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Mouse tr om  anscript e alignment Rat transcriptome alignment   Category 
CPU 
Hours 

Memory1 Aligned 
paired reads 

CPU Hours  Aligned paired reads 

Stampy  Unspliced seed 
aligner 

110  67 Mb  126,466,017  11  0 124,542,236 

BWA  Unspliced B‐W 
aligner 

8  500 Mb  108,073,744  182  83,263,812 

           
Mouse ge gnnome ali ment   Category 
CPU 
Hours 

Memory  Spliced reads  Unique spliced reads 

GSNAP  Seed spliced 
aligner 

340  5.5 G  18,502,0683  15,436,727 

TopHat  Exon First 
spliced aligner 

44  11 G  12,468,6953  10,420,126 

           
  Category  Reconstr h nsuction of t e mouse ES tra criptome 
    CPU 

Hours 
Total 
Memory  

Genes  fully 
reconstructed 

Mean Number 
of isoforms 
per 
reconstruction 

Mean 
fragments 
per known 
annotation

Number 
of 
fragments 
predicted 
 

Cufflinks  Genome guided 
reconstruction 
method 

10  1.4 G  5,994  1.2   1.4  159,856 

Scripture  Genome guided 
reconstruction 
method 

16  3.5 G  6,221  1.6  1.3  61,922 
 

Trans‐ 
Abyss 

Genome 
independent 
reconstruction 
method 

650  120 G4 
 

3,330  4.7  2.6  3,117,238 

               
 
 

1. Similar memory usage was required for the alignment to the rat transcriptome. 
2. Raised gap extend and minimum mismatch parameters to increase sensitivity 
3. Alignment accuracy was not evaluated as part of this test, so the biological 
relevance of spliced sites discovered by TopHat and GSNAP could not be verified. 
This table is intended to illustrate general computational resource requirements of 
spliced aligners only. 
4. It is possible to subdivide an Abyss reconstruction process into smaller units which 
can be run each independently using as little as 16 gigabytes of RAM. 
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Supplementary table 1. Comparison between methods in different categories for 
read mapping and transcriptome reconstruction. 
The table shows three comparisons showing results of aligning and reconstruction 
transcripts using a previously published mouse embryonic stem cell dataset consisting of 
58 million paired-end reads1. 
Top: comparison of unspliced Seed (Stampy) and Burrows-wheeler (BWA) aligners for 
mapping reads to both the mouse and rat transcriptome consisting of 8,557 genes 
expressed in mES that have a rat ortholog. 
Middle: comparison of compute resources required by Seed-Extend (GSNAP) and Exon 
first (Tophat) aligners when mapping the same number of reads against the same 
reference genome. 
Bottom: comparison of three transcriptome reconstruction methods run with default 
parameters. Cufflinks and Scripture where applied to the TopHat alignments. A gene is 
called fully reconstructed when there exists a transcript overlapping the know 5’ and 3’ 
exons with the known internal structure. Fragments per annotation were computed by 
first taking the union model for each reconstruction, following by counting the number of 
union models within Refseq annotations  
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Supplementary figure 1. Comparison between seed and Burrows-Wheeler 
alignments. 
RNA-Seq reads were aligned to the mouse sequence of 8,557 genes with an orthologous 
annotation in rat. Each point in the plot shows the length normalized count of paired end 
reads aligned to a gene using BWA (x-axis) and Stampy (y-axis).  
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Supplementary figure 2. Comparison between seed and Burrows-Wheeler 
alignments when aligning to a reference genome of a different species 

RNA-Seq reads were aligned to the rat sequence of 8,557 genes with an orthologous 
annotation in mouse. Each point in the plot shows the length normalized count of paired 
end reads aligned to a gene using BWA (x-axis) and Stampy (y-axis).  
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Supplementary figure 3.  Fraction of fully reconstructed transcript per expression 
quantile by three transcriptome reconstruction methods. Cufflinks and Scripture 
where applied to the TopHat alignments. A gene is called fully reconstructed when there 
exists a transcript overlapping the know 5’ and 3’ exons with the known internal 
structure. Fragments per annotation were computed by first taking the union model for 
each reconstruction, following by counting the number of union models within Refseq 
annotations.   
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Supplementary figure 4.  Simulation of RNA-Seq. 50bp paired end reads were 
generated from FlyBase transcripts according to an expression profile calculated from 
real RNA-Seq data from S2 cells produced by modENCODE. Variability in the fragment 
count for each gene was modeled by a negative binomial distribution parameterized by a 
gamma function (blue line).  The gamma function was fit through the observed variability 
in the real S2 data across the dynamic range of expression. The data is clearly 
overdispersed with respect to the Poisson distribution (orange line). 

 
 

Supplementary figure 5.  Performance of quantification methods in simulated data. 
Top squares show the precision (left) and recall (right) in detecting expressed genes in the 
presence of isoform switching via differential splicing.   Bottom squares show similar 
accuracy when all isoforms of perturbed genes were increased uniformly by 2-fold. In 
each scenario, three read counting schemes were evaluated.  The “native” transcript 
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expression method involves counting reads, inferring individual transcript abundances, 
and summing these to calculate overall gene expressed in each condition before testing 
for significant differences.  Two computationally simpler schemes approximate gene 
expression by counting reads in constititive exons only (“exon intersection”) or in all 
exons (“exon union”) and then normalizing counts by exonic length to calculate gene 
expression.   Accuracy of the three schemes is similar in the uniform perturbation (i.e. 
when there is no isoform-level switching).  This is expected, because a change in gene 
expression is reflected by an equal change in the count obtained by any of the three 
methods.  However, in the presence of isoform switching, a change in overall gene 
expression is not necessarily reflected in the raw number of reads originating from the 
gene.  To arrive at the correct expression value for the gene, Cuffdiff must infer 
individual isoform isoform abundances. 

 
Supplementary Methods   

 
Simulated data for differential analysis. 
We simulated two hypothetical sequencing experiments in which 100 randomly selected 
multi-isoform genes were differentially expressed between two conditions. We used a 
custom simulator (similar to methods described previously2) to generate 20 million 50b 
paired-end reads of the Drosophila melanogaster transcriptome (FlyBase v5.12) for two 
replicates of each condition. We ran Cufflinks 1.0.0 on reads from a modENCODE RNA-
Seq library from S2 cells (SRX003834) to calculate the S2 unperturbed expression 
profile. We used the unperturbed profile to generate the reads for the control 
condition in each experiment.  In silico library size and fragment length distribution 
were similar to SR003834.  Variability in fragment counts from each gene across 
replicates was modeled by the negative binomial distribution, with parameters 
chosen from the empirical variance model fitted by Cuffdiff on the real S2 data 
(Supplementary Figure 3). This model has been proposed to accommodate the 
overdispersion in fragment counts observed across biological replicates3,4. We 
perturbed the S2 profile in two ways, to benchmark expression call accuracy in 
presence and absence of alternative splicing.  In the first experiment we perturbed the 
expression of 100 genes by uniformly increasing all of their alternative isoforms' 
abundance by two-fold, and then simulated sequencing both the perturbed and control 
condition. In the second simulation, we perturbed gene expression by redistributing all 
reads from all isoforms to originate from the shortest isoform. This perturbation 
maximizes the impact on overall expression due to redistribution of counts without 
altering the total number of reads that originate from the gene.  In selecting genes for 
perturbation, we required that the overall increase in gene expression from this 
perturbation would be at least two fold.   
 
We then called differentially expressed genes with Cuffdiff using the three read count 
methods by applying cuffdiff on 1) the RefSeq annotated transcripts (Isoform expression 
method), 2) constituent exons (intersection method) and 3) on pseudotranscripts resulting 
from merging all exons within a gene (union method). Supplementary figure 4 shows the 
results of comparing each of these three quantification methods’ performance under the 
two simulations. Cuffdiff was run with FPKM upper-quartile normalization enabled and 
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an FDR threshold of 5%.  To avoid confounding the benchmarking analysis with read 
mapping issues, we used a perfect mapping of reads to the genome. 
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