therefore, there are different
ways of formulating the optimization problem. One possible way is
to optimize an average measure,

Maximize
∑

j
det(Ψ−1

j ) →
Maximize

∑
j
det(

∑N

i=1
(Ri + Uj,i)

−1)
(10)

To see communication and sensing trade-offs from Eq. 8 and 10,
we have to be more specific about the task of the network and
define the function g in Eq. 6. Therefore in the remainder of the
paper, we consider a target moving in the plane, and its state is
defined to be its position, i.e. x = pT ∈ �2. The network will
then be estimating the position of the target jointly. The conclusions
drawn from this example are, nevertheless, applicable to other sensor
network examples as well.

C. Cooperative Sensing for Target Location Estimation

1) Observation Parameters: To model observation noise of each
sensor, we choose a typically used sonar model [18], [19], which
results in the following measurement noise covariance, Rj :

Rj = T (θj)Dj(rj)T
t(θj) (11)

where T (θj) is the rotation matrix:

T (θj) =

[
cos(θj) sin(θj)
−sin(θj) cos(θj)

]
(12)

and

Dj(rj) =

[
fj(rj) 0

0 γfj(rj)

]
(13)

where rj is the distance of the jth sensor to the target and θj is the
corresponding angle in the global reference frame, as illustrated in
Fig. 1. The function fj , the model for the range noise variance of
the jth sensor, depends on rj and γ is a scaling constant. Eq. 11
describes function g of Eq. 6 since rj and θj are functions of the
locations of the target, pT , and the jth sensor, pj . A common model
for f is quadratic, with the minimum achieved at a particular distance
from the target, namely the “sweet spot” of the sensor [3].

di,j

ri

rj

pj

θi

θj pi

pT

Sensor

Target

Fig. 1. Illustration of System Variables

2) Communication Parameters: We consider an AWGN channel
and a distance-dependent path loss model to describe the communi-
cation link [20]. Communication noises of the received observation
vector are taken to be zero mean and i.i.d, which results in

Ui,j = σ2
comm,i,jI2 (14)

with I2 representing a 2 × 2 unit matrix. We assume symmetric
uplink and downlink, which implies Ui,j = Uj,i. σ2

comm,i,j , the
communication noise variance of the transmission of each element
of the observation vector from the jth to the ith sensor, is a
function of the transmission environment and receiver/transmitter
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design parameters. Authors in [9] showed that for a uniform quantizer
and BPSK modulation, using a distance-dependent path loss model,
communication noise variance will be as follows:

σ2
comm,i,j =

q2

12
+ q2 × 4Nb − 1

3
× Q(

√
SNRrec,i,j) (15)

where q is the quantization step size and Nb is the number of bits per
transmission of each element of the observation vector. We assume
that all the sensors use the same q and Nb. Q(µ) = 1√

2π

∫ ∞
µ

e−
t2
2 dt

for an arbitrary µ. SNRrec,i,j is the average received Signal to Noise
Ratio and will have the following relationship with di,j , the distance
separating the ith and jth sensors:

SNRrec,i,j =
α

d
np

i,j

(16)

where di,j =
√

r2
i + r2

j − 2rirjcos(θi − θj) and np > 0 is the
path loss exponent which depends on the environment. Furthermore,
α ≥ 0 is a function of the transmitted signal power, receiver noise,
frequency of operation and the communication environment [20]. We
assume the same α and np for all the communication links.

3) Perfect Communication: It can be shown that the maximization
problem of Eq. 8 is equivalent to the following using Eq. 11 [3]:

Maximize 1
γ

[∑N

i=1
1

fi(ri)

]2

+

(1−γ)2

γ2

∑
2≤i<j≤N

1
fi(ri)fj(rj)

sin2(θi − θj)+
(1−γ)2

γ2
1

f1(r1)

∑N

i=2
1

fi(ri)
sin2(θi)

(17)

where r1, r2, . . . , rN and θ2, . . . , θN are the optimization variables
and θ1 is taken zero. For instance, consider two sensors with the
same f functions. It can be easily shown that the optimal locations
will be as follows: r1,opt = r2,opt = rss and θ1,opt − θ2,opt = π

2
.

The sweet spot radius, rss, represents the distance from sensor to
target that achieves the minimum of function f(r).

4) Imperfect Communication: In this case, Eq. 10 will be as
follows using Eq. 11 and 14:

Maximize∑
j
det(

∑N

i=1
T (θi)(Di(ri) + Uj,i)

−1T t(θi))
(18)

To see the impact of communication more clearly, consider the case
of two sensors. After much algebraic manipulation, Eq. 18 is given
by (assuming f1 = f2 = f ):

Maximize
γ(f(r1)+f(r2))2+σ2

comm(γ+1)(f(r1)+f(r2))

γf2(r1)(γf2(r2)+σ4
comm+σ2

comm(γ+1)f(r2))
+

(γ−1)2sin2(∆)f(r1)f(r2)+σ4
comm

γf2(r1)(γf2(r2)+σ4
comm+σ2

comm(γ+1)f(r2))

(19)

where ∆ = θ1 − θ2 and σ2
comm = σ2

comm,1,2 is a function of
optimization variables through Eq. 15 and 16. The optimal solution
of the case of perfect communication, i.e. π

2
angle difference and

sweet spot radius, may not be the optimal solution for this case any
more. Depending on the quality of the channel, sensors may have
to compromise sensing quality for better communication, sacrificing
either the π

2
angle and/or the sweet spot radius. This is what we

refer to as “sensing/communication trade-offs”. To see this, Table
II shows the optimal solution to Eq. 19, found using a brute-force
search, for the parameters of Table I and for three different channels,
α = 570, α = 5700 and α = 57000. Values of α are chosen
based on realistic parameters for transmitted signal power, receiver
noise and frequency of operation. As α gets smaller, the quality of
the channel degrades (SNRrec is proportional to α). We can see

from Table II that as α gets smaller, the optimal solution deviates
more considerably from the solution of the perfect communication
case. For instance at α = 570, ∆opt is 18◦ instead of 90◦ of
the perfect communication case. The results highlight sensing and
communication trade-offs in sensor networks.

Observation Parameters
f 0.0008(r − 15.625)2 + 0.1528
γ 5
Q .01I2

Communication Parameters
q 0.0018

Nb 15
np 2

TABLE I
SYSTEM PARAMETERS

Perfect Distance-Dependent Path Loss
Comm α = 570 α = 5700 α = 57000

r1,opt 15.625 15.2 14.1 15.625
r2,opt 15.625 15.2 14.1 15.625
∆opt 90◦ 18◦ 70.56◦ 90◦

TABLE II
OPTIMAL LOCATIONS FOR TWO SENSORS

IV. DECENTRALIZED MOBILE SENSOR NETWORK AND

IMPERFECT COMMUNICATION

The previous section provided insight on the impact of communi-
cation on the optimal locations of the sensors. In this section we con-
sider a mobile network that seeks to achieve the optimal configuration
through local decentralized motion planning. We investigate the effect
of imperfect communication on such networks. We further propose
an algorithm that extends the work developed in [3] to improve the
performance by taking communication effects into account in the
motion-planning process of each sensor.

A. Decentralized Mobile Sensor Network

Before introducing the impact of imperfect communication, we
will first discuss related work on decentralized motion planning
neglecting communication impacts.
The objective in cooperative estimation is to determine the sensor
motions which minimize fused estimation error. Furthermore, we
seek a decentralized solution such that each sensor identifies its
optimal location for the next time step. Given that the gradient
provides the locally optimal direction of movement, authors in [3]
use a gradient-based descent algorithm which defines the optimal
control action as the one which will position each sensor to minimize
a local measure function in the following time step. They further
reduce the gradient descent algorithm to a discrete gradient search
algorithm by restricting the possible control actions for each sensor
to a finite, discrete set of motions. Their algorithm demonstrated
performance improvement over other existing decentralized motion-
planning algorithms with low computational complexity. Here we
briefly describe the algorithm (for more details, see [3]).

Each sensor takes a local measurement as described by Eq. 2
and uses a local Kalman filter [21] to improve its local estimate.
Let xest,j [k] and Zj [k] represent the local estimate of the jth
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sensor and its corresponding error covariance matrix after Kalman
filtering at time k. Each sensor then transmits its local information
and receives the estimates of others. For this section we assume
perfect communication. Therefore, the jth sensor will have the exact
copies of xest[k] and Z[k] of other sensors. It then fuses all the
information to improve its performance by using a BLUE estimator.
Let xfused,j [k] and Zfused,j [k] represent the estimate of the target
and the corresponding error covariance matrix after fusion at the jth

sensor. We will have,

Zfused,j [k] = (

N∑
i=1

Z−1
i [k])−1 (20)

To plan its next move, the jth sensor takes the following steps:

1) It uses xfused,j [k] and Q to predict the next state of the target
(if an estimate of Q is not available, it assumes that the state
of the target has not changed):

xpredicted,j [k + 1] = xfused,j [k] + s (21)

where xpredicted,j [k +1] is the prediction of the jth sensor of
the state of the target and s is a sample of zero mean white
Gaussian noise generated using covariance matrix Q.

2) Using the received local error covariances of other sensors, it
then predicts the estimation error covariances of other nodes by
propagating the corresponding Kalman filters one step ahead:

Zpredicted,j,i[k + 1] = EP (Zi[k]) j �= i (22)

where Zpredicted,j,i[k + 1] is the jth node’s prediction of the
local error covariance of the ith sensor. EP (·) stands for a
function that produces a prediction of the next error covariance
using Kalman filtering.

3) For every possible motion vector, m, the jth node then predicts
its own error covariance by progressing its Kalman filter.
Let Zpredicted,j [k + 1, m] represent the prediction of the jth

sensor of its own error covariance as a function of m. Using
these predictions, the jth node produces the following cost to
minimize:

MotionCostj [k, m] = det(Z−1
predicted,j [k + 1, m]+∑N

i=1,i�=j
Z−1

predicted,j,i[k + 1])−1 (23)

MotionCostj [k, m] is the cost used by the jth sensor in
planning its motion at time k. Finally it chooses the motion
vector that minimizes the cost:

m∗ = argmin MotionCostj [k, m] (24)

In this manner, the task of motion planning is given to each sensor,
in place of a central computation node. To see the performance of
the decentralized algorithm for the observation parameters of Table
I under perfect communication, Fig. 2 shows sensor trajectories for
50 time steps. It shows the convergence of sensors to their optimal
locations (defined by the solution of Eq. 17) when N = 3.

B. Impact of Imperfect Communication

We observed in Section III that to optimize the performance in the
presence of imperfect communication, the network may need to trade
sensing quality for better communication performance. This means
that the local motion-planning algorithm should take communication
link qualities into account. Information on the quality of the link is
available in the physical layer. Since motion planning is performed
in the higher application layer, this requires proper interface be-
tween the two layers. Existing motion-planning algorithms do not

−10 0 10 20
−25

−20

−15

−10

−5

0

5

10

15

X Position

Y 
Po

sit
io

n

Initial Sensor Pos.
Final Sensor Pos.
Sensor Trajectory
Initial Target Pos.
Final Target Pos.
Target Trajectory

Fig. 2. Performance of the already-existing decentralized algorithm, case of
perfect communication, N = 3

take communication issues into account. Using such algorithms in
the presence of non-ideal communication links can result in poor
performance as each sensor will now receive noisy versions of xest[k]
and Z[k]. To illustrate this, we add non-ideal communication links
to the simulation setup of Fig. 2. Since communication impacts are
not taken into account in the motion-planning algorithm, we consider
scenarios that have a distance-dependent packet drop mechanism in
order to limit the amount of received estimation noise. This means
that for di,j > dcritical, the ith sensor will discard the data received
form the jth sensor. Scenario#1 refers to the case where α = 5700
when received packets are kept. Scenario#2 refers to an ideal case
where received packets are noise-free if they are kept in the receiver
and scenario#3 refers to the case where α = 570. Communication
parameters are as summarized in Table I and dcritical = 20m. Fig.
3 shows sensor trajectories for N = 2, scenario#1 and for 50 time
steps. As can be seen, the algorithm does not converge and the sensors
are acting independently. Fig. 4 shows the determinant of the error
covariance of one of the sensors (after fusion) for scenario#1 and 2.
For comparison, the determinant of the error covariance for N = 1
and N = 2 with perfect communication are also plotted. At the
beginning the sensors can communicate and, due to the low level
of communication noise for these two scenarios, can benefit from
cooperative sensing for a short period of time. However, since the
local information processing and motion planning algorithms of each
sensor do not take communication effects into account, the sensors
can not be guided toward finding the optimum locations. Instead,
they move in the opposite directions of the optimum trajectories,
which results in the sensors acting independently (see Fig. 3). The
same situation happens after a few iterations as well. Therefore, the
sensors can not benefit from networked sensing. Fig. 4 also shows
the performance for scenario#2, the ideal case in which the received
packets are noise-free if not dropped in the receiver. We can see that
the network shows a similar behavior. It can not find the optimum
locations and can not benefit from cooperative sensing. Fig. 5 shows
the determinant of the error covariance of one of the sensors (after
fusion) for scenario#3. In this scenario, α = 570, which represents a
weaker channel. It can be seen that since the communication noise is
not accounted for in sensor fusion and motion planning algorithms,
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the estimation error can get considerably high when received packets
are not dropped. The trajectories for scenario#3 are similar to that
of scenario#1 of Fig. 3. It should be noted that in the absence of a
packet drop mechanism, the estimation error would have been even
higher due to the lack of a proper interface of the physical and the
application layers. To see this, Fig. 5 also shows a sample of the
estimation error for scenario#4. Scenario#4 refers to the case where
all the packets are kept in the receiver and α = 5700. Although this
is a stronger channel, the estimation error can get considerably high
since the sensors move away from each other.
In general, even for the cases that the sensors start out closer, they can
easily end up performing individual estimation. This behavior of the
network is also independent of the value of dcritical. This is due to the
fact that the motion-planning algorithm is not taking communication
effects into account. This motivates designing decentralized motion-
planning algorithms that are more robust to communication imperfec-
tion. The next section will show how to modify the aforementioned
decentralized algorithm to include communication impacts, creating
the possibility of sensing/communication trade-offs when planning
the next move.
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Fig. 3. Performance of the already-existing decentralized algorithm, case of
imperfect communication, N = 2, scenario#1

C. A Decentralized Motion-Planning Algorithm Considering Both
Communication and Sensing: A Cross Layer Design Approach

To improve the performance in the presence of imperfect commu-
nication, we modify the algorithm to allow for an interface of appli-
cation and physical layers. Physical layer will pass information on the
quality of the link to the application layer. More specifically, it will
pass knowledge of the communication noise variances, σ2

comm,i,j [k].
Application layer of each sensor then uses this information for both
fusion and motion planning. At the time of local fusion, Eq. 20
becomes:

Zfused,j [k] = (

N∑
i=1

(Ẑj,i[k] + Uj,i[k])−1)−1 (25)

where Ẑj,i[k] is the noisy version of Zi[k] received by the jth sensor.
Eq. 25 prevents noisy samples from degrading fusion performance.
In practice physical layer can estimate σ2

comm,i,j by measuring the
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received Signal to Noise Ratio. Then when planning the next move,
Eq. 23 should be modified as follows:

MotionCostj [k, m] = det
[
Z−1

predicted,j [k + 1, m]+∑
i�=j

(Zpredicted,j,i[k + 1] + Upredicted,j,i[k + 1, m])−1]−1

(26)
where Zpredicted,j,i[k + 1] = EP (Ẑj,i[k]) and
Upredicted,j,i[k + 1, m] is the jth sensor’s prediction of the com-
munication error covariance of the ith sensor’s transmission given
motion vector m. Typically each sensor also transmits its position
as well. In that case, the jth sensor receives noisy estimates of
positions of other nodes from which it can estimate its distances
to other sensors for each motion vector. It can then use the model
described by Eq. 15 to get Upredicted,j,i[k + 1, m]. If the estimates
of positions of other nodes are not available, the received observation
estimates have implicit information on the positions of other nodes
and can be used for prediction. Fig. 6-10 show the performance of
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the proposed algorithm for the parameters of Table I. Fig. 6 shows
sensor trajectories for 50 time steps, N = 2 and α = 570. We can
see convergence of the sensors to their optimal locations. After 50
time steps, we have ∆[50] = 13.5◦, r1[50] = 16 and r2[50] = 16.1.
Comparing these values with the corresponding optimal ones in Table
II, shows convergence of the decentralized algorithm to the optimal
locations. We can see that by accounting for communication links
in the application layer, we improve the performance considerably.
Fig. 7-10 show the determinant of the error covariance of one of
the sensors (after fusion) as a function of time, for two different
channels and for N = 2, 3, 4 and 5 respectively. We can see that in
all the figures, for α = 5700, the error stays very close to that of the
ideal communication from the beginning. For α = 570, the sensors
start out acting individually but can find the optimum configuration
quickly resulting in the error reaching very close to that of the ideal
communication case after a few time steps. The convergence gets
faster as the quality of the link improves. Convergence time is also a
function of the initial positions of the sensors and may be different for
different sensors of the network. The error is always bounded by that
of a single sensor independent of the quality of the link. The results
emphasizes the importance of cross-layer feedback in decentralized
motion-planning.
To see the performance of the proposed algorithm when the target
is moving faster, we next simulate the proposed algorithm for the
following target motion: xfast[k + 1] = Axfast[k] + w[k]. Fig.
11, 12 and 13 show the performance of the proposed decentralized
algorithm for A = .7I2, Q = .1I2 with the rest of the parameters as
summarized in Table I. Fig. 11 shows how sensors track the target
for N = 2, α = 570 and 50 time steps. Fig. 12 ans 13 show the
determinant of the error covariance of one of the sensors (after fusion)
as a function of time, for two different channels and for N = 2
and 4 respectively. Fig. 11 shows that using the proposed algorithm,
the sensors can track the target considerably well. Fig. 12 ans 13
further demonstrate that the error reaches very close to that of the
ideal communication case. We can see that the network benefits from
cooperative sensing for target tracking.
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Fig. 6. Performance of the proposed decentralized algorithm, case of
imperfect communication, N = 2, α = 570
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Fig. 7. Performance of the proposed decentralized algorithm, case of
imperfect communication, N=2
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Fig. 8. Performance of the proposed decentralized algorithm, case of
imperfect communication, N=3

V. SUMMARY

In this paper we considered the impact of imperfect communication
on the performance of a decentralized mobile sensor network. We
showed communication and sensing trade-offs in such networks
by determining the optimal sensor locations in the presence of
non-ideal communication links. To improve the performance, we
proposed a decentralized motion-planning algorithm that takes both
communication and sensing objectives into account. The algorithm
was a cross-layer design and highlighted the importance of sharing
the information of physical layer with the application layer. Finally
simulation results showed the performance improvement gained by
using this algorithm.
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Fig. 9. Performance of the proposed decentralized algorithm, case of
imperfect communication, N=4
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Fig. 10. Performance of the proposed decentralized algorithm, case of
imperfect communication, N=5
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