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We introduce a new adaptive cooperative control strategy for robotic networks com-
prised of heterogeneous members. The proposed feedback synchronization exploits an
active parameter adaptation strategy as opposed to adaptive parameter estimation of adap-
tive control theory. Multiple heterogeneous robots or vehicles can coordinate their motions
by parameter adaptation analogous to bio-genetic mutation and adaptation. In contrast
with fixed gains used by consensus theory, both the tracking control and diffusive coupling
gains are automatically computed based on the adaptation law, the synchronization errors,
and the tracking errors of heterogeneous robots. The optimality of the proposed adaptive
cooperative control is studied via inverse optimal control theory. The proposed adaptive
cooperative control can be applied to any network structure. The stability proof, by using
a relatively new nonlinear stability tool, contraction theory, shows globally asymptotically
synchronized motion of a heterogeneous robotic network. This adaptive cooperative con-
trol can be widely applied to cooperative control of unmanned aerial vehicles (UAVs),
formation flying spacecraft, and multi-robot systems. Results of the simulation show the
effectiveness of the proposed adaptive cooperative control laws especially for a network
comprised of heterogeneous members.

I. Introduction

Distributed coordination of robotic networks has been a topic of extensive research in recent years due
to its merits such as more a flexible mission design, lower cost, less development time than a single complex
robot. Recent advances in computation and communication technology further stimulated the growth in the
field with broader applications such as unmanned aerial vehicles (UAVs),28,32 spacecraft formation flying,2,3

autonomous underwater vehicles (AUVs),27 and multi-robot systems networks.7 Often times, cooperative
control systems require mutual synchronization of multiple motions and tasks. Synchronization is important
when the network system is faced with internal or external disturbances, while uncoupled trajectory tracking
control hardly achieves a good performance in synchronization in the presence of such disturbances.

Most prior works studied robotic networks comprised of identical members with fixed coupling gains and
network topology. In contrast, we introduce a new adaptive cooperative control law for the distributed coor-
dination of heterogeneous robotic networks. The objective is to derive a unified synchronization framework
for a heterogeneous robotic network that can achieve not only synchronization of the configuration variables
of each robot but also stable tracking of a shared desired trajectory.

A. Biological Inspiration

The proposed cooperative control scheme is based on active parameter adaptation which systematically
permits an active variation of physical or non-physical parameters of robotic systems. The key idea is
inspired by (1) bio-genetic mutation and adaptation such as “adaptive” bio-immune systems (e.g. cytotoxic
T cells)23 and (2) Human Immunodeficiency Virus (HIV).14 For example, the cytotoxic T cell, a type of
white blood cells that play a key role in the immune system and is at the core of adaptive immunity,1 shown
in Figure 1, is activated by cytokines, small proteins secreted by CD4 T cells (helper T cells). They have a
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Image courtesy: Nucleus (cytokines) [http://nucleusinc.com] , LiveScience (pathogen) [http://www.livescience.com],
P. Groscurth (T-Cell) [Institute of Anatomy, Univ. of Zurich, Switzerland], and USAF (F-22).

Figure 1. Motivation of the current study (bio-immune system) and the relationship between the bio-immune
system and systems’s dynamic motion of robotic networks

specific effect on the interactions/communications between cells. The activated T cells change their chemical
and physical parameters, so that the changed parameters help the T Cells recognize their target (pathogens
or tumors) in the organ. Such recognition of the adaptive immune system is a result of an adaptive biological
process. It should be noted that the activated T Cells do not know where their targets are located; they
only know the target’s information due to the adaptive activation process. By means of this process, the T
Cells can detect their targets when they are moving around the organ. Therefore, the changed parameters
in the T Cells play a crucial role in how to find and how to kill the targets. Another example is Human
Immunodeficiency Virus (HIV). HIV rapidly changes its physical and biological information, so that even
the adaptive bio-immune systems cannot detect the current characteristics of the virus. This procedure is
different from that of the adaptive bio-immune systems. Nonetheless, the underlying concept is still the
same; HIV tries to find how to avoid the T cells by changing their own physical and chemical information.
These mutation and adaptation of the biological systems can be explained by a selective advantage.18 In
other words, one species’ adaptation of the information can be affected by the neighbors around it.

In the current paper, we present a control-theoretic interpretation of such biological mutation and adap-
tation by presenting the synchronization of multiple adaptive dynamics that attempt to mimic the physical
parameters of the leader. Such a leader is referred to as a knowledge leader of the adaptive network, first
introduced by Wang and Slotine,31 which is analogous to evolutionary mutations of biological entities. This
knowledge leader specifies “how to go,” as opposed to the desired trajectory prescribing “where to go.” The
physical parameters that can be actively adapted include the local control gains, mass, and moments of in-
ertia by grabbing or discarding an object or perhaps by combining or dividing the robots (e.g., autonomous
docking of space robots).

B. Related Work

There has been a large volume of research on cooperative control. Detailed information can be found in the
recent survey papers.16,20 Most prior works are based on graph theory and Laplacian [7,8,11,15,19,22]. Some
of these studies use the average of the initial conditions for synchronization, which is not directly applicable
to multi-robot systems whose desired trajectories are explicitly defined. Further, many prior works do not
consider highly nonlinear systems such as Lagrangian dynamics, let alone the heterogeneity of a network.

We focus on adaptive control as one of the methods for synchronization of cooperative motion in robotic
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networks similar to [4,6,21,29,30]. A previous study [30] applies adaptive and robust controls for cooperative
manipulations in the robotic motion. However, the adaptive control is used for parameter uncertainties of
the system parameters and is not applied for synchronization itself. Also, some studies [21, 29] suggest
adaptive synchronization of multiple parallel manipulators in a single local coupling configuration. However,
the work is also limited to the use of adaptive control that only adapts to unknown system parameters. A
recent work4 suggests adaptive synchronization of a robotic network by estimating unknown parameters in
a decentralized fashion. Most prior works focus on estimation of the system parameters by using adaptive
control, while our proposed control employs adaptive control for estimating the system parameters as well
as adapting them.

The main contribution of the current paper lies in the active parameter adaptation architecture for
robotic networks consisting of highly nonlinear heterogeneous Lagrangian systems. The heterogeneous dy-
namic model presents a more generalized setup. Moreover, we introduce a novel strategy of applying the
parameter adaptation to tuning both tracking control and diffusive coupling gains in an adaptive fashion.
The proposed strategy aims to provide optimality as well as flexibility for highly time-varying robotic net-
works. The proposed parameter adaption for tracking control and diffusive coupling gains varies with system
states, actuator performance, interaction with neighboring robots in the network. Unlike the prior work,4

the tracking control and diffusive coupling gains of each robot need not be the same for all other robots
in the networks (e.g., consider formation controls of heterogeneous systems). Besides, if the agents’ phys-
ical or non-physical parameters should be changed intentionally for specific missions such as docking and
dividing two space robots or if they are varied by unknown environmental factors, the tracking control and
diffusive coupling gains should be automatically modified as well in order to avoid a degradation in control
performance.

The organization of the current paper is as follows. In Section II, modeling, general control law for tracking
robotic motion, synchronization with adaptive parameter estimation, and adaptive dynamics are discussed.
The synchronization of heterogeneous robotic network systems with the physical parameter adaptation is
presented along with an alternative synchronization method for adaptive dynamics in section III. In section
IV, main results for the current study are described. Simulation results are illustrated in section V. Finally,
in section VI, the concluding remarks are stated.

II. Preliminaries: Control and Stability Analysis

We here review our main nonlinear stability tool and dynamic modeling of heterogeneous robots. Also,
we summarize how a conventional adaptive controller can be applied to a robotic network. The equations
of motion for a robot with multiple degrees of freedom (qi ∈ Rn) can be written as:

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi (1)

where i (1 ≤ i ≤ p) denotes the index of robots or dynamic systems in a network, and p denotes the total
number of the individual elements. In addition, τi is a generalized force or torque acting on the i-th system.
Note that Ci(qi, q̇i) is defined such that (Ṁi − 2Ci) is skew-symmetric,25 and this property plays a central
role in our stability analysis using contraction theory.12

A. Contraction Analysis for Global and Exponential Stability

A brief review of the contraction analysis is described in this section (see [12] for more details). Although one
popular method for modular stability analysis is to exploit the passivity formalism and Lyapunov theory,
we use contraction theory [12, 24] as an alternative tool for analyzing the modular stability of coupled
nonlinear systems. In particular, contraction analysis has more general and intuitive combination properties
(e.g., hierarchies) than the passivity method, since it involves a state-space rather than an input-output
method. Also, we can straightforwardly prove a stronger form of stability, i.e., globally exponential or
globally asymptotic (for a semi-contracting system).

Consider a deterministic and smooth nonlinear system

ẋ(t) = f(x(t),u(x, t), t) (2)

where x(t) ∈ Rn, and f : Rn ×Rm ×R+ → Rn. A virtual displacement, δx is defined as an infinitesimal
displacement at fixed time — a common supposition in the calculus of variations.
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Theorem 1 For the system in (2), if there exists a uniformly positive definite metric,

M(x, t) = Θ(x, t)T Θ(x, t) (3)

where Θ is some smooth coordinate transformation of the virtual displacement, δz = Θδx, such that the
associated generalized Jacobian, F is uniformly negative definite, i.e., ∃λ > 0 such that

F =
(

Θ̇(x, t) + Θ(x, t)
∂f
∂x

)
Θ(x, t)−1 ≤ −λI, (4)

then all system trajectories converge globally to a single trajectory exponentially fast regardless of the initial
conditions, with a global exponential convergence rate of the largest eigenvalues of the symmetric part of F.

Such a system is said to be contracting. The proof is given in [12]. Equivalently, the system is contracting
if ∃λ > 0 such that

Ṁ +
(
∂f
∂x

)T

M + M
∂f
∂x
≤ −2λM (5)

(5) is useful for the stability proof of a Lagrangian system, since the inertia matrix M(q) of the robot
dynamics in (1) can be chosen as the metric M in (5).

B. Adaptive Synchronization via Active Parameter Estimation

A decentralized adaptive synchronization control law4,9, 24 that adapts to an unknown, possibly slowly-
varying, parametric uncertainties can be designed for a network comprised of p heterogeneous robots (Mi 6=
Mj , 1 ≤ i, j ≤ p).

Following [4], let us first consider a network with a two-way-ring symmetric structure. This network struc-
ture will be further generalized to realize the full potential of the proposed adaptive strategy in Section IV.
The following control law is proposed for the i-th robot (p ≥ 3):

τi = M̂i(qi)q̈i,r + Ĉi(qi, q̇i)q̇i,r + ĝi(qi)−K1(t)si + K2(t)si−1 + K2(t)si+1 (6)

= Wib̂i −K1(t)si + K2(t)si−1 + K2(t)si+1

where K1(t) ∈ Rn×n > 0 is a tracking control gain matrix, and K2(t) ∈ Rn×n > 0 is a diffusive coupling
gain matrix with the adjacent members (i−1 and i+ 1). where the common desired time-varying trajectory
(or the virtual leader dynamics) is denoted by qd(t). The reference velocity vector q̇i,r is defined as

q̇i,r = q̇d −Λq̃i = q̇d −Λ(qi − qd) (7)

where Λ is a positive diagonal matrix. The composite variable is defined as si = q̇i − q̇i,r.
Also, the parameter estimate b̂i is the unknown parameters of the i-th robot dynamic model, which is

updated by the correlation integral25
˙̂bi = −ΓWT

i si (8)

where Γ is a symmetric positive definite matrix. Hence, the closed-loop system for a network comprised of
p non-identical robots can be written as[

[M(q)] 0
0 [Γ−1]

](
ẋ

{ ˙̃b}

)
+

[
[C(q, q̇)] 0

0 0

](
x
{b̃}

)
+

[
[Lp

K1,−K2
] −[W]

[W]T 0

](
x
{b̃}

)
= 0 (9)

where [M(q)] and [C(q, q̇)] are the block diagonal matrices of Mi(qi) and Ci(qi, q̇i), i = 1, · · · , p. The
additional block diagonal matrices are defined from (8) such that [Γ−1] = diag(Γ−1,Γ−1 · · · ,Γ−1)p, [W] =
diag(W1,W2, · · · ,Wp). Also, x = (sT

1 , s
T
2 , · · · , sT

p )T , and {b̃} = (b̃T
1 , b̃

T
2 , · · · , b̃T

p )T where b̃i denotes an
error of the parameter estimate such that b̃i = b̂i − bi. Note that bi is a constant vector of the true
parameter values for the i-th robot, resulting in ˙̃bi = ˙̂bi. If each robot is identical, bi = b for 1 ≤ i ≤ p.
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[Lp
K1,−K2

] is a modified Laplacian4 defined by

[Lp
A,B] ,


A B 0 · · · B
B A B · · · 0
...

...
. . .

...
0 · · · B A B
B · · · 0 B A


p×p

. (10)

[Up
K2

] is a p× p block square matrix whose elements are K2 and it is used in the following theorem.

Theorem 2 The adaptive synchronization law in (6) globally asymptotically synchronizes the states of mul-
tiple dynamics in the presence of parametric model uncertainties if the condition [Lp

K1,−K2
] + [Up

K2
] > 0,∀t

holds.

Proof See [4].

III. Synchronization of Heterogeneous Adaptive Dynamics

A. Synchronization of Adaptive Dynamics using Physical Parameter Adaptation

Assume that the individual robot dynamics of the network are adaptive in the sense that their physical
parameters, connoted by ai, are now adapting or mutating, according to the adaptation law

ȧi = ΣYT
i si (11)

where Σ is a symmetric positive definite matrix. Note that the adaptive parameters are carefully selected
such that the inertia matrix Mi(qi) is uniformly positive definite. This is different from (8) where the actual
physical parameters of the robot (bi) are fixed, but its estimates b̂i are updated in the adaptive control law
(8). In this section, however, the actual values of ai are updated by (11) and the original dynamics in (1)
are now called adaptive dynamics. Consider the following control law for the i-th robot

τi = Yialeader −K1si + K2si−1 + K2si+1 (12)

where aleader, which corresponds to the physical parameters of the leader, is slowly varying or constant.

Theorem 3 The adaptive synchronization law in (12) globally asymptotically synchronizes the states of
multiple adaptive dynamics.

Proof By defining the parametric error ãi = ai−aleader and combining (1), (11), and (12), the closed-loop
system for a network comprised of p non-identical robots can be written as[

[M(q)] 0
0 [Σ−1]

](
ẋ
{ ˙̃a}

)
+

[
[C(q, q̇)] 0

0 0

](
x
{ã}

)
+

[
[Lp

K1,−K2
] [Y]

−[Y]T 0

](
x
{ã}

)
= 0 (13)

where [M(q)], [C(q, q̇)], and [Y] are diagonal matrices whose diagonal elements are Mi(qi), Ci(qi, q̇i),
and Yi, respectively. [Σ−1] = diag(Σ−1,Σ−1, · · · ,Σ−1)p. Moreover, K1 and K2 are tracking control and
diffusive coupling gains such that K1 − 2K2 > 0, K1 > 0, and K2 > 0. Note that [Lp

K1,−K2
], a strictly

positive definite by the condition of K1 and K2, is defined in (10).
Following [4], we can apply the spectral decomposition to (13) by using V = [[1] Vsync], VT [Lp

K1,−K2
]V =

[D] and the augmented Va = diag(V, Ipn). Note that [1] matrix consists of p identity matrices and that
Vsync consists of the orthonormal eigenvectors other than [1]. See [4] for some examples.

This leads to the following virtual system of (yT
1 ,y

T
2 )T [4, 9, 24][

VT [M(q)]V 0
0 [Σ−1]

](
ẏ1

ẏ2

)
+

[
VT [C(q, q̇)]V 0

0 0

](
y1

y2

)
+

[
[D] VT [Y]

−[Y]T V 0

](
y1

y2

)
= 0. (14)
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The virtual system has two particular solutions: y1 = VT x,y2 = {ã}, and y1 = 0,y2 = 0. The virtual
length analysis indicates that (14) is semi-contracting by the negative semi-definite Jacobian with [D] > 0:

dV
dt

= −2

(
δy1

δy2

)T [
[D] 0
0 0

](
δy1

δy2

)
(15)

where V ,

(
δy1

δy2

)T [
VT [M(q)]V 0

0 [Σ−1]

](
δy1

δy2

)
is the virtual length used.

Using Barbalat’s lemma, it can be shown that δy1 tends asymptotically to zero from any initial condition.
Also, [D] can be decomposed to the tracking and synchronization gains. Consequently, we can conclude
that the states of multiple adaptive dynamics are synchronized by the knowledge feedback from the leader
(Yialeader).

While the synchronization of the physical parameters to the leader is not automatically guaranteed due
to the semi-contracting stability of (14), the additional condition of persistency of excitation25 would lead
to the convergence of ai to aleader.

Corollary 1 The convergence rate of ãi → 0 can be improved by adding the diffusive coupling of the physical
parameters to the adaptation law in (11):

ȧi = ΣYT
i si −ΣP(ai − aleader) (16)

where P is positive definite.

Proof It is straightforward to derive the virtual length analysis

dV
dt

= −2

(
δy1

δy2

)T [
[D] 0
0 [P]

](
δy1

δy2

)
, (17)

which guarantees the globally exponential stability of the multiple adaptive dynamics.

Remark 1 (12) is particularly attractive since it does not need knowledge of its time-varying parameter ai.
If we regard qd(t) of the composite variable si in (12) as the power leader dynamics, this is the case when
the knowledge leader and the power leader co-exist.31

B. Optimality of the Adaptive Control Based on the Parameter Adaptation

The aim of this section is to show its optimality. This optimality can be checked by using the inverse optimal
control problem.10,13

Theorem 4 The adaptation law in (12) for the closed-loop system for a network comprised of p non-identical
robots in (13) minimizes the cost functional Ja

Ja =
∫ ∞

0

(
l(x,a) + uT R(x,a)u

)
dt (18)

where

l(x,a) = −2β

[
∂V

∂x
f +

∂V

∂x
F

(
a + Γ

(
∂V

∂a

)T
)
− ∂V

∂x
gR−1

(
∂V

∂x
g
)T
]

+ β(β − 2)
∂V

∂x
gR−1

(
∂V

∂x
g
)T

where the mappings f(x), F(x), and g(x), defined in (20), are smooth. Moreover, Γ ∈ Rnp×np and R(x, a) ∈
Rnp×np are symmetric positive definite matrices and β ≥ 2 is constant.

Proof From the first equation in (13), the closed-loop system for a network comprised of p non-identical
robots can be written as

[M(q)]ẋ + [C(q, q̇)]x + [Y]{ã}+ [Lp
K1,−K2

]x = 0 (19)
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where x = [s1 s2 · · · sp]T and si = q̇i− q̇ir = q̇i− q̇d +Λ(qi−qd). Suppose that [M(q)], [C(q, q̇)], and [Y]
are smooth. Then by multiplying both sides of (19) by [M(q)]−1, the nonlinear equation can be rewritten
as follows:

ẋ = −[M(q)]−1[C(q, q̇)]x− [M(q)]−1[Y]{ã} − [M(q)]−1[Lp
K1,−K2

]x. (20)

Therefore, let us define f(x), F(x), g(x), and u as

f(x) = −[M(q)]−1[C(q, q̇)]
F(x) = −[M(q)]−1[Y]
g(x) = [M(q)]−1

u = −[Lp
K1,−K2

]x.

If we define the adaptive control Lyapunov function V in [10] as V (x,a, ·) = 1
2xT x + Vr(a, ·), from the

condition for optimality characteristics in [10], the following condition should be satisfied:

R(x,a)−1gT = [Lp
K1,−K2

] (21)

where g and [Lp
K1,−K2

] are known. Therefore, if we choose R(x,a) such that (21) is satisfied, the proposed
adaptive controller for the network system has the optimal characteristics by the results in [10].

C. Potential Applications of Adaptive Synchronization

The benefit of adaptive synchronization is obvious in the case of indifferent tracking,5 i.e., K1 = 2K2

in the adaptive control law in (12). Since VT
syncx is not a flow-invariant manifold for a heterogeneous

network, the heterogeneous dynamics do not synchronize in the absence of exponential tracking stability.
Consequently, the knowledge coupling introduced in this section provides a method of both the state and
parameter synchronization of heterogeneous adaptive dynamics. Examples of adaptive dynamics include
autonomous docking of highly fractionated spacecraft or space robots. In another example, the physical
parameters which vary adaptively could also be the local control terms, such as impedance control gains.26

For instance, a group of robot manipulators can share the load of some big object, and actively tune the
impedance control gains once some external force is applied to the robot network. The synchronization of
the local impedance control gains can also be interpreted in the context of impedance matching of bilateral
time-delayed telemanipulation.17

IV. Proposed Parameter Adaptation for Synchronization

By incorporating the new results from Section III, we present the main adaptive synchronization control
law in this section. Although we suggest new parameter adaptation in the previous section, it is difficult to
change the physical parameters unless we combine or divide the robots. Accordingly, non-physical parameters
such as tracking control and diffusive coupling gains could be good parameters for adaptation. However,
changing gains would modify the Laplacian matrix thereby affecting the stability of the network. The main
contribution of the section is to introduce the flexibility of the Laplacian matrix without sacrificing the
stability and optimality condition of the cooperative control of robotic networks.Moreover, the proposed
adaptive cooperative control can be applied to any network structure including two-way-ring and all-to-all
structures.

A. Synchronization of Adaptive Dynamics using Parameter Adaptation in Tracking Control
and Diffusive Coupling Gains

In this section, the active parameter adaptation is applied to tuning the tracking control gains Kii(t) and
diffusive coupling gains Kil(t) (i 6= l). Moreover, the two-way-ring symmetric structure becomes more
generalized. For this purpose, by using (6), the proposed adaptive synchronization law can be written as:

τi = Mi(qi)q̈i,r + Ci(qi, q̇i)q̇i,r + gi(qi)−Kiisi +
p∑

l=1,l 6=i

Kilsl

= Mi(qi)q̈i,r + Ci(qi, q̇i)q̇i,r + gi(qi)−Ti(s)ci

= Mi(qi)q̈i,r + Ci(qi, q̇i)q̇i,r + gi(qi)−Ti(s)c′′i −Ti(s)c′i (22)
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where Ti(s) = [−s1 · · · − si−1 + si − si+1 · · · − sp] denotes a n× p matrix for composite variables of
the robotic network and ci = [Ki1 Ki2 · · · Kip]T denotes a vector for control gain such that ci = c′′i + c′i,
respectively. Kil denotes the control gains of the i-th robot for tracking control (for l = i) as well as diffusive
coupling with the l-th robot (for l 6= i). c′′i = [K′′i1 K′′i2 · · · K′′ii−1 K′′ii K′′ii+1 · · · K′′ip]T must follow the
conditions that every row sums for p systems be same and the matrix consisting of p row vectors (c′′i ) be
symmetric. The matrix satisfying these two conditions is the modified Laplacian,4 which describes the two-
way ring structure in the p robotic networks. Therefore, we can define c′′i = [0 0 · · · −K′′2 K′′1 −K′′2 · · · 0]T

such that K′′1 − 2K′′2 > 0, K′′1 > 0, and K′′2 > 0. c′i = [K′i1 K′i2 · · · K′ip] is a vector whose elements
are control gains of the i-th robot and the elements are tuned automatically by using the adaptation law
described below. That is, the individual robot dynamics of the network are adaptive in the sense that their
tracking control and diffusive coupling gains, connoted by c′i, are now adapting according to the adaptation
law

ċ′i = ΣiTT
i (si)si (23)

where Σi is a symmetric positive definite matrix and Σi = diag(σ1, σ2, · · · , σp) such that σ1 = σ2 = · · · =
σi−1 = σi+1 = · · · = σp. That is, only σi has a different value in Σi.
This is similar to (11) in the sense that these two adaptation laws update parameters of the robot dynamics.
However, updated parameters in (23) are tracking control and diffusive coupling gains while those in (11)
are physical parameters such as mass, volumes, etc.

Theorem 5 The adaptive synchronization law in (22) globally asymptotically synchronizes the states of
multiple adaptive dynamics.

Proof From (1) and (22), the closed-loop dynamics for the i-th robot can be expressed as

Mi(qi)ṡi + Ci(qi, q̇i)si + Ti(s)c′i + K′′1si −K′′2si−1 −K′′2si+1 = 0. (24)

where the fixed gains K′′1 and K′′2 are chosen such that K′′1 − 2K′′2 > 0, K′′1 > 0, and K′′2 > 0.
This system follows the adaptation law described in (23). The closed-loop system for a network and the
parameter adaptation law comprised of p adaptive robot systems can be written as

[M(q)]ẋ + [C(q, q̇)]x + [Lp
K′′

1 ,−K′′
2
]x + [T(s)]{c′} = 0

{ċ′} = [Σ][T(s)]T x

or by combining these two equations, it can be expressed as follows:[
[M(q)] 0

0 [Σ−1]

](
ẋ
{ċ′}

)
+

[
[C(q, q̇)] 0

0 0

](
x
{c′}

)
+

[
[Lp

K′′
1 ,−K′′

2
] [T(s)]

−[T(s)]T 0

](
x
{c′}

)
= 0 (25)

where [Σ−1] = diag(Σ−1
1 ,Σ−1

2 , · · · ,Σ−1
p ). Moreover, [Lp

K′′
1 ,−K′′

2
] is a symmetric positive definite by the

condition of K′′1 and K′′2 , which is a modified Laplacian, defined in (10). For example, a two-way ring
structure has

[Lp
K′′

1 ,−K′′
2
] ,


K′′1 −K′′2 0 · · · −K′′2
−K′′2 K′′1 −K′′2 · · · 0

...
...

...
. . .

...
−K′′2 · · · 0 −K′′2 K′′1


p×p

.

Similar to Theorem 3, by applying the spectral transformation, using the augmented Va = diag(V, Ipn) and
VT [Lp

K′′
1 ,−K′′

2
]V = [D′], to (25) leads to the following virtual system of (yT

1 ,y
T
2 )T[

VT [M(q)]V 0
0 [Σ−1]

](
ẏ1

ẏ2

)
+

[
VT [C(q, q̇)]V 0

0 0

](
y1

y2

)
+

[
[D′] VT [T(s)]

−[T(s)]T V 0

](
y1

y2

)
= 0. (26)

The virtual system has two particular solutions: y1 = VT x,y2 = {c′}, and y1 = 0,y2 = 0. The virtual
length analysis indicates that (26) is semi-contracting by the negative semi-definite Jacobian with [D′] > 0:

dV
dt

= −2

(
δy1

δy2

)T [
[D′] 0
0 0

](
δy1

δy2

)
. (27)
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Using Barbalat’s lemma, it is straightforward to show that δy1 tends asymptotically to zero from any initial
condition. Also, [D′] can be decomposed to the tracking and synchronization gains. Consequently, we can
conclude that the states of multiple adaptive dynamics are synchronized by the adaptive feedback in local
control gains.

Corollary 2 If the adaptation law (23) is defined by

ċ′i = ΣiTT
i (s)si −ΣiPc′i, (28)

this adaptation law globally exponentially synchronizes the states of multiple adaptive dynamics.

Proof The closed-loop system for the network comprised of p adaptive robots using the adaptation law
(28) can be written as[

[M(q)] 0
0 [Σ−1]

](
ẋ
{ċ′}

)
+

[
[C(q, q̇)] 0

0 0

](
x
{c′}

)
+

[
[Lp

K′′
1 ,−K′′

2
] [T(s)]

−[T(s)]T [P]

](
x
{c′}

)
= 0. (29)

It is straightforward to derive the virtual length analysis

dV
dt

= −2

(
δy1

δy2

)T [
[D′] 0
0 [P]

](
δy1

δy2

)
(30)

where V denotes the virtual length which was defined in (15). Therefore, it guarantees the globally expo-
nential stability of the multiple adaptive dynamics.

Remark 2 (22) is a desirable control law for the synchronization stability of a complex network system since
control designers do not need to consider the exact values of the coupling gains depending on a particular
graph topology of the network. For example, the tracking control gain (K′′1) should be larger than the
diffusive coupling gain (K′′2) on a regular network.4 The gains (K′il) are automatically calculated based on
both the adaptation law (23), the synchronization, and tracking errors.

Remark 3 If c′i is replaced by cleader in (22), the control law reduces to the same knowledge feedback control
in (12). Moreover, (28) and (16) become equivalent while they guarantee the globally exponential synchro-
nization. Therefore, (22) and (28) are the general expressions for knowledge feedback control. Moreover, the
stability proof is simpler and more concise than what is found in [31].

Remark 4 As mentioned in this section, the tracking control and diffusive coupling gains are calculated au-
tomatically by the tracking errors, the synchronization errors, and the active synchronization law. Therefore,
the overall control gains might have different values by the information. Moreover, even in the homogenous
robotic network, the control gains might have different control gains. The important result is that the values
are automatically calculated, not by the control system designers.

B. Optimality of the Proposed Adaptive Control

The proposed adaptive control in this section is also based on the knowledge feedback control as those in the
previous section. We want to also show the optimality of the proposed adaptive control by means of using
Theorem 4. Optimal control is a process of determining control inputs and state trajectories for a dynamic
system over a period of time to minimize a cost functional. Therefore, if the proposed adaptive cooperative
control has the optimality, the overall control inputs can be determined, so that the parameter adaptation
of control gains can have optimum values for minimizing the cost functional.

Theorem 6 The adaptive control law in (22) for the closed-loop system for a network comprised of p non-
identical robots in (13) minimizes the cost functional Ja in (18).

Proof It is a straightforward extension of the proof in Theorem 4. Therefore, the proof is omitted.
Theorem 6 shows the optimality of the proposed adaptive cooperative control in robotic networks. There-

fore, the values of the control gains by the active adaptation law can be guaranteed the optimum of the values.
In the next section, we will show the symmetry of the diffusive coupling gains of the proposed adaptive con-
trol, so that the systems’ computational burden can be reduced.
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C. Symmetry of the Diffusive Coupling Gains

We will evaluate the symmetry of the diffusive coupling gains between the corresponding robots (that is,
Kij = Kji) in the proposed adaptive cooperative control is evaluated. By the definition, Kij(t) = K′′ij +
K′ij(t) where K′′ij and K′ij(t) denote a fixed gain and a time-varying gain obtained by the active adaptation
law, respectively. It is assumed that K′′ij and K′′ji have the same values from the condition of the modified
Laplacian matrix.4 Hence, if K′ij(t) is equal to K′ji(t), the symmetry of the diffusive coupling gains can be
proven.

Let us write the active parameter adaptation law in (23) again

ċ′i = ΣiTT
i (si)si

where c′i = [K′i1 K′i2 · · · K′ip].
The above adaptation law can be written element-wise. That is, the adaptation law for the diffusive coupling
gain of the j-th robot with respect to the i-th robot, calculated in the i-th robot can be written as

K̇′ji = σjsT
j si.

In the same way, the adaptation law for the diffusive coupling gain of the i-th robot with respect to the j-th
robot, calculated in the j-th robot can be written as

K̇′ij = σisT
i sj .

Note that σi = σj when i 6= j by the definition of Σi in (23). Moreover, sT
j si = sT

i sj . Therefore, the
value of K̇′ji(t) is always the same as that of K̇′ij(t). If the initial values of the K′ji(t) and K′ij(t) are the
same, the two gain values will have identical values.

D. Hybrid Adaptive Synchronization

The proposed adaptive synchronization law in (22) is extended to a hybrid form that combines the adaptation
laws for both parameter estimation and active gain variation. Hence, we present a more generalized adaptive
synchronization law than (22) that is only applicable to the exactly known systems.

For synchronization of a generalized network structure, we employ two different adaptation laws for
parameter estimation and gain adaptation as follows:

τi = M̂i(qi)q̈i,r + Ĉi(qi, q̇i)q̇i,r + ĝi(qi)−Kiisi +
p∑

l=1,l 6=i

Kilsl

= Wib̂i −Ti(s)ci = Wib̂i −Ti(s)c′′i −Ti(s)c′i (31)

where b̂i and ci denote physical parameters and control gains (tracking control and diffusive coupling gains)
for the robot dynamics, respectively. Note that c′′i is defined in (22) while b̂i and c′i actively change the
values by using (8) and (23), respectively.

Theorem 7 The hybrid adaptive synchronization law in (31) with the adaptation laws in (8) and (23)
globally asymptotically synchronizes the states of multiple adaptive dynamics in the presence of parametric
model uncertainties.

Proof First, from (1) and (31), the closed-loop dynamics with unknown physical parameters for the i-th
robot can be described as

Mi(qi)ṡi + Ci(qi, q̇i)si −Wib̃i + Ti(s)c′i + K′′1si −K′′2si−1 −K′′2si+1 = 0 (32)

where b̃i = b̂i − bi denotes the error of parameter estimates. Moreover, the fixed control gains K′′1 and K′′2
are chosen such that K′′1 − 2K′′2 > 0, K′′1 > 0, and K′′2 > 0.
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Then, by combining (32), (8), and (23), the closed-loop system for a network comprised of p non-identical
robots having unknown physical parameters can be written as[M(q)] 0 0

0 [Γ−1] 0
0 0 [Σ−1]


 ẋ

{ ˙̃b}
{ċ′}

+

[C(q, q̇)] 0 0
0 0 0
0 0 0


 x
{b̃}
{c′}

+

[Lp
K′′

1 ,−K′′
2
] −[W] [T(s)]

[W]T 0 0
−[T(s)]T 0 0


 x
{b̃}
{c′}

 = 0

(33)

where [Lp
K′′

1 ,−K′′
2
] is a symmetric positive definite by the condition of K′′1 and K′′2 , which is defined in (25).

It is straightforward to show that the synchronization law globally asymptotically synchronizes the states
of the multiple adaptive dynamics by using Theorem 3. The remainder of the proof can be derived from
Theorem 3.

V. Numerical Validation

We evaluate the superiority reliability of the proposed adaptive cooperative control presented in the
previous sections. Two different models are used; one is the linear mass-spring-damper cart system, which
can be regarded as a simple robotic network, the other is a highly coupled spacecraft formation flying system.
Both systems have heterogeneous agents.

Figure 2. Mass-spring-damper cart system for synchronization of linear heterogeneous robotic network.

A. Linear Mass-Spring-Damper Cart System

It is assumed that there are four carts each of which consists of a mass, a spring, and a damper (Figure 2).
We want to synchronize the positions (qi, i = 1, 2, 3, 4) of the carts by using forces τi, i = 1, 2, 3, 4. It is
supposed that the values of masses, springs, and dampers are not same for each cart (that is, the systems is
heterogeneous.), but they are constant (that is, the system can be described as a linear second order different
equation.). It is further assumed that all carts can measure the exact values of the state values of the other
carts as well as those of themselves.

For simulation, all constants are set as follows: masses of the carts are m1 = 5 kg, m2 = 2m1, m3 =
3m1, m4 = 4m1, damping coefficients are c1 = 0.04, c2 = 0.03, c3 = 0.02, c4 = 0.01, and spring constants
are k1 = k2 = k3 = k4 = 10, respectively. The desired motion (qd) is set to qd(t) = sin (2π × 0.1t). The initial
positions of the carts are assumed to be q1(0) = 0.5 m, q2(0) = 1.0 m, q3(0) = −0.5 m, and q4(0) = −1.0 m,
respectively. We assume that the tracking control and diffusive coupling gains are not properly chosen, so
that the values are set to K ′′1 = 3 and K ′′2 = 1, which will show the superiority of the proposed adaptive
cooperative control even in the condition that the system does not have well defined control gains.

Figure 3 shows the state trajectories of the carts by the proposed adaptive control approach and the
constant control approach with three different gain selections: minimum, average, and maximum gains,
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respectively. The gains are defined as follows:

Minimum gain : K1,const = K1,adapt(0) = K ′′1 +K ′1(0)

Average gain : K1,const =
1
4

4∑
i=1

Kii,adapt(t) =
1
4

4∑
i=1

(
K ′′ii,adapt +K ′ii,,adapt(t)

)
Maximum gain : K1,const = max(Kii,adapt(t)), i = 1, 2, 3, 4.

The diffusive coupling gains for constant cooperative control (K2,cons) is calculated by K2,cons = 1
3K1,const.

Since two approaches guarantee the globally asymptotic stability for the synchronization, the errors of
both the absolute and the relative position converge asymptotically. The proposed adaptive control approach
actively adapts the control gains (Figure 4) by using state errors, relative errors, and active synchronization
law, so that the errors effectively converge asymptotically, while the constant control approach with the
minimum gains takes much more time and needs more control inputs (momentum changes) to reduce errors
to acceptable boundary (Table 1). Constant controls with the average and the maximum gains can reduce
the convergent time similar to that of the proposed adaptive control approach, while the amount of control
inputs cannot be reduced simultaneously.

Note that each diffusive control gain corresponding two carts (that is, Kij = Kji, i 6= j) in the proposed
adaptive cooperative control approach have the same values (Figure 4). We described the reason in the
previous section. Therefore, the computational burden for the whole system can be reduced by sharing
the computation for the diffusive coupling gains. Moreover we could expect the reliability of the proposed
adaptive cooperative control in the linear cooperative control system even with improperly defined control
gains. In the next part, we will evaluate the proposed adaptive control with highly coupled spacecraft
formation flying system. The hybrid adaptive cooperative control is also evaluated.

B. Nonlinear Heterogeneous Spacecraft Formation Flying

As a robotic network, attitude control for synchronization of the heterogeneous spacecraft formation flying
system is a good example, which has highly nonlinear dynamic models.2,5 Performance of the proposed
adaptive cooperative control law is compared with three cooperative control laws which use constant track-
ing and diffusive coupling gains. Moreover, the optimality of the proposed adaptive control is evaluated.
Consider the formation network that consists of six heterogeneous spacecraft, whose attitudes are described
by Modified Rodrigues parameters (MRPs). It is assumed that there is no constraint in actuator. The
moments of inertia (MOI) for the four spacecraft are set as follows:

J1 =

 30 0 −10
0 50 0
−10 0 60

 , J2 = 2J1, J3 = 3J1, J4 = 4J1, J5 = 5J1, and J6 = 6J1.

The desired trajectory for the MRPs are q1d(t) = 0.3 sin(2π×0.005t), q2d(t) = 0.2 sin(2π×0.01t+π/6), and
q3d(t) = 0, respectively. In order to compare the results with those of the constant cooperative controls, the
system is assumed to be of a two-way-ring symmetric structure. Note that the proposed adaptive cooperative
control can be applied to any network structure. The symmetric positive definite matrix for the parameter
adaptation matrix is set to Σ1 = diag(10, 5, 0, 0, 5, 5), Σ2 = diag(5, 10, 5, 0, 0, 0), Σ3 = diag(0, 0, 0, 5, 10, 5),
and Σ4 = diag(5, 0, 0, 0, 5, 10), respectively. The constant Λ, used in the composite variables (si), is set
to Λ = 7. Initial values of the MRPs for the six spacecraft are q1(0) = [0.2,−0.2, 0.1]T rad, q2(0) =
[−0.3, 0.0, 0.2]T rad, q3(0) = [0.2, 0.2,−0.2]T rad, q4(0) = [0.1, 0.3,−0.1]T rad, q5(0) = [0.1, 0.2,−0.1]T rad,
and q6(0) = [−0.3, 0.1,−0.1]T rad, respectively.

1. Simulation I: Performance of the Proposed Adaptive Cooperative Control

The aim of this simulation is to show the performance of the proposed adaptive cooperative control. Three
different constant cooperative controls are used (minimum, average, and maximum gains) for comparison,
which were defined in the previous numerical validation. For the proposed adaptive cooperative control,
K′′1 = 60I3, K′′2 = 20I3 are used for the fixed part (where I3 is a 3 × 3 identity matrix) and the values
of K′il (i = 1, 2, 3, 4, 5, 6, l = 1, 2, 3, 4, 5, 6) are calculated by the active synchronization law. The initial
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(a) proposed adaptive control with K′′1 = 3.0 and K′′2 = 1.0 (b) constant control with minimum control gains (K1 = 3.0
and K2 = 1.0)

(c) constant control with average control gains (K1 = 12.2348
and K2 = 4.0783)

(d) constant control with maximum control gains (K1 =
23.2757 and K2 = 7.7586)

Figure 3. State trajectories and relative errors with respect to q1 by the proposed adaptive control and
the constant control with three different control gains. The gains are chosen by the adaptive control gain
information.

Table 1. Convergent time (t at |q| ≤ 0.05 m,∀q) and total momentum changes by the adaptive control and the
constant controls with three different conditions (minimum (K1 = 3.0, K2 = 1.0), average (K1 = 12.2348 and
K2 = 4.0783), and maximum values (K1 = 23.2757 and K2 = 7.7586))

Adaptive control Constant control
Minimum gain Average gain Maximum gain

Convergent time [s] 3.35 80.22 10.39 3.97
Momentum [Ns] 15.43 120.22 24.72 23.23
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(a) gain variations for Cart 1 and Cart 2 (b) gain variations for Cart 3 and Cart 4

Figure 4. Time histories of the control gain variations by the proposed adaptive control for the linear mass-
spring-damper cart system

conditions for K′il (i = 1, 2, 3, 4, 5, 6, l = 1, 2, 3, 4, 5, 6) are set to K′il(0) = 0. For the constant cooperative
controls, K1 = 60I3 and K2 = 20I3 are used for the minimum gain control, K1 = 237.7240I3 and K2 =
79.2413I3 are used for the average gain control, and K1 = 278.7420I3 and K2 = 92.9140I3 are used for the
maximum gain control, respectively. The system is assumed to be of a two-way-ring symmetric structure.

Figure 5 shows the state trajectories by the proposed adaptive cooperative control and three different
constant cooperative controls. From the figures (b), (c), and (d), as the control gains are increased, the state
trajectories become similar to those of the proposed adaptive control approach (figure (a)), while the control
inputs (total angular momentum changes) are increased (Table 2). In the proposed adaptive cooperative
control case, however, the convergent time is shorter while control input is less than those of the constant
control approaches.

Figures 6 and 7 show the time histories of all control gains in the proposed adaptive cooperative control
and the final results for the topology by the proposed adaptive cooperative control and the three different
constant cooperative controls. The gain values in the proposed adaptive cooperative control are automatically
obtained from the active synchronization law. It should be noted that not all values are positive (e.g., K12

and K34). That is, the optimized gain values shows that some positive diffusive coupling gains can hinder the
efficient convergence of the system. Therefore, the proposed adaptive cooperative control is much superior
than the constant cooperative control in a highly nonlinear heterogeneous robotic network.

Table 2. Convergent time (t at |q| ≤ 0.001 rad, ∀q) and total angular momentum changes by the proposed
adaptive control and the constant controls with three different conditions (minimum (K1 = 60.0, K2 = 20.0),
average (K1 = 237.7240 and K2 = 79.2413), and maximum values (K1 = 278.7420 and K2 = 92.9140)) for the
spacecraft formation flying system

Adaptive control Constant control
Minimum gain Average gain Maximum gain

Convergent time [s] 86.84 521.21 130.02 119.29
Angular momentum [Nms] 32.62 42.17 49.54 54.60

2. Simulation II: Performance of the Proposed Hybrid Adaptive Cooperative Control

In this simulation, we will evaluate the reliability of the proposed hybrid adaptive cooperative control,
mentioned in Section IV.D. The constant cooperative control, used here for comparison, is similar to that
used in [4]. For simulation, it is assumed that we do not know the values of the moments of the all
spacecraft. For simplicity, first four spacecraft are used for simulation. The real values of the MOIs are
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(a) proposed adaptive control with K′′1 = 60.0 and K′′2 = 20.0 (b) constant control with minimum control gains (K1 = 60.0
and K2 = 20.0)

(c) constant control with average control gains (K1 = 237.7240
and K2 = 79.2413)

(d) constant control with maximum control gains (K1 =
250.9244 and K2 = 92.9140)

Figure 5. State trajectories and relative errors with respect to q1 by the proposed adaptive control and the
constant control with three different control gains for the spacecraft formation flying system. The gains are
chosen by the adaptive control gain information. (“S/C” denotes spacecraft.)
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(a) gain variations for S/C 1 and S/C 2 (b) gain variations for S/C 3 and S/C 4

Figure 6. Time histories of the tracking control gains (Kii = K′′ii + K′ii) and the diffusive coupling gains
(Kil = K′′il + K′il (i 6= l)) by the active parameter adaptation law in the proposed adaptive cooperative control
for the spacecraft formation flying system. (“S/C” denotes spacecraft.)

(a) proposed adaptive control approach (b) constant control approach (minimum gains)

(c) constant control approach (average gains) (d) constant control approach (maximum gains)

Figure 7. Comparison of the diffusive coupling gains in the simulation I by the proposed cooperative control
(Kil = K′′il + K′il (i 6= l)) and the three different constant cooperative controls. The thickness of the arrows
and the numbers beside them show the diffusive coupling gains between two spacecraft. Dashed lines denote
negative values. (“S/C” denotes spacecraft.)
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previously described in this section. For simulation, it is assumed that the initial guess of the moments of
inertia (Ĵi(0), i = 1, 2, 3, 4) is as follows:

Ĵ1(0) = 20I3, Ĵ2(0) = 2Ĵ1(0), Ĵ3(0) = 3Ĵ1(0), and Ĵ4(0) = 4Ĵ1(0)

where I3 denotes the 3× 3 identity matrix.
All other values for the simulation are assumed to be the same as those in Simulation I.

(a) proposed adaptive control with K′′1 = 60.0 and K′′2 = 20.0 (b) constant control with average control gains (K1 = 168.9876
and K2 = 56.3292)

(c) constant control with maximum control gains (K1 =
174.3523 and K2 = 58.1174)

(d) constant control with special control gains (K1 = 365.4 and
K2 = 121.8)

Figure 8. State trajectories by the proposed adaptive control and the constant control with three different
control gains for the spacecraft formation flying system with hybrid cooperative control. The gains are chosen
by the adaptive control gain information.

Figure 8 shows the state trajectories of the proposed hybrid adaptive cooperative control and the three
different constant cooperative controls (average, maximum, and special control gains). The average and
the maximum control gains are obtained in the same way as mentioned in the previous simulation. The
special control gain is the value for making similar convergent time to that of the proposed hybrid adaptive
cooperative control (Table 3). The overall shapes of the state trajectories by the proposed hybrid adaptive
cooperative control and the constant cooperative controls in Figure 8 are similar. This is because the
difference of the values between the average control gain and the maximum control gain is small. Table
3 shows the simulation results about convergent time and total angular momentum changes. It should be
noted that the convergence criterion (|q| ≤ 0.002 rad, ∀q) for this simulation is different from that for the
previous simulation (|q| ≤ 0.001 rad, ∀q). Because of the effect by the unknown parameters, the convergent
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Table 3. Convergent time (t at |q| ≤ 0.002 rad, ∀q) and total angular momentum changes by the adaptive control
and the constant controls with three different conditions (average (K1 = 168.9876 and K2 = 56.3292), maximum
(K1 = 174.3523 and K2 = 58.1174), and special values for similar convergent time (K1 = 365.4, K2 = 121.8)) for
the spacecraft formation flying system

Adaptive control Constant control
Average gains Maximum gains Special gains

Convergent time [s] 34.99 185.16 184.44 35.37
Angular momentum [Nms] 129.81 146.49 150.91 251.35

(a) gain variations for S/C 1 and S/C 2 (b) gain variations for S/C 3 and S/C 4

Figure 9. Time histories of the tracking control gains (Kii = K′′ii + K′ii) and the diffusive coupling gains
(Kil = K′′il + K′il (i 6= l)) by the hybrid adaptive cooperative control for the spacecraft formation flying system

(a) parameter estimates for S/C 1 and S/C 2 (b) parameter estimates for S/C 3 and S/C 4

Figure 10. Time histories of the parameter estimates (moments of inertia for each spacecraft) by the hybrid
adaptive cooperative control for the spacecraft formation flying system.
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time with the same criterion is much longer than that of Simulation I. From Table 3, the automatically
calculated control gains in Figure 9 make the convergent time of the proposed adaptive cooperative control
much shorter than those of the constant cooperative controls with the average and maximum control gains.
The constant control approach with the special gain has almost same convergent time as that of the proposed
adaptive cooperative control, while the total angular momentum change is found to increase by more than
93%. Figure 10 shows the parameter estimation in the proposed hybrid adaptive cooperative control. The
values in the figures are efficiently estimated by the cooperation with the active parameter adaptation law.

From the simulation results from the linear cart system and the spacecraft formation flying system,
we could evaluate the performance of the proposed adaptive cooperative control and the proposed hybrid
adaptive cooperative control. The results show the reliability of the proposed adaptive control approach.
That is, the proposed adaptive control approaches are not sensitive to the initial control gains, which are
usually selected by the system designers, while the performance by the constant cooperative control is
significantly affected by the tracking control and diffusive coupling gains. This shows the superiority of the
proposed adaptive cooperative control approaches.

VI. Conclusions

We presented a new adaptive cooperative control strategy for heterogeneous robotic networks inspired
by the biological adaptive immune system. The dynamic models are described by using the Lagrangian
formulation, which can be straightforwardly extended to linear and double integrator dynamics. The nonlin-
ear stability of the complex dynamic network system is proven by employing contraction analysis. The key
stability results indicate that the controlled system is globally asymptotically synchronized. The proposed
adaptive cooperative control actively adapts system parameters based on tracking errors of individual robots
and synchronization errors from interaction with neighbors. Unlike some prior work,4 which used only fixed
control gains for satisfying the stability condition of the modified Laplacian matrix, the proposed adaptive
control law achieves the flexibility of opportunistic gain selection as well as the optimality of adaptive con-
trol. As a result, we can avoid a degradation of control performance that arises from the heterogeneity of
the network. Moreover, the proposed adaptive cooperative control can be applied to any network structure.
We applied the proposed adaptive cooperative control to coupled linear cart systems and heterogeneous
formation flying spacecraft to evaluate the reliability and superiority of the proposed adaptive cooperative
control. Moreover, the proposed hybrid adaptive cooperative control shows the applicability to systems with
unknown parameters. Simulation results show the effectiveness of the proposed method especially when the
unknown environmental factors cannot be easily quantified or measured.
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