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Abstract. Our piece of cosmic real estate, the heliosphere, is the domain of all human 
existence -- an astrophysical case history of the successful evolution of life in a habitable 
system. By exploring our global heliosphere and its myriad interactions, we develop key 
physical knowledge of the interstellar interactions that influence exoplanetary habitability as 
well as the distant history and destiny of our solar system and world. IBEX is the first mission 
to explore the global heliosphere and in concert with Voyager 1 and Voyager 2 is discovering a 
fundamentally new and uncharted physical domain of the outer heliosphere. In parallel, 
Cassini/INCA maps the global heliosphere at energies (~5-55 keV) above those measured by 
IBEX. The enigmatic IBEX ribbon and the INCA belt were unanticipated discoveries 
demonstrating that much of what we know or think we understand about the outer heliosphere 
needs to be revised. This paper summarizes the next quantum leap enabled by IMAP that will 
open new windows on the frontier of Heliophysics at a time when the space environment is 
rapidly evolving. IMAP with 100 times the combined resolution and sensitivity of IBEX and 
INCA will discover the substructure of the IBEX ribbon and will reveal, with unprecedented 
resolution, global maps of our heliosphere. The remarkable synergy between IMAP, Voyager 1 
and Voyager 2 will remain for at least the next decade as Voyager 1 pushes further into the 
interstellar domain and Voyager 2 moves through the heliosheath. Voyager 2 moves outward 
in the same region of sky covered by a portion of the IBEX ribbon. Voyager 2’s plasma 
measurements will create singular opportunities for discovery in the context of IMAP’s global 
measurements. IMAP, like ACE before, will be a keystone of the Heliophysics System 
Observatory by providing comprehensive measurements of interstellar neutral atoms and 
pickup ions, the solar wind distribution, composition, and magnetic field, as well as 
suprathermal ion, energetic particle, and cosmic ray distributions to diagnose the changing 
space environment and understand the fundamental origins of particle acceleration. This paper, 
the first citable reference for IMAP, is similar to an unpublished whitepaper that was presented 
to the National Academies of Sciences, Engineering and Medicine Committee for Solar and 
Space Physics. We provide the IMAP objectives and instrument straw man traced from the 
Solar and Space Physics Decadal Survey. It is fitting that our paper is published in the volume 
of papers that celebrates the 80th birthday of Ed Stone.  
 

1. Introduction 
In the 2012 Heliophysics Decadal Survey [1], IMAP (Figure 1) was rated the highest priority for 
implementation in the Solar Terrestrial Probe (STP) mission line based on its urgency in the context of 
recent Voyager observations, alignment with the objectives of the Heliophysics Decadal survey, and 
relevancy across the Heliophysics division.  IMAP is urgently needed to understand the heliosphere’s 
direct connection to the rapidly changing space environment as solar activity subsides while Voyager 
1 and Voyager 2 directly probe the inner and outer heliosheath. IMAP is ready to be implemented and 
explores fundamental outstanding problems in Heliophysics concerning the outer boundaries of our 
solar system, the physics of interstellar interactions with the solar wind, the origin and physics of the 
IBEX ribbon, and the fundamental origins of particle acceleration throughout the heliosphere. 
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Figure 1. The Interstellar Mapping and Acceleration Probe (IMAP) will solve fundamental mysteries 
of our heliosphere’s interaction with the interstellar medium and particle acceleration in the solar 
wind.  Shown here projected onto the outer boundary of the solar system is the IBEX Ribbon, which 
was discovered by the Interstellar Boundary Explorer (IBEX) mission.  The enigmatic Ribbon raises 
basic and profound questions related to its origin, the nature of the outer boundaries of our solar 
system, and the surrounding galactic medium.  Most ideas involve a population of electrically charged 
matter existing near the boundaries of our solar system.  These charged particle populations very likely 
originate from uncharged matter that streams out from the Sun (the neutral solar wind).  Several new 
sources for the Ribbon have also been proposed, involving regions in the galaxy further out from the 
Sun.  IMAP with more than twenty times the resolution of IBEX will probe the detailed source of the 
ribbon.  Shown in the blowout is a depiction of the substructure that scientists have only so far been 
able to hypothesize.  Image credit: D. McComas(SwRI) based on Adler Planetarium/SwRI/NASA 
image from [2] with mock IMAP data taken from WMAP 
(GSFC/Princeton/UofC/UCLA/UBC/Brown/NASA). 

2. IMAP’s Scientific Context and Motivation 
As the Sun travels through interstellar space on its quarter billion year journey around the center of our 
galaxy, the solar wind—the supersonic outflow of magnetized plasma (or ionized gas) from the Sun’s 
upper atmosphere—inflates an enormous bubble within the dilute plasma of the interstellar medium 
(Figure 2). Known as the heliosphere, this solar-wind-dominated cavity in the local galactic 
environment has been an object of speculation and study ever since its existence was first predicted in 
the 1950s.  
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Figure 2. The galactic environment of the Sun and the heliosphere. As discussed in the text, the 
heliosphere is currently believed to be located near the edge of the Local Interstellar Cloud. Although 
it has been suggested that the heliosphere has passed into a transition region between the LIC and the 
G Cloud [3], IBEX measurements of interstellar helium indicate that the heliosphere remains inside 
the LIC, although “such a conclusion should await further refinement of analysis” [4]. Image credits: 
NASA/Adler/U. Chicago/Wesleyan/JPL-Caltech (Milky Way and LISM); NASA/IBEX/Adler 
(heliosphere) 
 
Our heliosphere, its history and future in the Galaxy are key to understanding the conditions on our 
evolving planet and its habitability over time. By exploring our global heliosphere and its myriad 
interactions, we develop key physical knowledge of the heliospheric and interstellar interactions that 
influence our understanding of our home system in its current state, the distant history and destiny of 
our solar system, as well as the habitability of exoplanetary star systems.  
 
During the last half century, analytic theory and increasingly sophisticated numerical simulations led 
to the development and refinement of a standard model of the heliosphere as a bullet-shaped obstacle 
in the local interstellar flow, with a blunt nose in the upstream direction, a long comet-like heliotail 
downstream, and complex boundaries separating the heliosphere from the interstellar environment. In 
2004, Voyager 1 crossed the innermost of these boundaries, providing the first in-situ measurements 
of the termination shock and the shocked solar wind beyond; Voyager 2 crossed the termination shock 
three years later.  
 
Although invaluable as direct samples of the outer heliosphere and interstellar medium, the Voyagers’ 
single-point measurements along their trajectories cannot reveal the heliosphere’s global structure. 
Thus, as the Voyagers continued their outward journey, work was under way to develop and 
implement NASA’s Interstellar Boundary Explorer (IBEX) mission. From the vantage point of a 
highly elliptical Earth orbit, IBEX would generate global images of the heliosphere and its boundaries 
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by detecting energetic neutral atoms (ENAs) created in the solar wind’s interaction with the local 
interstellar medium.  
 

	
Figure 3. A. IBEX Ribbon at 1.1 keV in ecliptic coordinates using a Mollweide projection. The red 
line marks the galactic equator. The locations of the heliospheric nose and of the Voyager termination 
shock crossings are shown. B. Detail of a segment of the Ribbon showing apparent fine structure. 
From [2]. 
 
In October 2008, the tiny (<0.5 m3 and ~100 kg) IBEX spacecraft, equipped with its own additional 
solid rocket motor, was launched from the Kwajalein Atoll on a Pegasus rocket. Two months later, 
IBEX began gathering ENA data for the first-ever maps of the global heliosphere. Creation of the first, 
energy resolved maps took six-months as the ENA cameras swept successive swaths of the sky, 
registering ENAs arriving from the outer boundaries of our solar system. As the data accumulated and 
the first detailed map emerged from the individual pixels, what the IBEX team saw was a feature 
fundamentally different from anything their pre-launch models of the “ENA sky” or any of the other 
models of the solar wind/LISM interaction had led them to expect: a bright “Ribbon” of intense 
emissions nearly encircling the sky and apparently aligned with the external interstellar magnetic field 
(Figure 3). The discovery of the Ribbon was reported in a series of papers in the November 13, 2009 
issue of Science, which also featured the Ribbon on its cover. In the same issue of Science, Krimigis et 
al. [5] revealed the first ENA maps of the global heliosphere at energies greater than ~5 keV (above 
the IBEX energy range). INCA observed a belt of emissions (Figure 4) that is broader and offset from 
the IBEX ribbon. The white outline in Figure 5 shows the location of the IBEX ribbon. IBEX 
continues to complete a full scan of the sky every six months, providing better statistics and enabling 
the detection of time variations. The mapping by INCA also continues. However, the origin of the 
Ribbon and the Belt—where and how they are formed—remains a mystery and a serious challenge to 
the heliophysics and astrophysics communities. In addition to the surprising discovery of the Ribbon, 
the first in-situ sampling of the neutral interstellar H and O wind, along with He, was reported in this 
issue of Science [6]. 
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Figure 4. All-sky survey by Cassini/INCA of ENAs that map our global heliosphere. The heliosphere 
shape is formed as the Sun moves through the surrounding interstellar medium, with the front marked 
'nose' and the rear marked 'tail'. The color-coding is by energy flux of ENAs measured by INCA. Also 
marked are the two Voyager space probes (V1 and V2), and the 'ribbon' of charged particles (white 
outline) discovered by the IBEX spacecraft. Shown here are energetic neutral atoms (ENA) in the 5.2 
– 13.5 keV energy range.  
 
In a similar vein, particle acceleration in the heliosphere is a fundamental problem with implications 
for the future and history of life within the solar system and beyond. The acceleration of energetic 
particles creates a population of atoms that penetrate all forms of matter, and deposit energy in Earth’s 
atmosphere, planetary and exoplanetary atmospheres, and materials such as tissue, organic matter, and 
regolith. Because of the chemical changes induced by particle radiation, it is important to forming the 
building blocks of life. Yet, for astronauts on potentially long flights in deep space, high-energy 
radiation can induce cancer and at high levels of exposure leads to radiation sickness.  Particle 
radiation thereby presents a formidable hazard. The many significant ramifications of particle 
radiation make understanding particle acceleration an imperative. While particle acceleration occurs 
throughout the cosmos, the details of the particle acceleration process remain difficult to discern 
because it is so difficult to observe directly.  The heliosphere presents a unique environment in which 
we can study the problem locally. High-energy particle acceleration occurs not only at the termination 
shock, which surrounds the entire solar system, but also at the plethora of shocks and disturbances the 
travel past Earth with the solar wind.  

3. Critical Next Steps with IMAP 
The recent ground-breaking all-sky images of the heliospheric boundaries from IBEX mission and the 
Cassini INCA instrument, in concert with dual point in situ observations of the inner heliosheath from 
both Voyager spacecraft, as well the direct IBEX measurements of interstellar neutral H, He, O and 
Ne flow have made outer heliospheric science one of the most exciting and fastest developing areas in 
Heliophysics. As a next step, substantial improvements in spatial and temporal resolution along with 
sensitivity gains are required to resolve the substructure of the ENA ribbon and its evolution in time. 
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Understanding the substructure of the ribbon is critical for establishing the physical mechanisms at 
work in the creation of the IBEX ribbon. With a factor of x100 combined increase in resolution and 
sensitivity and a broader energy range of ENA observations, IMAP will provide these capabilities and 
thus will, in relation to IBEX, enable a “quantum leap” forward in understanding the heliosphere. 
 
3a. What is the Physical Origin of the Ribbon and the Belt? 
The Ribbon stretches across much of the sky and its origin remains an enigma despite its persistence 
for over five years and after almost more than a dozen theories that attempt to explain it. While each 
theory that has been posed has its strengths, each one also contradicts IBEX observations or 
demonstrates significant flaws in internal consistency [see review, 7].  
 
An example of the more than a dozen theories proposed to explain the ribbon is that it is produced by a 
spatial region [8] in the local interstellar medium where newly ionized atoms are temporarily 
contained through increased rates of scattering by locally generated waves in the electromagnetic 
fields (Figure 5). The particles in the ribbon are created predominantly from neutralized solar wind 
and neutralized pickup ions from inside the solar wind termination shock and inside the heliopause.  
	
	

	
	
 
Figure 5. (Left) A new theory for the IBEX ribbon considers its source as a spatial region beyond the 
heliopause, which surrounds and protects the solar system from the harsh radiation environment of the 
local galactic medium. The heliopause is the inner surface pictured here with the IBEX ribbon ENA 
fluxes superimposed on the surface. The grey curves show the interstellar magnetic field lines warping 
around the heliopause and then stretching beyond it into the local galactic medium. The grey structure 
outside the heliopause that looks like an overinflated inner tube indicates the region that, according to 
the new theory, should hold higher concentrations of particles that form the IBEX ribbon.  (Right) Left 
column panels show model results in comparison to observations of the ribbon on the right column 
Credit: NASA/IBEX/UNH. 
 
The new theory and its competitors must be tested completely. However, the ~7° resolution of IBEX 
maps poses a major limitation. For example, the spatial retention concept [8] requires the existence of 
substructure to <1° to account for the observed fluxes of energetic neutral atoms. Until we achieve the 
x100 combined resolution and sensitivity observations from IMAP, the question of substructure in the 
ribbon will remain as a major question. Thus, the higher resolution observations of IMAP are critical 
to fully understanding the origin of the IBEX ribbon.  

MODEL	 OBSERVATIONS	
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In contrast to the much narrower ribbon, the INCA belt has a width ~100° FWHM. The ribbon is 
inclined to the Belt in both ecliptic latitude (~25°) and longitude (~30°). The overlap in energy 
between Voyager ions and Cassini ENA intensities (averaged over the ENA line of sight) enables 
estimation of ion fluxes in the heliosheath, thus providing a continuous spectrum 5 ≤ E ≤ 4000 keV. 
These measurements have been used to estimate the local partial pressure over this energy range (~ 0.1 
pPa), suggesting the thickness of the heliosheath ~ 50 AU [9].  
 
3b. What is the Global Structure of the Heliosphere? 
IBEX measurements of energetic neutral atoms created by collisions at the solar system's boundaries 
have for the first time mapped out the structure of our solar systems’ tail, which is shaped like a four-
leaf clover (Figure 6).  While telescopes have spotted such tails around other stars, it has been difficult 
to see whether our own star produced one. The particles found in the tail cannot be seen with 
conventional instruments, and so the shape and structure of its tail remained unknown.  IBEX data 
have shown that, very much like a comet’s tail, the heliotail is stretched out behind our solar system 
where the Sun’s million mile per hour solar wind flows down and ultimately escapes the heliosphere, 
slowly evaporating because of charge exchange.  
 
	
	

		
Figure 6. Data from NASA’s IBEX (panel c) shows the spectral slope of the particles looking down 
the solar system’s tail – the yellow and red colors represent areas of slow-moving particles, and the 
blue represents the fast-moving particles.  Panel a) shows the latitude structure of typical solar wind, 
with fast wind at high latitudes and slower wind at low latitudes. Panel b) shows the corresponding 
solar wind structure looking down tail with faster wind in blue and slower wind in green. N & S refer 
to the North and South directions. St refers to the starboard direction and Pt refers to port (these are 
nautical terms). The panel on the right shows a cartoon of the structure of the heliotail. (Image: 
NASA/IBEX) 
 
One of the fundamental quantities measured by IBEX is the line-of-sight integrated pressure of ions 
from the inner heliosheath (Figure 7). Determination of an absolute pressure requires some absolute 
distance scale, which is provided by the Voyager satellite boundary crossings of the termination shock 
and the heliopause. Once absolute distance scales at individual locations are established, the IBEX 
global pressure maps allow us to form a rough picture of the heliosphere (termination shock and 
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heliopause boundary) near the ecliptic plane. The direction of the interstellar magnetic field is given 
by the center of the IBEX ribbon and is projected into the ecliptic plane. The draping configuration is 
illustrative.  
 

 
Figure 7. ENA imaging from IBEX and in the future from IMAP will resolve global line-of-sight 
integrated pressures, which reveal the global dynamic balance between the solar wind (the inner 
heliosheath plasma) and the interstellar plasma including the interstellar magnetic field. The extended 
energy range of IMAP compared to IBEX will allow more accurate estimation of pressure and of the 
line-of-sight integrations that change with energy. Shown here is the pressure of plasma protons from 
the inner heliosheath that form observed ENAs integrated over line-of-sight (LOS) as observed by 
IBEX from 0.7 to 4.3 keV.  
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Figure 8. Analysis of IBEX data is used to form an approximate structure of the heliosphere projected 
into the ecliptic plane (viewed here from heliographic North). The complete energy range of 
distributions measured by IMAP will provide significant improvements over IBEX. In the formulation 
of such pictures of the global heliosphere, the distance scales provided by Voyager provide critical 
insight.  The wavy lines extending from the lobes show regions beyond the line-of-sight sensitivity of 
IBEX and suggest outflow. The tail region and structure of heliosheath is asymmetric. The clearest 
signatures of asymmetry include the small starboard (~10°) offset of the core tail from the interstellar 
downwind direction, and the deeper reduction in ENA emissions from the port lobe of the heliosphere. 
A key question for IMAP is how these features extend down to low energies (<0.2 keV) and above 6 
keV).  
 
Figure 8 shows a rough picture of the structure of the heliosphere near the ecliptic plane. This picture 
is made possible only through the combined observations of IBEX and direct measurements by 
Voyager. Future measurements from IMAP will make fundamental use of Voyager observations to 
help identify distance scales, and thus, form a global picture of the heliosphere through complete 
energy integrations across the ENA distributions emanating from the inner heliosheath.  
 
Sophisticated 3D MHD models (one example is shown in Figure 9) are being developed with the goal 
to produce ENA maps that can be compared with future observations from IMAP. The standard 
picture of the heliosphere is a comet-shape like structure with the tail extending for 1000’s of AUs. 
This standard picture stems from the view that magnetic forces from the solar magnetic field are 
negligible and that the solar magnetic field is convected passively down the tail. Recent work  [10, 11] 
shows that the magnetic tension of the solar magnetic field plays a crucial role on organizing the solar 
wind in the heliosheath (HS) into two jet-like structures. The two heliospheric jets are separated by the 
interstellar medium that flows between them. The heliosphere then has a “croissant”-like shape where 
the distance to the heliopause down tail is almost the same as towards the nose. 
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Figure 9.  Croissant Heliosphere” / “Heliosphere with Jets”: Two-lobed structure of the heliosphere 
[10]. Yellow surface shows the heliopause surface. Grey curves are solar magnetic field lines; red 
curves are interstellar magnetic field lines.   
 
Several observational consequences of this new view are being explored. The heliospheric jets are 
very turbulent with large-scale turbulence ~ 100AU and with a turnover of years. One should expect 
that this turbulence will cascade to smaller scales and shorter time scales. These turbulent jets are the 
largest turbulent structures in the heliosphere. Furthermore we do expect that the heliospheric jets will 
vary in their structure and intensity with solar cycle. These signatures may manifest in ENA maps, 
particularly over large timescales. Initially signatures in variability should exist over mid-scale ENA 
energies (0.7-4keV) and some suggestions have been made that this variability may extend to higher 
energies (>10 keV) that will be measured by IMAP. Both IBEX as well as CASSINI/INCA show time 
variability, although IBEX measurements indicate very little variability in the region of the heliotail. 
The current baseline over which variability could be detected is half of a solar cycle, and a much 
larger timescale (more than a decade) is needed with IMAP, IBEX and INCA to test for the existence 
turbulent evolution of the heliotail. IMAP measurements should pin down the following questions: a) 
Why the ENA images on IBEX (0.7-4keV) of the tail reveal two lobes? Is it only related to the 
bimodal distribution of the solar wind (slow vs. fast wind) and will disappear as the cycle progresses, 
or is it a permanent feature of the tail associated with the heliospheric jets? (b) Why the ENA images 
on CASSINI of the tail reveal such strong time variability? Is this variability a solar cycle effect or is it 
related with the turbulent jets? IMAP ENA mapping will have high sensitivity and be able to detect 
temporal and spatial variations due to the turbulence generated by the heliospheric jets and their 
associated variations over the solar cycle. 
 
3c. What are the Conditions of the Interstellar Medium? 
After initial sampling of the neutral He ISN flow with Ulysses GAS [12, 13], observations of the 
interstellar neutral (ISN) flow with IBEX have provided the first direct multi-species measurements of 
the ISN flow parameters, with a strong indication that the local interstellar cloud (LIC) conditions 
around the heliosphere are largely isothermal [4,12]. The local determination of the LIC temperatures 
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from the neutral gas velocity distribution for several species provides the most detailed independent 
measurement of this key quantity, with a handle on differential heating and cooling processes for the 
different interstellar species, provided that also the distributions of the minor species (O and Ne) can 
be obtained with excellent counting statistics and angular resolution. IBEX has also provided the first 
measurements of the ISN H velocity distribution and the effect of the Sun’s radiation pressure, based 
on direct neutral gas observations [15].  
 
Differences in radiation pressure have also enabled the first local detection of ISN D [16].  The 
interstellar D/H is a powerful probe of big bang nucleosynthesis and the chemical evolution of the 
Milky Way galaxy [e.g. 17, 18], yet observations in the interstellar medium are scarce and line-of-
sight integrated [19]. IMAP will take advantage of the differential deflection of these flow 
distributions by radiation pressure [20], in combination with the varying angular aberration along the 1 
AU orbit, to separate the D signal from the He ISN flow distribution.  As with other ISN flow related 
observations IMAP provides the critically needed capability to track the ISN flow distributions in the 
sky along the orbit around the Sun. The remaining improvement provided by IMAP to obtain a D/H 
ratio with statistical uncertainties <10%, is achieved with a combined collecting power and 
observation time increase for D by >10x. 
 
With IBEX ISN observations, the flow vector and temperature of ISN He have been constrained 
within a narrow tube in the 4-dimensional parameter space (ISN inflow longitude, latitude and speed, 
as well as temperature), where the latter three can be expressed as a function of inflow longitude [21-
23], but with a larger uncertainty along the parameter tube. The allowable parameter region has 
recently been constrained further [24 – 28], and the ISN flow vector is now largely consistent with that 
obtained with Ulysses GAS [29, 30], but with a LIC temperature that is substantially higher than in 
previous determinations [13, 31].  
 
The speed and direction of the ISN flow have profound implications for the LIC-heliosphere 
interaction, i.e. whether it is largely super- or sub-sonic [23] and, in conjunction with the 
determination of the interstellar magnetic field direction based on ENA ribbon observations [32, 33], 
the Voyager termination shock passages [34-36], and interstellar H flow direction [37, 38], the shape 
and structure of the heliosphere relative to the VISM – BISM symmetry plane can be determined.  In fact, 
rather small differences in the ISN flow direction have substantial leverage on the VISM – BISM plane 
[21, 39] and thus on the large-scale heliosphere structure. Furthermore, the small original difference in 
the best fitting inflow longitude [21, 22] compared with previous observations [13, 31] had initiated 
the intriguing discussion whether we could potentially witness variations in the ISN flow vector over a 
few decades [40-42]. While the differences in the flow vector have been largely reconciled, some 
recent work has focused on the possibility of variations of the local ISN flow vector due to turbulence 
in the ISM over a large range of scales [42]. Previous studies recognized the changes of the global 
flow vector due to variations in individual interstellar clouds along the line-of-sight used in integrating 
across absorption spectra [43]. This line-of-sight integration poses issues in comparing local 
determinations from measurements of interstellar neutral atoms with remote line-of-sight integrated 
observations.  
 
All the aforementioned topics require a precision determination of the ISN flow vector, preferably 
with contiguous data sets over decades. Imaging of the ISN flow and the evaluation of the speed cut-
off of interstellar pickup ion distributions [44] provide highly complementary methods, which can 
independently validate each other, if performed over a range of ecliptic longitudes. ISN bulk flow and 
pickup ion distributions over a large portion of the orbit around the Sun are needed to obtain such 
precision measurements of the H, He, O, and Ne ISN flow vector. IMAP provides the needed next step 
by enabling tracking of the ISN flow, along with a pointing accuracy that is as good or better than 
IBEX and continuous observations of He, O, D and Ne (Figure 10) pickup ion distributions.   
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Figure 10. Most elements on Earth are produced by supernova explosions. About thirty elements in 
the periodic chart have been detected in the interstellar medium. Supernovae, such as the Crab, have 
produced the interstellar oxygen and neon that is observable by IMAP. In addition, IMAP will resolve 
Deuterium (D), which has major implications for big bang cosmology.  
 
IMAP will also measure in detail the secondary components of the interstellar neutrals as pioneered 
with the IBEX-Lo maps for O [6, 45] and extracted as a secondary component from the He flow 
distributions [46, 47]. Definitive measurements of secondaries by IMAP provide powerful 
complementary tools to probe the LIC-heliosphere interaction. In combination with the ribbon and the 
precise ISN flow direction, these observations will put multiple strong constraints on heliospheric 
structure and the interstellar magnetic field. IMAP provides both images of these distributions over 
most of the orbit around the Sun and substantially improves collecting power for the heavy neutrals, 
such as O, over IBEX. In addition, for the H ISN flow distribution, IMAP observations over large 
fractions of a 1 AU orbit and over dramatically varying radiation pressure with solar activity will 
provide a tool to obtain more complete ISN H distributions and to clearly separate the primary ISN 
flow and the secondary neutrals, which for H are typically only observed as a combined distribution. 
With the superior neutral atom collecting power and its continuous coverage of the sky for low flux 
distributions, IMAP will be able to seriously test, whether the observed distributions have additional 
non-thermal components and, if so, will characterize them and connect them to physical processes in 
the ISM and the heliospheric boundary. 
 
3d. What is the Direction and Strength of the Interstellar Magnetic Field? 
Determining the direction of the local interstellar magnetic field (LISMF) is important for 
understanding the heliosphere’s global structure, the properties of the interstellar medium, and the 
propagation of cosmic rays in the local galactic medium. Measurements of interstellar neutral atoms 
by Ulysses for He and by SOHO/SWAN for H provided some of the first observational insights into 
the LISMF direction. Because secondary neutral H is partially deflected by the interstellar flow in the 
outer heliosheath and this deflection is influenced by the LISMF, the relative deflection of H versus 
He provides a plane - the so-called B-V plane in which the LISMF direction should lie. IBEX 
subsequently discovered a ribbon, the center of which is conjectured to be the LISMF direction. The 
most recent He velocity measurements from IBEX and those from Ulysses yield a B-V plane (Figure 
11) with uncertainty limits that contain the centers of the IBEX ribbon at 0.7-2.7 keV.  
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Figure 11. We combine seven different sets of observations to determine the direction of the 
interstellar magnetic field. The red line shows the linear fit to Voyager 1 observations of the 
interstellar magnetic field [50]. This linear fit is projected forward in time (the red circles surrounding 
a “V” show discrete points in time along the Voyager trajectory). The H flow direction from 
SOHO/SWAN [37, 49] is shown with the He flow direction derived by Schwadron et al. [28] in blue. 
The H inflow is more strongly deflected by secondary interactions in the heliosheath than the He 
inflow. Therefore, the BISM-VISM plane contains the deflection of H relative to He [37]. The region 
bounded by the dark blue dashed curves shows the limits of the BISM-VISM plane, which contains 
the orientation of the IBEX ribbon [32] from 0.7-2.7 keV. The purple closed circle shows the He 
inflow direction based on the most recent analysis of Ulysses ISN flow observations [30]. The purple 
line shows the corresponding B-V plane connecting the Ulysses He and SOHO/SWAN H 
observations. The center (closed black circles) of the IBEX ribbon is shown at separate energy steps 
observed by the Hi sensor on IBEX. The projected interstellar field direction from Voyager 1 
converges with the 1.7 keV IBEX ribbon center on the date of 2024.7. The grey curve is the B-V 
provided by fitting secondary He in addition to H and primary He [47]. Also shown in green is the 
direction of interstellar O based on a recent determination from IBEX data [51].  
 
Immediately outside and beyond the heliopause lies interstellar space, where Voyager 1 is currently 
making ground-breaking observations. The possibility that Voyager 1 has moved into the outer 
heliosheath now suggests that Voyager 1’s direct observations provide another independent 
determination of the LISMF. The LISMF direction measured by Voyager 1 is > 40◦ off from the IBEX 
ribbon center and the B-V plane (Figure 11). However, taking into account the temporal gradient of 
the field direction measured by Voyager 1, we extrapolate to a field direction that passes directly 
through the IBEX ribbon center (0.7-2.7 keV) and the B-V plane (Figure 11), allowing us to 
triangulate the LISMF direction and estimate the gradient scale size of the magnetic field [50, 30]. The 
linear projection of the Voyager 1 data suggests that it could observe a field direction at the IBEX 
ribbon center by 2025 when the spacecraft is at 165 AU from the Sun. This also indicates a draping 
region of ~ 45 AU in radial extent near Voyager 1.  
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Because Voyager 1 is at a single location, it is difficult to develop a complete global picture from its 
measurements. Recently, Schwadron et al. [48] used near-Earth IBEX ENA data from the past five 
years in conjunction with observations of highly energetic cosmic ray particles with 99% the speed of 
light streaming in from elsewhere in the Milky Way galaxy to shed new light on our cosmic 
neighborhood, and propose an explanation for a decades-old mystery – why we measure more 
incoming high-energy cosmic rays on one side of the heliosphere than on the other.  The IBEX ribbon 
appears to be ordered by the direction of the interstellar magnetic field direction that drapes around the 
heliosphere. The direction of the interstellar magnetic field revealed by the IBEX ENA ribbon 
observations is nearly perpendicular to the motion of our solar system through the galaxy.  This 
information was then used to predict the distribution of high-energy (~10 TeV) cosmic rays that 
penetrate into the heliosphere. These predictions are shown on the right in Figure 12.  The blue regions 
represent a lower intensity of cosmic rays whereas the red regions signify a higher intensity of cosmic 
rays. This uneven distribution looks similar to what is actually observed, shown on the left of Figure 
12, thus supporting IBEX's findings. 
 
 

	
	
Figure 12. The magnetic fields in interstellar space inferred from IBEX lead to a prediction for the 
global anisotropies of TeV cosmic rays as shown on the right. Regions in blue have a decrease in the 
intensity of cosmic rays, while regions in red represent an increase in cosmic ray intensity. This looks 
similar to what is actually observed, shown on the left, thus supporting IBEX's findings. These global 
maps of TeV cosmic ray anisotropies are shown in Mollweide projection and in standard J2000 
equatorial coordinates.   

How does the ribbon change over ~10 year timescales? Stability of the ribbon over these timescales 
would support the idea that the ribbon is ordered by the interstellar magnetic field. However, if the 
ribbon changes significantly on these timescales and IMAP detects a very different structure than 
observed by IBEX, this would call into question not only the leading ideas to explain the ribbon, but 
also the concept that it is ordered by the interstellar magnetic field. Thus, IMAP is positioned to 
answer a critical question about the stability of the ribbon with major implications not only for the 
interstellar magnetic field, but also for the interstellar interactions with the magnetic field and the 
global structure of our heliosphere. Ultimately, these questions must be answered to understand how 
precisely our interplanetary plasma environment changes with time and how cosmic rays are 
controlled by the structure of the heliosphere.  
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3e. What are the Suprathermal Seed Populations for Particle Acceleration in the Heliosphere? 
Observations from many spacecraft in the Heliophysics System Observatory have contributed 
dramatically to our understanding of solar energetic particle events, the importance of suprathermal 
particles in interplanetary space for their effective acceleration, the source and evolution of solar wind, 
solar wind and energetic particle inputs into geospace, and the evolution of the coupled solar and 
heliospheric magnetic field.  It is abundantly clear that a myriad of complex physical effects, variable 
with time and location, contribute to the properties of the solar wind, the heliospheric magnetic field, 
suprathermal and energetic particle populations at 1 AU (Figure 13), that are still poorly understood. 
With its combination of highly sensitive pickup and suprathermal ion sensors, IMAP will provide the 
species and spectral coverage as well as the temporal resolution to associate emerging suprathermal 
tails with interplanetary structures and physical processes. 
 
IMAP, like ACE before it, will be a keystone of the Heliophysics System Observatory by providing 
comprehensive solar wind observations, measurements to diagnose the source and evolution of solar 
wind and suprathermal ions, provide solar wind and energetic particle inputs into the geospace 
environment, and track the evolution of cosmic rays and of the coupled solar and heliospheric 
magnetic field. IMAP’s comprehensive interplanetary monitoring suite is critical to support on going 
geospace interaction studies and space weather observations at the ideal location of the Lagrangian 
point L1. The high societal relevance of comprehensive solar wind, suprathermal, magnetic field and 
cosmic ray observations from L1 makes the IMAP mission an imperative as a successor to ACE. 
 
 

	

	

Figure 13. (Upper panel) Ion velocity 
distribution measured in the solar wind 
frame. Four components are clearly 
distinguishable:  1) Bulk solar wind 
studied since the beginning of the space 
age (red), 2) much hotter halo solar 
wind (blue), 3) interstellar pickup H+, 
observable at 1 AU during the deep 
solar minimum (green), and 4) 
suprathermal tail (ST), just above the 
pickup ions.  The ST spectrum is well 
approximated by a power law, with a 
gradual exponential rollover at ~2.5•108 
cm/s.  
 
(Lower panel) Suprathermal particles 
injected at the Sun and in interplanetary 
shock events stay relatively close to 
their field lines, providing seed 
populations that vary by orders of 
magnitude in space and time.  [52].   
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4. IMAP’s Urgency in a New Paradigm of the Evolving Space Environment 
The space environment is a complex system regulated by the solar wind’s interaction with the Local 
Galactic Environment. Our local interstellar boundaries separate the solar wind plasma from the Local 
Interstellar Medium (LISM), which is composed of the galactic matter (neutral atoms, ionized matter, 
and dust) and galactic magnetic fields left over from supernovae, stellar winds, ultimately as a relic of 
the primordial field. The distant interstellar plasma boundaries surrounding our heliosphere and the 
outflowing solar wind partially protect our solar system by regulating the intensity of GCRs that enters 
our solar system. GCRs are charged particles with relativistic energies and they permeate our galaxy; 
because they are charged, their motions are governed by the magnetic fields they encounter.  GCRs 
present one of the greatest hazards for long-term space exploration since these high energy (~GeV) 
particles are so difficult to shield against deep in interplanetary space, that is, at altitudes well above 
Earth’s strong internal magnetic field. The most energetic GCRs penetrate even the powerful magnetic 
fields closest to Earth ultimately colliding with and producing complex interactions with Earth’s massive 
atmosphere; the effects of GCRs on the Earth system, including the biosphere either directly or 
indirectly, remain poorly understood and oftentimes highly controversial [53]. Recent compilation of 
paleontological data into estimates of global diversity suggest there is a significant ~62 million year 
cycle to biodiversity that as of yet has no agreed upon cause and is possibly driven by extraplanetary 
processes [54].  
 
GCRs not only present a hazard to life through the breakdown of DNA, but also may help to stimulate 
evolution by increasing the rate of cell mutation [57]. In other words, the radiation environment of the 
Earth and planets, which is largely defined by the intensity and composition of GCRs in the solar 
system, may play a fundamental role in the formation and evolution of life. Similarly, as we begin our 
search for life elsewhere in the cosmos, particularly on planets surrounding other stars, we must also 
investigate the interstellar boundaries surrounding these stellar systems, and the effects these 
interstellar boundaries have on the cosmic rays within these systems. GCRs may also affect life in 
indirect ways through climate variability [53], although this relationship remains highly controversial.   
 
The deep solar minimum between cycles 23 and 24 and the activity in cycle 24 differed significantly 
from those of the prior cycle. During this period, the fast wind was slightly slower, was significantly 
less dense and cooler, had lower mass and momentum fluxes, and weaker heliospheric magnetic fields 
compared to earlier cycles  [58]. During the rise of activity in cycle 24 the mass flux of solar wind 
remained low and the magnetic flux of the heliosphere remained at significantly lower levels than 
observed at previous solar maxima in the space age. Cycle 24 is the weakest solar maximum of the 
space age, which continues the highly anomalous trends observed in the deep cycle 23-24 minimum. 
Conditions during the cycle 23-24 minimum appear to be similar to conditions at the beginning of the 
1800's at the start of the Dalton Minimum [59]. Taken together, these recent changes suggest that the 
next solar minimum may continue to show declining sunspot numbers, associated with declining 
values of magnetic flux and further reductions in solar wind particle flux.   
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Figure 14. (Top Panels from 53) The recent anomalous rise in GCR flux (a) is associated with both a 
drop in the interplanetary magnetic field (b), solar wind ram pressure (c), and in the size of the 
heliospheric boundaries (bottom) where as much as 90% of low-energy GCRs (shown as blue streaks) 
are deflected in the strong magnetic field of the heliosheath [56].  
 
The anomalously weak heliospheric magnetic field and low solar wind flux during the last solar 
minimum (Figure 14) have resulted in GCRs achieving the highest flux levels of the space age [55, 
60], and fluxes continue to be unusually elevated through the cycle 24 maximum.  It is unknown if the 
recent anomalous deep solar minimum is a harbinger of larger changes in the near future, or if the 
unusual changes in GCR fluxes and conditions on the Sun have an impact on Earth’s atmosphere. 
These compelling questions provide fundamental motivation for IMAP.   
 
The changes in the space radiation are strongly controlled by the changes in the global heliosphere. 
Understanding the interplay between changing solar conditions, the resulting changes in the global 
heliosphere, and the resulting changes in the radiation environment throughout the solar system remains 
a fundamental challenge. IBEX and INCA have opened a new window on the interaction between the 
Interstellar Medium and the Heliosphere. IMAP extends and expands this domain of discovery through: 

• Improved resolution (higher sensitivity and suppression of background) of interstellar 
boundaries. While gross features of the interstellar boundaries such as the nose, tail and lobes 
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have been identified by IBEX, these features have required years of observation and 
subsequently averaged over a changing medium.  

• Improved time resolution of observations of interstellar boundaries to identify the connection 
between changes in the solar wind including and motion of interstellar boundaries  

• Increased resolution of structures in both time and angular coverage allowing significant 
improvement in the connection between detailed observations of Voyager 1 and Voyager 2 and 
IMAP. 

5. Overview of IMAP Scientific Objectives 
IMAP builds on the highly successful first heliospheric ENA mapping mission, with its concurrent 
capability to provide in-situ observations of the interstellar gas flow for a variety of species, and on a 
broad array of in-situ pickup-ion (PUI) observations, to enable the discovery of the detailed processes 
and interaction between the heliosphere and the local interstellar medium (LISM). IMAP answers 
these fundamental questions: 

1) What is the spatio-temporal evolution of heliospheric boundary interactions?  
2)  What is the nature of the heliopause and the interaction of the solar and interstellar magnetic 

fields? 
3) What are the composition and physical properties of the surrounding interstellar medium?  
4) How are particles injected into acceleration and what mechanisms energize them throughout 

the heliosphere and heliosheath?  
5) What is the time-varying magnetic field, plasma, energetic particle, and galactic cosmic ray 

input at L1 into the Earth system and inner solar system?  
 
The IBEX ribbon and the INCA belt provide fundamental motivation for IMAP. Since the first 
observations of the ribbon, the prospect of the existence of fine structure has remained a significant 
potential finding that strongly limits possible Ribbon mechanisms. However, the existence of this fine 
structure remains at the observing limit of IBEX both in terms of angular temporal resolution. IMAP’s 
enhanced sensitivity and improved background suppression will allow a factor of almost 100 
improvement in resolution compared to IBEX.  
 
The mission’s focus on understanding heliospheric boundaries makes it important to try to 
simultaneously take IMAP observations while also making direct in situ measurements via the two 
Voyager spacecraft in the heliospheric boundary region. IMAP will also enable observation of 
suprathermal ions of solar wind, interstellar, and inner-heliospheric origin with unprecedented 
collection power and time resolution. These measurements are essential for understanding particle 
acceleration. IMAP instruments will provide the environmental monitoring that is critical for effective 
background evaluation and removal in the ENA images and the interpretation of the pickup ion 
distributions. In addition, these instruments will serve as a comprehensive interplanetary monitoring 
suite in support of geospace interaction studies and space weather observations at the ideal location of 
the Lagrangian point L1. 
 
Answering the questions motivating IMAP requires substantially advanced observations:  

• High-resolution mapping and time evolution of heliospheric boundaries;  
• Properties of interstellar neutral gas flow and its composition for H (including isotopes), He, 

O, and Ne (to also address Big Bang Cosmology with the first in situ D/H observations), and 
properties of the outer heliosheath;  

• Pickup Ion Composition (implications for big bang cosmology and nucleosynthesis with a 
dedicated PUI instrument:  He3/He4 and Ne22/Ne20 with better than 5% accuracy);  

• Seed populations of energetic particles with high time resolution (several minutes);  
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• Underlying time variations of ubiquitous suprathermal ions; 
• Solar Energetic Particle composition, injection and acceleration;  
• Suprathermal and energetic particle transport;  
• ACR/GCR modulation and evolution with time; and  
• L1 environmental monitoring and solar wind input for magnetospheric and ITM science 

6. IMAP Mission and Instrument Implementation 
The IMAP goals can be achieved with a mission concept that is largely drawn from ACE, with 
greatly-improved ENA imaging aspect infused from IBEX and INCA, with the first dedicated pickup 
ion instrument, and with a high-collecting power suprathermal ion sensor. IMAP is conceptualized as 
a Sun-pointed spinner, with re-adjustment of the spin axis every few days to provide all-sky maps 
every 6 months. To escape the ENA background environment of the magnetosphere and to allow 
continuous interplanetary observations, the spacecraft will be placed at L1. The mission goals can be 
achieved with a 2-year baseline mission, including the transit to L1, with extensions to a longer 
operation possible. To provide the necessary observations IMAP combines the following state-of-the-
art measurement capabilities, for which no further development effort is required because the 
improvements over previous missions are based on experience with the instruments during calibration, 
testing, and operation.  
 
High-Resolution ENA Maps: Two ENA cameras will produce critical new observations of ENAs 
from the heliospheric boundary region over an extended energy range and with significantly improved 
sensitivity, and spatial and energy resolution, compared to prior observations. They will cover the 
energy range 0.3-20 keV and 3-200 keV with 10x the angular resolution and ≈100x the combined 
sensitivity/duty cycle of the IBEX-Hi and CASSINI INCA sensors. With the sensitivity gain, these 
sensors will take advantage of oversampling the polar regions with high time resolution of a few days. 
 
High-Resolution & Sensitivity ISN Flow Collection: An Interstellar Neutral Atom Camera and 
the first dedicated Pickup Ion Sensor will take coordinated high sensitivity observations of the 
interstellar gas flow through the inner solar system. The ISM Neutral camera will provide ISM flow 
observations of H, D, He, O, and Ne at 5-1000 eV with a pointing knowledge of 0.05o and >10x the 
combined sensitivity/duty cycle of IBEX-Lo, also extending the ENA maps below 0.3 keV. The 
pickup ion sensor provides pickup ion distributions of interstellar H, 3He, 4He, N, O, 20Ne, 22Ne, and 
Ar as well as inner source C, O, Mg, and Si over the energy range 100 eV – 100 keV/e with a 
combined sensitivity/duty cycle 100x that of SWICS, also providing SW heavy ion composition.  
 
High-Cadence Suprathermal Ion Observations: Overlapping with the pickup ion sensor, a 
suprathermal ion sensor will provide composition (0.03-5 MeV/nuc) and charge state (0.03-1 MeV/e) 
for H through ultra-heavy ions (5 min cadence for H and He).  
 
Solar Wind and Interplanetary Monitoring Suite will serve to understand and mitigate 
backgrounds from the local environment for high-sensitivity ENA observations and can also provide 
societally important real-time solar wind and cosmic ray monitoring. This suite measures SW ions 
(0.1-20 keV/e) and electrons (0.005-2 keV) every 15 s, the IMF to ≤1nT at 16 Hz, and SEP, ACR, and 
GCR electrons and ions (H-Fe) over 2-200 MeV/nuc. 

7. Conclusion and Outlook 
Our piece of cosmic real-estate, the heliosphere, is the domain of all human existence. Its history and 
future in our galaxy is key to understanding the conditions on our evolving planet and future 
expansion across the solar system. As we ask about the habitability of other planets surrounding other 
stars, we grapple with understanding the complex environments and interactions in the local parts of 
the galaxy where these stars exist. Our own heliosphere is an astrophysical case-history of the 
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successful evolution of life in a habitable system. By exploring our global heliosphere and its myriad 
interactions, we develop key physical knowledge of the interstellar interactions that influence 
exoplanetary habitability as well as the distant history and destiny of our solar system and world. The 
interactions in the solar wind and the heliosphere produce highly energetic particles and help shield 
much of the galactic cosmic radiation that penetrates the heliosphere from the interstellar medium. 
Thus, the heliosphere presents a fundamental opportunity to study the basic processes that control 
particle radiation.  
 
IBEX was the first mission to explore the global heliosphere and in concert with Voyager 1 and 
Voyager 2 is discovering a fundamentally new and uncharted physical domain of the outer 
heliosphere. The enigmatic ribbon is an unanticipated discovery demonstrating that much of what we 
know or think we understand about the outer heliosphere needs to be revised. The next quantum leap 
enabled by IMAP will open new windows on the frontier of Heliophysics at a time when the space 
environment is rapidly evolving and becoming increasingly hazardous due to rising levels of galactic 
cosmic ray fluxes.  
 
The remarkable synergy between IMAP, Voyager 1 and Voyager 2 will remain for at least the next 
decade as Voyager 1 pushes further into the interstellar domain and Voyager 2 moves through the 
heliosheath. In fact, Voyager 2 moves outward in the direction of part of the ribbon and Voyager 2’s 
plasma measurements will create singular opportunities for discovery in the context of IMAP’s global 
measurements.  
 
IMAP, like ACE before it, will be a keystone of the Heliophysics System Observatory by providing 
comprehensive solar wind observations, measurements to diagnose the source and evolution of solar 
wind and suprathermal ions, provide solar wind and energetic particle inputs into the geospace 
environment, evolution of cosmic rays and the evolution of the coupled solar and heliospheric 
magnetic field. IMAP’s comprehensive interplanetary monitoring suite is critical to support on going 
geospace interaction studies and space weather observations at the ideal location of the Lagrangian 
point L1. The high societal relevance of comprehensive solar wind, suprathermal, magnetic field and 
cosmic ray observations from L1 makes the IMAP mission an imperative as a successor to ACE. 
 
This paper is similar to an unpublished whitepaper that was presented to the National Academies of 
Sciences, Engineering and Medicine Committee for Solar and Space Physics (CSSP). The author list is 
identical to that of the white paper, and all authors were heavily involved in the IMAP deliberations as 
a part of the Solar and Space Physics (SSP) Decadal Survey. This paper provides a citable reference 
for IMAP objectives and the instrument straw man traceable to the SSP Decadal Survey. It is fitting 
that our paper appears in the volume that celebrates the 80th birthday of Ed Stone as part of the AIAC.  
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