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Introduction

The purpose of this document is to provide extra details on our data compilation, conversion be-
tween quantities, mathematical analysis, and parameter values. We provide various plots of data in
the original units, equations for conversion, and calculated or measured values of key parameters
along with an analysis of statistical significance.

Data Fitting

Most of the curve fitting to compiled data in this study involves power law fits with the exception
of our model for ribosomal content, although we also test the possibility of a power law here too.
For these fits we performed an ordinary least squares fit to logarithmically transformed data. For
this to be an appropriate model the assumption is that the error is multiplicative in the original
linear space and thus additive in the logarithmic space, and it should be the case that the variance
of the logarithmically transformed data is not increasing with increasing values of x. We tested this
and found that for each data set there was no significant trend in variance with increasing x-value
bins (e.g. the P-values were all much greater than 0.05 for tests of a positive slope with x).

For each power law fit Table S1 gives the best fit values along with the 95% confidence
intervals and the R2 values. The P-values for the fitted exponents, and the intercepts for that
matter, are all too small to report and are indistinguishable from zero.
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It should be noted that the confidence intervals are the largest for the power law fits to the
number of ribosomes (Table S1), and indeed in the main text we present a more complicated form
for the number of ribosomes as a function of cell size, which is connected with a few mechanistic
assumptions (please see below for the full derivation of this relationship). Equation S41 is a
function of only one free parameter under the assumption that η = φ, and can easily be fit to the
data. In order to evaluate all scales of the data equally, and for a fair comparison with the power-
law fits, we also us a least squares fit of this model in logarithmic space (both the model and the
measured data have been transformed logarithmically). We compare the goodness of fit from this
model to that of a simple power law fit by reporting the residual sum of squares (RSS, or SSR
or SSE depending on terminology), and the residual standard error, σ. We report both of these in
terms of values for logarithmically transformed data.

We find that the for the power law RSS = 90.08 and σ = 1.21 compared with the full form
for ribosomes which gives the slightly higher, but similar, values of RSS = 95.73 and σ = 1.24
(see Table S1 for fitted values of η = φ). The power law is a slightly better fit, however, it does
implement two degrees of freedom (both of which are significant in terms of P-values) while our
full form, which has a mechanistic underpinning, requires only fits for φ and compares well with
measured values. Furthermore, we have not capitalized on the full fitting capabilities of Equation
S41: our aim was to predict the ribosome requirement from other observations, namely the growth
rate, µ, and total protein volume, thus highlighting the interconnection of component requirements.
This implies that the values of µ0, βB, P0, and βP are being enforced from fits to two other data
sources. We have already reduced the degrees of freedom for the full ribosome model from other
data, and yet still find fits that are comparable to an unconstrained power law. This suggests that
the component requirements are connected in the manner that we have proposed. Allowing any
of these parameters (e.g. P0 and βP ) to vary freely provides a reduction of error between the full
ribosome model and data.

In addition, it should be noted that fits of Equation S41 to data are effectively insensitive to
η (given a fixed scaling in µ and Np) and that the assumption that the ribosomes do not degrade,
η = 0, allows for a fitting of φ alone with nearly identical RSS and σ to the η = φ assumption.

Data Compilation

We searched the literature for combinations of terms related to a particular component (e.g. “ribo-
some”) along with generic terms that are related to total quantity, for example “count”, “number”,
“volume”, “abundance”, “total”, “amount”, “concentration”, etc. We also relied on previous com-
pilations of protein abundance and genome size. Not every datum is useful because it cannot be
paired with a cell size, which is a fundamental aspect of this study, and other data cannot be used
because they are only given in relative units or abundances (e.g florescence measurements). We
relied on various conversions from original units as detailed below.
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Because the scale of change in volume can be rather different for each parameter the plots in
the main text, which are all on the same y-scale, make it difficult to visually inspect the data and
its variation. Thus Figure S1 provides a plot of each data set within the natural range of y-values.

Growth Rate

Although the model presented in the main text and in Kempes et al. 1 can be derived from a few
simple principles, the resulting equational form is fairly complicated and it is useful to provide the
power-law approximation, µ = µ0V

βmu
c , to this relationship for several purposes. For cell sizes

sufficiently larger than the asymptotic lower bound, we numerically solved for the best-fit power-
law approximation, where we find that µ ≈ µ0V

βB−1
c , with βB ≈ 1.64 (the value extracted from

a best fit of µ to the data from 2, which compares well with the direct OLS fit of βB ≈ 1.7 to the
metabolic data from 2) µ0 = 4× 107. The approximation fits the full form of µ with R2 = 0.9999
for cell volumes between 10−19 m3 and 104 m3.

Genome Size

The original units of genome size are typically reported as either total number of base pairs or the
total mass of DNA. In figure S2 we report our compiled data for the genome length in base pairs
as a function of cell volume. For the data that were reported in mass units we used the following
conversion

L = MDNA/mbp (S1)

where MDNA is the total measured mass of DNA and mbp = 1.023 × 10−21 g is the mass of a
single basepair 3.

Given the total genome length, L, and the volume of a nucleotide, vN , the total volume of
DNA is given by

VDNA = v̄NL, (S2)

and thus, scales identically to genome length. For vN we assumed that the length of a nucleotide
is given by 0.33 nm 4 and that the radius is given by 1.2 nm 4, and thus, vN ≈ 1.47× 10−27 m−3.

Conversion between cell mass and volume.

Many previous studies report allometric relationships in terms of cell mass dependence. However,
the most common direct measurement of size is cell volume (often estimated from cell dimensions)
which is convenient given our interest in the overall space constraints of cells. We assume that most
of the studies that report cell mass have used a simple constant density conversion to calculate this
quantity from measured cell volumes (e.g. 2), and so we convert back to volume using a standard
cellular density of δc = 1.1 × 106 g m−3 (e.g. 5). Future efforts to convert from cell volume to
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mass may need to consider the shifts in cell density associated with cell volume as illustrated in
this study.

Dry Weight Scaling

For later conversions it is useful to define the conversion between overall cell volume and the total
dry weight. Past work has shown that the dry mass of a cell, Md, scales with overall volume
following

Md = v0V
βc
c (S3)

where the constants vary between βc = 0.86 and v0 = 435 (dry fg µm−βc) in E. coli 6 to βc = 0.91
and v0 = 162 (dry fg µm−βc) for a broader assessment of bacteria 7. We use an average of these
values defined as βavec = (0.91 + 0.86)/2 and vave0 = (162× 435)1/2.

Protein Mass

Protein amounts are typically reported in either total mass per cell units, total number units, or
percent of total cellular dry weight. Figure S3 gives our compilation for the total protein mass of a
cell against cell volume.

When protein values were reported in percent of cellular dry weight we estimated the cellular
dry weight using the cell volume and the conversion found in Equation S3. We converted from the
number of proteins to total protein mass using

Mp = m̄pNp (S4)

where the average mass of a protein ranges from 4.98 × 10−20 g 8 to 6.64 × 10−20 g 9 and Np

is the number of proteins. For the average mass of a protein, we used the average of the two, so
m̄p = 5.81× 10−20 g.

For conversion to total protein volume reported in the main text we used

Vp = d̄pMp (S5)

where the average density of a protein is given by d̄p = 1.37 × 106 g m3 10. For calculations
in the main text (Equations 6 and 7), it is important to note that the average length of a protein
is l̄p = 975 bp 11 which is similar to the reported average gene length of 924 bp found to be
approximately invariant across bacteria 12.
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Ribosome Number

The basic premise for the number of ribosomes is that the ribosomes must be able to replicate all of
proteins and all of the ribosomes within the division cycle. Below we present several perspectives
on this requirement, each of which adds a layer of detail to the model, ranging from a zeroth-order
approximation for the entire life cycle to a model which accounts for dynamic production and
degradation of both ribosomes and proteins integrated over a life-cycle. We present all of these
models because each may be useful in different contexts where certain approximations or layers of
detail might be most relevant and/or appropriate.

Simple life-cycle average

The total number of base pairs that the ribosome must process in a life-cycle is given by

Npl̄p +Nr l̄r (S6)

where l̄p and l̄r are the average length, in base pairs, of protein and ribosome transcripts, respec-
tively, that must be processed by the ribosome, and the N terms are how many proteins and ribo-
somes the cell actually has. The total translational capacity of all of the ribosomes is then given by
the rate at which a ribosome can process a base pair, rr, multiplied by how much time the cell has
to divide, td and the total number or ribosomes in the cell, or

tdrrNr. (S7)

Here we assume that the ribosome processing rate rr is a constant, taken to be maximal, and
independent of concentration effects. For the cell to successfully double all proteins and ribosomes
it must be the case that the total translational capacity (Equation S7) meet or exceed the total
requirements (Equation S6):

tdrrNr ≥ Npl̄p +Nr l̄r. (S8)

which becomes

tdrrNr −Nr l̄r ≥ Npl̄p (S9)

Nr ≥
Npl̄p

tdrr − l̄r
. (S10)

Equation S10 depends strongly on overall cell volume given that td = ln (2) /µ (where µ depends
on cell volume) given our earlier presentation of Np. However, the connection to cell size can
be difficult to observe in the above form given the complicated relationship for µ and the several
layers of subsequent dependencies of features like Np. The full form can be found by noting that,
Vp = P0V

βp
c , andNp = Vp/v̄p given the average volume of a protein, v̄p. All of these considerations
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taken together lead to

Nr ≥
P0V

βp
c l̄p

v̄p

ln (2)

(
(Bm/Em)(1−βB) ln[ε]

ln

»
1−(Bm/B0)(Vcdc)

1−βB

1−ε1−βB (Bm/B0)(Vcdc)
1−βB

–
)−1

rr − l̄r

 (S11)

which we can simplify using the power-law approximation for µ (see Equation 5) as

Nr ≥
P0V

βp
c l̄p

v̄p

(
ln (2)

(
µ0V

βµ
c

)−1

rr − l̄r

) . (S12)

Most of the ribosome data is reported in number units (Figure S4) which we convert to
volume using

Vr = v̄rNr (S13)

where the average volume of a ribosome ranges from 2.68 × 10−24 m3 13 to 3.40 × 10−24 m3 14.
For the average volume of a ribosome, we used the average of the two, so v̄r = 3.04× 10−24 m−3.
For the average length of a ribosome we used l̄r = 4566 bp 15, and took the maximum ribosome
processing rate to be rr = 63 bp s−1 15.

Temporal Dynamics of Ribosome and Protein Synthesis

It should be noted that as the cell grows the number of ribosomes is changing and newly synthe-
sized ribosomes can contribute to the biosynthesis of proteins or more ribosomes. Similarly, the
number of proteins is also changing in time as is the total requirement for protein biosynthesis.
For proteins there are also many degradation terms that contribute to the total amount of biosyn-
thesis which we discuss later. The capacity for biosynthesis, and thus the rate of change in both
ribosomes and proteins, will depend on the current number of ribosomes in the system and how
this current capacity is partitioned between these two components. Thus, the explicit temporal
dynamics of both ribosome and protein synthesis can be described by the temporal derivatives

dNr

dt
= γ

rrNr

l̄r
(S14)

dNp

dt
= (1− γ)

rrNr

l̄p
(S15)

where γ is the fraction of total ribosomal biosynthetic capacity dedicated to making more ribo-
somes. Solving these equations provides the number of ribosomes and proteins as a function of
time:

Nr (t) = Nr,0e
γrrt/l̄r (S16)
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where Nr,0 is the initial number of ribosomes at the beginning of a division cycle and the relation-
ship for the number of proteins is a bit more complicated

Np (t) =
(1− γ) l̄rNr,0

(
eγrrt/l̄r − 1

)
+ γl̄pNp,0

γl̄p
(S17)

where Np,0 is the initial number of proteins. It should be noted that the data collected for our
scaling relationships represent average quantities, and so it is useful to define the average values
for Nr and Np over a life cycle:

N̄r (t) ≡ 1

td

∫ td

0

Nr (t) (S18)

=
Nr,0l̄r

(
eγrrtd/l̄r − 1

)
γrrtd

(S19)

and

N̄p (t) ≡ 1

td

∫ td

0

Np (t) (S20)

=
(1− γ) l̄2rNr,0

(
eγrrtd/l̄r − 1

)
+ γ2l̄pNp,0rrtd − lrNr,0rrtd (γ − 1) γ

γ2l̄prrtd
. (S21)

Given our expression for the number of ribosomes in time, Equation S16, we can bound
the value for the partitioning of total biosynthetic resources dedicated to ribosome production.
Considering are earlier requirements, at a minimum the ribosomes must be doubled in the time to
divide, or

Nr (td) ≥ 2Nr,0 (S22)

Nr,0e
γrrt/l̄r ≥ 2Nr,0 (S23)

γ ≥ ln (2) l̄r
rrtd

. (S24)

(S25)

This bound on γ can be used to find a rough estimate for the “ribosome catastrophe” by noting that
γ < 1 so that there remain transcriptional resources for proteins. We might expect that γ should
be as small as possible to allow for the maximum translational resources to be dedicated to protein
synthesis, and substituting the lower bound into the average number of ribosomes gives the simple
result that

N̄r =
Nr,0

ln (2)
(S26)

which could be anticipated from standard considerations of exponential growth.
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Similarly, it must also be the case that all of the proteins are replicated in the devision cycle
and that

Np (td) ≥ 2Np,0 (S27)

(1− γ) l̄rNr,0

(
eγrrt/l̄r − 1

)
+ γl̄pNp,0

γl̄p
≥ 2Np,0 (S28)

and, importantly, this condition can be manipulated to give us a relationship between N̄r and N̄p

which is our ultimate goal. Equation S28 can be rewritten as

Nr,0

(
eγrrtd/l̄r − 1

)
≥ γl̄pNp,0

l̄r − γl̄r
(S29)

and taking the minimum value for γ from Equation S25 leads to

Nr,0 ≥
γl̄pNp,0 ln (2)

r̄rtd − ln (2) l̄r
. (S30)

Again taking the minimum value for the γ in Equation S21 gives the initial number of proteins as
a function of the average

Np,0 =
l̄pN̄p ln (2)2 +Nr,0 (ln (2)− 1)

(
r̄rtd − l̄r ln (2)

)
l̄p ln (2)2 . (S31)

and substituting for Np,0 in Equation S30 gives

Nr,0

ln (2)
≥ Nr,0 (ln (2)− 1)

ln (2)2 +
l̄pN̄p

r̄rtd − l̄r ln (2)
(S32)

which can be simplified to give our final bound for the number of ribosomes:

N̄r ≥
l̄pN̄p

r̄rtd
ln(2)

− l̄r
. (S33)

This result is nearly identical to the average perspective present in Equation S10 but where the
r̄rtd differs by a factor of ln (2).

Biosynthetic Dynamics with Degradation

It should be noted that proteins are constantly being degraded and re-synthesized during cellular
function and growth. We can add this effect to Equations S15 and S14 by including a constant
degradation rate, η for ribosomes and φ for proteins,

dNr

dt
= γ

rrNr

l̄r
− ηNr (S34)
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dNp

dt
= (1− γ)

rrNr

l̄p
− φNp (S35)

which can be solved to find the number of ribosomes and proteins as a function of time:

Nr = Nr,0e
t(γr̄r−ηl̄r)

l̄r (S36)

Np (t) =
e−tφ

(
l̄r

(
l̄pN̄p,0 (φ− η) + (γ − 1) N̄r,0r̄r

(
1− et(−η+ γr̄r

l̄r
+φ)
))

+ γl̄pN̄p,0r̄r

)
l̄p(l̄r (φ− η) + γr̄r)

. (S37)

Following the definitions and procedures of Equations S21-S25 we find that

N̄r =
l̄rN̄r,0e

γr̄rtd
l̄r
−ηtd − l̄rN̄r,0

γr̄rtd − ηl̄rtd
(S38)

N̄p =

e−tdφ

l̄pN̄p,0

(
etdφ − 1

)
(l̄r(φ− η) + γr̄r) +

(γ−1)l̄rN̄r,0r̄r

 
−ηl̄r+l̄rφe

td(−η+
γr̄r
l̄r

+φ)
+l̄r(η−φ)etdφ+γr̄r(1−etdφ)

!
ηl̄r−γr̄r


l̄ptdφ(l̄r(φ− η) + γr̄r)

(S39)
and

γ ≥ l̄r (ηtd + ln(2))

r̄rtd
. (S40)

Which, given several steps of substituting following the same algebra outlined above, the number
of ribosomes required, considering the protein degradation rate, is given by

N̄r ≥
l̄pN̄p(

tdφ
ln(2)

+ 1)
r̄rtd
ln(2)

− l̄r(
ηtd

ln(2)
+ 1)

(S41)

which reduces to Equation S33 if φ and η are small. Noting that µ = ln (2) /td, Equation S41
can be rewritten as

N̄r ≥
l̄pN̄p(

φ
µ

+ 1)
r̄r
µ
− l̄r(

η
µ

+ 1)
(S42)

and substituting either the full form (Equation 3) or power-law approximation (Equation 4) for
the growth rate µ leads to relationships for N̄r that are explicitly dependent on cell volume:

N̄r ≥
l̄pN̄p

(
φ ln

»
1−(Bm/B0)(Vcdc)

1−βB

1−ε1−βB (Bm/B0)(Vcdc)
1−βB

–
(Bm/Em)(1−βB) ln[ε]

+ 1

)
r̄r ln

»
1−(Bm/B0)(Vcdc)

1−βB

1−ε1−βB (Bm/B0)(Vcdc)
1−βB

–
(Bm/Em)(1−βB) ln[ε]

− l̄r

(
η ln

»
1−(Bm/B0)(Vcdc)

1−βB

1−ε1−βB (Bm/B0)(Vcdc)
1−βB

–
(Bm/Em)(1−βB) ln[ε]

+ 1

) (S43)
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or

N̄r ≥
l̄pN̄p

(
φ

µ0V
βB−1
c

+ 1
)

r̄r

µ0V
βB−1
c

− l̄r

(
η

µ0V
βB−1
c

+ 1
) . (S44)

The final step of substitution required for these relationships to be fully determined by cell
volume is the scaling of Np which is equal to Vp

v̄p
and so Equations S43 and S44 become

N̄r ≥
l̄p
P0V

βp
c

v̄p

(
φ ln

»
1−(Bm/B0)(Vcdc)

1−βB

1−ε1−βB (Bm/B0)(Vcdc)
1−βB

–
(Bm/Em)(1−βB) ln[ε]

+ 1

)
r̄r ln

»
1−(Bm/B0)(Vcdc)

1−βB

1−ε1−βB (Bm/B0)(Vcdc)
1−βB

–
(Bm/Em)(1−βB) ln[ε]

− l̄r

(
η ln

»
1−(Bm/B0)(Vcdc)

1−βB

1−ε1−βB (Bm/B0)(Vcdc)
1−βB

–
(Bm/Em)(1−βB) ln[ε]

+ 1

) (S45)

or

N̄r ≥
l̄p
P0V

βp
c

v̄p

(
φ

µ0V
βB−1
c

+ 1
)

r̄r

µ0V
βB−1
c

− l̄r

(
η

µ0V
βB−1
c

+ 1
) . (S46)

these forms could also be written in terms of Equation 9 but, as noted in the main text, then the
scaling of genome size n̄pv̄p

l̄p
with cell size must be accounted for separately.

Measured Degradation Rates

Given the half-life, t1/2, for proteins we can find the specific degradation rates as φ = ln (2) /t1/2.
The reported minimum and maximum values from 16 would give φ between 4.58× 10−6 (s−1) and
1.60 × 10−5 (s−1) with a reported median of 8.37 × 10−6 (s−1). Other reported typical rates for
degradation include 3.03× 10−5 (s−1) 17 and 2.53× 10−5 (s−1) 18. These rates are comparable but
slightly smaller than the best fit of φ = 6.20 × 10−5 (s−1) from fits of Vr to measured data. For
these fits we assumed that since protein degradation rates are often measured over the entire set of
proteins it is fair to take η = φ (note that Vr is relatively insensitive to η and the approximation
of no ribosome degradation η = 0 does not alter the fitted values of φ by much nor the goodness
of fit). In testing the number of ribosomes we considered both choices for modeling growth rate,
the power-law approximation and the asymptotic form, that lead to Equations S43 and S44. For
practically fitting the data, the power-law approximation for µ gives a better fit because it lacks the
lower asymptote where growth rate goes to zero. However, we consider that Equation S43 with
the measured value for η = φ is the fundamental prediction for the lower bound on the number of
ribosomes and the data show that this limit is rarely violated.

For predictions of the lower bound on cell size in the main text we use the ribosome form
with the power-law approximation for µ, however all forms of µ are approximately the same for
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large cells, and thus predictions of the “ribosome catastrophe” and upper bound on bacterial cell
size are insensitive to these choices for µ.

Cellular Envelope

The cellular envelope consists of the membrane and peptidoglycan layers. Gram-negative bacteria
are maximizing for membrane thickness as opposed to peptidoglycan thickness, whereas gram-
positive bacteria are maximizing for peptidoglycan thickness as opposed to membrane thickness.
For the cellular envelope we take the effective thickness to be: 1.) In mycoplasma, for example,
there is just a single layer of membrane to minimize the total volume. The smallest measured
value we have found is renv = 4.5 nm thick 19; 2.) For Gram-negative bacteria, we add the outer
membrane and peptidoglycan layers to the inner membrane thickness, where a good estimate for
the total thickness is 40.5 nm 19. 3.) For Gram-positive bacteria, we subtract the thickness of the
outer membrane from the total thickness of the Gram-negative envelope: 40.5 − 13 = 27.5 nm
20. It should be noted that the peptidoglycan layer is a significant portion of the effective envelope
thickness for the latter two cases, and this may be variable in species, especially at the small end
where it is likely greatly reduced.

To calibrate the average percentage of the envelope volume that is occupied by proteins we
considered values for E. coli. Here we calculate the total envelope volume, including the proteins,
from overall cell volume, and subtract from this the volume of membrane bound proteins. The
membrane bound proteins makeup about 30% of the proteome 21 and taking cell volumes of 0.7 to
6 µm3, along with observed scaling relationship between cell volume and protein volume, would
give p̄p = 0.147 to 0.151.

It should be noted that the methods for measuring protein content may not completely extract
all membrane bound proteins and so measured values of Vp may be underestimates which would
effect the value of p̄p. However, the purpose of p̄p is to avoid double counting the envelope volume
with the volume already counted in the protein volume. Thus if Vp does not include some of
the membrane-bound proteins then the volume of these proteins is not subtracted from Venv and
Venv + Vp should be accurately represented given the calculated value of p̄p.

Similarly, it should be noted that there may be overlap in some studies between the volume
being measured for the total protein pool and the proteins of ribosomes. However, for most of the
range of cell sizes this should only introduce small errors into our analysis because the volume of
ribosomes in an order to two orders of magnitude smaller than the protein volume.
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tRNA and mRNA

In the main text (Equations 15 and 16) we present the proportionality between both tRNA and
mRNA and the total number of ribosomes and here it is useful to explicitly give the full form with
the volume-dependent relationship for Nr substituted into these equations. Taking

VtRNA = v̄tRNAn̄tRNANr (S47)

VmRNA = v̄mRNAn̄mRNANr (S48)

and using Equation S43 would give

VtRNA =

v̄tRNAn̄tRNAl̄p
P0V

βp
c

v̄p

(
φ ln

»
1−(Bm/B0)(Vcdc)

1−βB

1−ε1−βB (Bm/B0)(Vcdc)
1−βB

–
(Bm/Em)(1−βB) ln[ε]

+ 1

)
r̄r ln

»
1−(Bm/B0)(Vcdc)

1−βB

1−ε1−βB (Bm/B0)(Vcdc)
1−βB

–
(Bm/Em)(1−βB) ln[ε]

− l̄r

(
η ln

»
1−(Bm/B0)(Vcdc)

1−βB

1−ε1−βB (Bm/B0)(Vcdc)
1−βB

–
(Bm/Em)(1−βB) ln[ε]

+ 1

) (S49)

VmRNA =

v̄mRNAn̄mRNAl̄p
P0V

βp
c

v̄p

(
φ ln

»
1−(Bm/B0)(Vcdc)

1−βB

1−ε1−βB (Bm/B0)(Vcdc)
1−βB

–
(Bm/Em)(1−βB) ln[ε]

+ 1

)
r̄r ln

»
1−(Bm/B0)(Vcdc)

1−βB

1−ε1−βB (Bm/B0)(Vcdc)
1−βB

–
(Bm/Em)(1−βB) ln[ε]

− l̄r

(
η ln

»
1−(Bm/B0)(Vcdc)

1−βB

1−ε1−βB (Bm/B0)(Vcdc)
1−βB

–
(Bm/Em)(1−βB) ln[ε]

+ 1

) (S50)

and the power-law from Equation S44 (which considers the power-law approximation for µ) could
also be substituted for Nr to find the alternative forms of

VtRNA =
v̄tRNAn̄tRNAl̄p

P0V
βp
c

v̄p

(
φ

µ0V
βB−1
c

+ 1
)

r̄r

µ0V
βB−1
c

− l̄r

(
η

µ0V
βB−1
c

+ 1
) (S51)

VmRNA =
v̄mRNAn̄mRNAl̄p

P0V
βp
c

v̄p

(
φ

µ0V
βB−1
c

+ 1
)

r̄r

µ0V
βB−1
c

− l̄r

(
η

µ0V
βB−1
c

+ 1
) (S52)

where in all cases it should be noted that P0V
βp
c

v̄p
has been substituted for Np.

We use the average gene length (in nucleotides), l̄p, to estimate the average volume of an
mRNA as v̄mRNA ≈ 1.43×10−24 m3. Similarly, taking the length of a tRNA to be≈ 85 nucleotides
gives an approximate volume of v̄tRNA ≈ 3.10× 10−26 m3 22.

To calculate the number of mRNA per ribosome we use the number of mRNA per protein,
540 23, and the number of proteins per ribosome in E. coli, 588 , calculated from our two cross
species correlations to find n̄mRNA ≈ 1.08. For tRNA it has been reported that n̄tRNA = 9.3 15.
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Cellular Density

Given that our analysis describes the full cellular composition for every size of bacteria (includ-
ing the inferred volume of water: Vw = Vc − (VDNA + Vp + Vr + Venv + VtRNA + VmRNA)) it is
possible to calculate cellular density across the range of bacteria. Taking the densities of cellular
components to be d̄p = 1.37× 106 g m3 10, 24, 25, d̄DNA = 2× 106 g m3 24, 26, d̄RNA = 2× 106 g m3

24, d̄mem = 1.05 × 106 g m3 27, for proteins, DNA, RNA, and membrane respectively, and noting
that ribosomes are a 2:1 RNA to protein ratio 28, we have dr = 1.79 × 106 g m3, so we have that
the total density of the cell is

dc =
d̄DNAVDNA + d̄pVp + d̄rVr + d̄memVenv + d̄rnaVtRNA + d̄rnaVmRNA + dwVw

Vc
(S53)

where the density of water is given by dw = 1 × 106 g m3. Figure S5 gives the calculated
cellular density across the range of bacteria where we find that density is greatest for the smallest
and largest bacteria with a minimum value of 1.05 × 106 g m−3 for an intermediate cell size of
4.86× 10−18 m3.
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Table S1: Power law fit parameters and statistics for each data source.

Property Best Fit Parameters 95% Confidence Interval R2

Genome Volume
D0 3.00× 10−17 (m3 DNA ·

`
m3 Cell

´−βD ) {9.31× 10−18, 9.64× 10−17} 0.60
βD 0.21 {0.18, 0.24}

Protein Volume
P0 3.42× 10−7 (m3 Protein ·

`
m3 Cell

´−βp ) {3.33× 10−8, 3.51× 10−6} 0.87
βP 0.70 {0.64, 0.75}

Ribosome Volume
R0 1.54× 10−7 (m3 Ribosomes ·

`
m3 Cell

´−βR ) {2.57× 10−10, 9.30× 105} 0.62
βR 0.73 {0.59, 0.88}

Ribosome Volume (Full Model)
η = φ 6.19× 10−5 (s−1) {1.20× 10−5, 3.19× 10−4} NA
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Figure S1: The scaling of component volume plotted in the natural range of y-values for total (a)
genome volume, (b) protein volume, and (c) ribosomal volume.
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Figure S2: The volume-dependent scaling of genome length. The data are from 2, 29, 30.
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Figure S3: The volume-dependent scaling of protein content. The data compilation includes, but
is not limited to, 31–36.
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Figure S4: The volume-dependent scaling for the number of ribosomes. The black curve is a
best fit power law and the red curve is the prediction from Equation S46 of the main text.The data
compilation includes, but is not limited to, 15, 37–39.
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Figure S5: The volume-dependent scaling for the calculated total cellular density. The black curve
is the calculated density and the red curve is the reference value for the density of water.
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