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ABSTRACT

We present a light-traces-mass (LTM) strong-lensing model of the massive lensing cluster MACS
J2135.2-0102 (z=0.33; hereafter MACS2135), known in part for hosting the Cosmic Eye galaxy lens.
MACS2135 is also known to multiply-lens a z =2.3 sub-mm galaxy near the Brightest Cluster Galaxy
(BCG), as well as a prominent, triply-imaged system at a large radius of ∼37′′ south of the BCG.
We use the latest available Hubble imaging to construct an accurate lensing model for this cluster,
identifying six new multiply-imaged systems with the guidance of our LTM method, so that we have
roughly quadrupled the number of lensing constraints. We determine that MACS2135 is amongst the
top lensing clusters known, comparable in size to the Hubble Frontier Fields. For a source at zs = 2.32,
we find an effective Einstein radius of θe = 27 ± 3′′, enclosing 1.12 ± 0.16 × 1014 M�. We make our
lens model, including mass and magnification maps, publicly availablea, in anticipation of searches for
high-z galaxies with the James Webb Space Telescope for which this cluster is a compelling target.

Subject headings: dark matter — galaxies: clusters: general — galaxies: clusters: individual (MACS
J2135.2-0102) — gravitational lensing: strong

1. INTRODUCTION

Strong gravitational lensing (SL) by galaxy clusters has
by now become a reliable, routine tool in Astronomy.
Multiply-imaged background galaxies allow us to map in
detail the otherwise-invisible dark matter (DM) distribu-
tion of the cluster, as well as to detect faint background
objects that are highly magnified by the foreground clus-
ter lens (see reviews by Kneib & Natarajan 2011; Bartel-
mann 2010).

The past decade in particular has seen a dramatic in-
crease in SL-related science, thanks mainly to the con-
tinued impressive performance of the Hubble Space Tele-
scope, from the combination of deep high-resolution op-
tical and NIR imaging, and because of the development
of improved lens modeling techniques (e.g. Broadhurst
et al. 2005; Diego et al. 2005; Jullo et al. 2007; Liesen-
borgs et al. 2006; Zitrin et al. 2009b). Cluster lensing pro-
grams such as the Cluster Lensing and Supernova with
Hubble (CLASH; PI: Postman, Postman et al. 2012), and
the ongoing Hubble Frontier Fields (HFF; PI: Mountain
& Lotz; see Lotz et al. 2016) with HST, have proven ex-
tremely successful for SL, including the detection of hun-
dreds of multiply lensed (e.g. Monna et al. 2014; Jauzac
et al. 2014; Zitrin et al. 2015, as few examples) and high-
redshift, magnified background objects extending into
the reionization era above z & 6 (Bradley et al. 2014;
Atek et al. 2015; Coe et al. 2015; Zheng et al. 2012),
and beyond, to the current limits of detection at z∼ 11
(Coe et al. 2013; Zitrin et al. 2014). Construction of lu-
minosity functions is feasible now to z ∼ 9 (Atek et al.
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2015; McLeod et al. 2016; Livermore et al. 2016). Several
lensed supernova have been discovered (e.g. Patel et al.
2014) including the first multiply-imaged supernova as
a quadrupole Einstein cross, and its subsequent reap-
pearance (Kelly et al. 2016). Detailed studies of large
highly magnified galaxies at z ∼ 1 − 5 galaxies have
helped constrain UV-escape fractions below the Ly-limit
(e.g. Leethochawalit et al. 2016), metallicity gradients
and outflows (Jones et al. 2015) and star-formation de-
tails (e.g. Wuyts et al. 2012). Cosmological models have
been examined with SL through arc and Einstein radius
statistics (Oguri & Blandford 2009; Horesh et al. 2010;
Waizmann et al. 2012) and multi-wavelength related dis-
coveries have been made of magnified, X-ray, radio or
sub-mm galaxies (e.g. van Weeren et al. 2016).

This progress in SL is inspiring new campaigns includ-
ing the reionization cluster survey, RELICS (PI: Coe),
informed by the CLASH and HFF programs dedicated
to SL, and designed to enhance lensing-enabled science
with future facilities and in particular, the James Webb
Space Telescope (JWST). Aside from the immediate sci-
ence goals, part of the underlying motivation in these
programs is to discover and characterize the “best” lens-
ing targets for JWST for optimizing the detection of very
distant background objects that lie beyond the reach of
Hubble. Since there are many massive clusters in the sky
(e.g. Oguri & Blandford 2009; Waizmann et al. 2012),
choosing the largest and most powerful lenses requires
systematic lens modeling of controlled samples of clus-
ters with continued space imaging for the detection of
the multiply lensed images required for this purpose.
We are also using the HST archive for progressing in
this work with backlog of numerous unanalyzed massive
clusters, including the data analyzed here as well as other
X-ray selected clusters from the MAssive Cluster Survey
(MACS; Ebeling et al. 2010).

We begin our systematic analysis with MACS J2135.2-
0102 (z=0.33; hereafter MACS2135), which exhibits sev-
eral prominent arcs ranging up to & 40′′ from the Bright-
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2 Zitrin & Broadhurst

Fig. 1.— The central field of the galaxy cluster MACS2135 (R=[F140W+F110W]; G=F814W; B=F606W). Multiple-images and candi-
dates, most of which (aside for systems 1 and 2) were found in this work, are indicated, and the resulting critical curves from our model
are overlaid for zs = 2.32, revealing the large size and relatively high ellipticity of this lensing cluster (critical curve major-to-minor axis
ratio of ∼ 2.5).

est Cluster Galaxy (BCG), but lacks a recent lensing
analysis that takes advantage of the achieved Hubble
data. MACS2135 has been the subject of various pre-
vious studies. In particular, it became known as the
cluster host of the Cosmic Eye galaxy-galaxy lens (Smail
et al. 2007; Stark et al. 2008), one of the most dis-
tant clear examples of a typical star-forming galaxy at
z = 3.1. MASC2135 was later found to multiply-image a
prominent sub-mm galaxy (Swinbank et al. 2010; Ivison
et al. 2010). In their analysis, Swinbank et al. (2010)
constructed a SL for this cluster, based on the sub-mm
galaxy system - for which they measured a spectroscopic
redshift of z = 2.3259 and identified a third counter im-
age on the east side of the cluster. They also used and
measured a redshift for z = 2.32 for a triply-imaged
galaxy at a remarkable distance of ∼ 37′′ south of the

BCG, two of its images straddling the critical curve into
a giant arc. We did not find records of other, recent SL
models for this cluster.

Here we make use of the most recent HST imaging,
that extends significantly the coverage of earlier work
described above, to enhance the lens model with many
new multiple-images and to make this publicly-available
given the expected large critical area (the model of Swin-
bank et al. 2010 implied an Einstein radius of ∼ 35′′)
and relatively high ellipticity, which enhances the cross
section of lensing clusters (Zitrin et al. 2013, and refer-
ences therein). The paper is organized as follows. We
present the observations in §2, and the SL modeling in
§3. We conclude the work and discuss the results in
§4. Throughout we use a standard ΛCDM cosmology
with Ωm0 = 0.3, ΩΛ0 = 0.7, H0 = 100 h km s−1Mpc−1,
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h = 0.7, and magnitudes are given using the AB conven-
tion. 1′′ equals 4.75 kpc at the redshift of the cluster.
Errors are 1σ unless otherwise stated.

2. DATA AND OBSERVATIONS

The HST archive lists two “sets” of imaging for
MACS2135 - one targets the Cosmic Eye galaxy-galaxy
lens system in the northern part of the cluster, and the
other one targets the cluster core itself. We use here
the set targeting the cluster, obtained with the Advanced
Camera for Surveys (ACS) and WFC3 cameras. Un-
like the previous data available from WFPC2 and NIC2,
these data cover the full area of interest and with finer
resolution and sensitivity needed for the identification of
more multiple images. The data we use here includes
imaging in two bands with the ACS: F606W, total ex-
posure time of 1200s, taken on 2006-05-08 (program ID
1049, PI: Ebeling); and F814W, with a total exposure
time of 1440s, taken on 2013-08-19 (program ID: 12884,
PI: Ebeling); and two bands with the WFC3/IR: F110W
and F140W, for a total of 705.88s each, taken on 2011-
08-23 (program ID 12166, PI: Ebeling). Reduced data
was obtained directly from the Hubble Legacy Archive5.

We ran SExtractor (Bertin & Arnouts 1996) on each
of the ACS images separately, and in dual mode on the
twin WFC3/IR images. We then cross-matched the out-
puts and generated a master photometric catalog. We
ran the Bayesian Photometric Redshift program (BPZ;
Beńıtez 2000) on the catalog to obtain Spectral Energy
Distributions (SEDs) and photometric redshifts - which
are useful for enhancing the confidence in the identifi-
cation of multiple images (Table 1). In addition, two
spectroscopic redshifts, for the two systems previously
known, were adopted from Swinbank et al. (2010).

We selected red-sequence cluster members, down to a
magnitude of 24 AB, from a color-magnitude diagram
made using the F814W and F606W bands. We scruti-
nized by eye and slightly edited the selection to account
for objects that were possibly missed, or to remove stars
or seemingly-background objects, erroneously included.
The final list of cluster members and their luminosities
is the starting point for our mass modeling, as we now
detail in §3.

3. LENS MODEL

We use the light-traces-mass (LTM) modeling tech-
nique by Zitrin et al. (2009b, see also Broadhurst et al.
2005) to construct a lensing model for MACS2135. We
briefly describe the method here and address the reader
to the said works for full details. Our model generally
consists of three components: a galaxy component, which
is a superposition of all galaxy mass contributions; a dark
matter (DM) smooth component, which is a smoothed
version of the galaxy component; and a two-component
external shear.

As mentioned in §2, we start with the list of red-
sequence cluster galaxies and their photometry. To con-
struct the galaxy component, each member galaxy is as-
signed with a power-law mass density distribution, scaled
by its luminosity, where the superposition of all galaxies

5 http://hla.stsci.edu/hlaview.html

Fig. 2.— The resulting mass model for MACS2135. Upper sub-
figure shows the mass density, kappa map for zs = 2.32, and the
bottom subfigure shows the radially-averaged kappa profile, with
1σ errors.

makes the total galaxy component of the model. The
power-law exponent is the same for all galaxies and is a
free parameter of the model.

To obtain the DM smooth component, the galaxy com-
ponent mass density map is then smoothed with a 2D
Gaussian, whose width is a free parameter of the model.
In that respect, both the galaxy and DM component fol-
low the light distribution in an approximate sense as de-
sired, since the finite statistical number of galaxies means
we cannot expect an identical distribution. The two com-
ponents are then combined with a relative weight, which
is the third free parameter of the model. The overall
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TABLE 1
Multiple Images and Candidates

Arc ID R.A DEC. zphot [95% C.I.] zmodel [95% C.I.] Comments

1.1 21:35:11.714 -01:02:53.58 -2.3259 · · · S10, I10
1.2 21:35:11.613 -01:02:52.35 ” · · · ”
1.3 21:35:15.573 -01:03:12.90 ” · · · ”

1.11 21:35:11.796 -01:02:54.45 ” · · · ”
1.21 21:35:11.521 -01:02:50.98 ” · · · ”

2.1 21:35:11.580 -01:03:34.79 -2.32 · · · S10
2.2 21:35:12.195 -01:03:37.19 ” · · · ”
2.3 21:35:10.040 -01:03:18.66 ” · · · ”

3.1 21:35:14.001 -01:02:41.01 1.66 [1.40 1.92] 2.00 [1.96 2.02] · · ·
3.2 21:35:13.086 01:02:28.71 1.39 [1.16 1.62] ” · · ·
3.3 21:35:11.265 -01:02:30.06 1.29 [1.07 1.51] ” · · ·
4.1 21:35:11.762 -01:02:52.46 · · · 1.40 [1.40 1.51] · · ·
4.2 21:35:11.724 -01:02:51.56 · · · ” · · ·
c4.3 21:35:15.626 -01:03:11.64 · · · ” · · ·
5.1 21:35:11.893 -01:02:54.88 · · · 3.00 [2.94 3.13] · · ·
5.2 21:35:11.584 -01:02:48.73 1.82 [1.54 2.10] ” · · ·
c5.3 21:35:15.630 -01:03:12.88 · · · ” · · ·
6.1 21:35:13.191 -01:02:48.51 1.52 [1.27 1.77] 1.14 [1.14 1.17] · · ·
6.2 21:35:13.476 -01:02:56.91 1.65 [1.39 1.91] ” · · ·
c6.3 21:35:11.000 -01:02:38.31 1.67 [1.41 1.93] ” other candidates nearby

7.1 21:35:13.039 -01:02:44.57 1.81 [1.53 2.08] 1.72 [1.71 1.77] · · ·
7.2 21:35:13.713 -01:03:10.25 2.23 [1.91 2.55] ” · · ·
7.3 21:35:12.192 -01:03:14.31 · · · ” · · ·
7.4 21:35:10.015 -01:02:48.26 1.53 [1.27 1.79] ” · · ·
8.1 21:35:12.918 -01:02:45.61 1.50 [1.25 1.75] 1.97 [1.94 2.02] · · ·
8.2 21:35:13.581 -01:03:15.51 1.64 [1.38 1.90] ” · · ·
8.3 21:35:12.195 -01:03:16.55 · · · ” · · ·
8.4 21:35:09.940 -01:02:50.88 1.65 [1.39 1.91] ” · · ·

Note. — Column 1: arc ID . “c” stands for candidate where identification was more ambiguous and
the image was not used as a constraint.
Columns 2 & 3: RA and DEC in J2000.0.
Column 4: Photometric redshift and 95% C.L. from BPZ. If a spectroscopic redshift is available it is
marked with a minus sign, along with its references in the comments.
Column 5: Predicted and 95% C.L. redshift by our lens model for systems lacking spectroscopic redshift.
Column 6: Comments/References. S10 = Swinbank et al. (2010); I10=Ivison et al. (2010).

normalization constitutes the fourth free parameter. A
two component external shear is then added to allow
for more flexibility, introducing effective ellipticity to the
lens model. We also allow here for the mass of a few cen-
tral bright cluster galaxies including the BCG, as well as
their ellipticity and position-angle, to be freely optimized
by the minimization procedure.

The best fit is then obtained through a long (few thou-
sand step) Monte Carlo Markov Chain (MCMC), via a
χ2 criteria minimizing the distance between the observed
multiple images and those generated by the mass model.
To infer the position of predicted images for each sys-
tem, we use as source position the mean source position
obtained by delensing to the source plane the different
images of this system. We then relens this source back
to the image plane to predict the appearance of the mul-
tiple images.

One of the advantages of the LTM technique is that a
well-guessed preliminary model can be constructed even
with very few, or even none, multiple-images as input.
In return the technique excels in predicting the location
of multiple-images that can be then incorporated as con-
straints to iteratively improve the fit. We iteratively go
over arclets and blue zphot & 1 galaxies in the core of

MACS2135 and delens-relens them with a preliminary
LTM model to match their counter images in the data
(based then, also, on a by-eye, SED and photo-z exam-
ination, in addition to the model’s prediction). Similar
to the success of this approach in other clusters (e.g.
Broadhurst et al. 2005; Zitrin et al. 2009b, 2013, 2015),
we identify here 6 new multiple images systems. After
identifying the bulk of multiple images presented here in
Table 1 and Figure 1, we run our final mass reconstruc-
tion.

We fix the redshifts of systems 1 and 2, that have
spectroscopic redshifts of z ' 2.32 from Swinbank et al.
(2010), and allow for the redshift of all other systems
to be optimized as free parameters in the minimization
procedure, around their respective mean photo-z’s. The
resulting critical curves of our model, for z = 2.32 are
shown in Figure 1. The resulting mass density distribu-
tion, and mass profile, are shown in Figure 2.

Our final model has an image reproduction rms of
1.68′′, and a χ2 of 35.4, using a positional uncertainty
of 1.4′′. Zitrin et al. (2015) found that while the true po-
sitional measurement error is small, this value is more
representable of also systematic uncertainties between
different modeling techniques, and folds within also dis-
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crepancies generated by random structures along the line
of sight (e.g. Host 2012). In practice, we use a posteri-
ori the value of 1.4′′ for extracting the errors around the
best fit, but the minimization itself was performed us-
ing a positional uncertainty of 0.5′′ for most images, and
0.25′′ for the radial systems 1, 4, and 5. We also used the
parity of these three systems to force the radial critical
curve to pass between the pairs of radial images (this was
done by “punishing” the χ2 term if the input parity was
violated).

We measure an effective Einstein radius of θe(z =
2.32) = 27± 3′′ for the redshift of systems 1 and 2. This
radius is the circular equivalent radius given the total
enclosed area, i.e.

√
A/π. The critical curves for this

redshift enclose 1.12± 0.16× 1014 M�.

4. DISCUSSION AND SUMMARY

Using HST images coupled with our LTM mass model-
ing we have identified, in addition to the two systems pre-
viously known (Swinbank et al. 2010), six new multiply-
imaged systems in MACS2135, roughly quadrupling the
number of constraints to map the matter distribution in
this cluster. We have correspondingly constructed a sig-
nificantly improved mass model for MACS2135, which
we present here and make available for the astronomical
community. Our model agrees well with this cluster be-
ing a large lens, as perhaps is expected given the distance
of system 2 from the BCG, and in broad agreement with
the estimate presented in Swinbank et al. (2010).

Only a small fraction of the clusters well-studied in
the literature are known to exhibit Einstein radii exceed-
ing & 30′′ (nominally, for sources at redshifts around
z ∼ 2). For example, only few out of the 25 X-ray
selected CLASH clusters have Einstein radii compara-
ble to, or slightly larger than that of MACS2135, and
only a few clusters previously analyzed have consider-
ably larger critical areas, e.g. Abell 1703, (Limousin et al.
2008); MACS 0717 (Zitrin et al. 2009a); RXJ1347 (Zitrin
et al. 2015), Abell 1689 (Broadhurst et al. 2005); A370
(Richard et al. 2010); RCS2 J232727.6-020437, (Sharon
et al. 2015); SDSS J120923.7+264047 (Ofek et al. 2008);
or CL0024 (Zitrin et al. 2009b). Indeed, thanks to their
large critical areas all of these clusters show numerous
multiply-imaged background galaxies, typically revealed
in deep HST imaging. Additionally, the HFF clusters
for example, aside for the giant lens MACS0717 (Zitrin
et al. 2009a) and perhaps A370 (Richard et al. 2010),
show typically Einstein radii of ∼ 25 − 30′′. Here we
add to this important list MACS2135, showing that de-
spite it current relatively shallow imaging, it also lenses
an abundance of highly magnified, multiply-lensed back-
ground sources, and is comparable in size to the typical

HFF cluster.
Finding large and prominent lensing clusters is useful

for probing the massive-end of the cluster mass function
(Zitrin et al. 2009a; Waizmann et al. 2012; Redlich et al.
2014), for constraining cosmological models (Oguri &
Blandford 2009), and also for studying the DM, substruc-
ture, morphology and merging properties of the clusters
(Merten et al. 2011; Harvey et al. 2015). Large lenses also
increase the chances for finding very high redshift galax-
ies often pushing the redshift limit (e.g. Kneib et al. 2004;
Coe et al. 2013) and in the case of multiple images we
can use the separation between the images to provide a
purely “geometric” distance for the source as a means of
testing the often ambiguous photometric redshift (Zitrin
et al. 2014). In fact, two high-z candidates have already
been reported in MACS 2135 (Repp et al. 2016), one
of which our model predicts should lie nearly on top the
critical curves for high redshift, and thus might be highly
magnified and potentially multiply imaged. We leave fur-
ther examination of this candidate for other, dedicated
work. The lensing approach to studying high-z galaxies
is sensitive to the faint-end slope of the luminosity func-
tion, and complements the field work with Hubble that is
also uncovering relatively luminous high-z galaxies over
wider areas (e.g. Ellis et al. 2013; Bouwens et al. 2015).

It should be appreciated that not only the Einstein
radius of a lens is important in assessing the lensing effi-
ciency of various clusters, but as we have shown before,
other factors must be considered, such as the magnifica-
tion distribution (which is related to the gradient of the
central mass distribution), substructure and sub-clumps
that add non-linearly to the magnification (Redlich et al.
2014), or the ellipticity of mass distribution which en-
hances the lensing cross-section (Zitrin et al. 2013), as
well as of course, the redshifts involved and the magnifi-
cation bias which depends on the slope of the luminosity
function (Coe et al. 2015).

We conclude that MACS2135 is amongst the top lenses
currently known, and will benefit from future attention.
This includes deeper space imaging to uncover very dis-
tant high-redshift dropouts in the NIR, and as a com-
pelling candidate target, in this respect, for JWST.
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