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Abstract

To maintain proper cellular functions, over 50% of proteins encoded in the genome need to be 

transported to cellular membranes. The molecular mechanism behind such a process, often 

referred to as protein targeting, is not well understood. Single-molecule experiments are designed 

to unveil the detailed mechanisms and reveal the functions of different molecular machineries 

involved in the process. The experimental data consist of hundreds of stochastic time traces from 

the fluorescence recordings of the experimental system. We introduce a Bayesian hierarchical 

model on top of hidden Markov models (HMMs) to analyze these data and use the statistical 

results to answer the biological questions. In addition to resolving the biological puzzles and 

delineating the regulating roles of different molecular complexes, our statistical results enable us 

to propose a more detailed mechanism for the late stages of the protein targeting process.
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1 Introduction

In cells, proteins often need to be transported to appropriate destinations inside or outside of 

a cell in order to maintain proper cellular functions (Rapoport, 2007). In fact, over 50% of 

all proteins encoded in the genome need to be properly localized from the site of their 

synthesis (Lodish et al., 2000; Rapoport, 1991). Co-translational protein targeting is such a 

process in which proteins still being synthesized on the ribosome (called ribosome nascent-
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chain complex or RNC) are transported to the membrane. This is achieved by the 

collaboration of a signal recognition particle (SRP) in the cytoplasm and its receptor (SR) 

located on the endoplasmic reticulum (ER) membrane. It is known that the co-translational 

protein targeting process consists of four basic steps (Zhang et al., 2009b; Nyathi et al., 

2013), as schematically illustrated in Figure 1. First, SRP recognizes and binds the signal 

sequence on the RNC. Second, SRP forms a complex with SR on the membrane, bringing 

the RNC-SRP complex to the membrane surface (here, an RNC-SRP-SR ternary complex is 

formed near the membrane). Third, the RNC is released from the SRP-SR complex and 

docks on the protein conducting channel, known as the translocon. Fourth, SRP and SR 

dissociate (through GTP-hydrolysis) to enter a new round of protein targeting; at the same 

time, the nascent polypeptide chain goes through the translocon on the membrane.

While the four steps give the big picture, the detailed molecular mechanisms of the protein 

targeting process remained unclear (Shen et al., 2012). One particularly puzzling question 

arises from the earlier observation that SRP and the translocon bind the same sites on the 

ribosome and the signal sequence; thus, the bindings of the targeting and translocation 

machineries to RNC are mutually exclusive. How do these two machineries exchange on the 

RNC, and how do they accomplish this without losing the RNC (which aborts the pathway)? 

Recent biochemical, structural, and single-molecule work (Zhang et al., 2008; Shen and 

Shan, 2010; Ataide et al., 2011; Voigts-Hoffmann et al., 2013; Nyathi et al., 2013; Akopian 

et al., 2013b) offered valuable clues to this question. These works showed that the SRP-SR 

complex can undergo a large-scale structural change and visit an alternative state in which 

the proteins in the SRP-SR complex are moved away from their initial binding site on the 

ribosome (see Figure 4 below); this provides a potential mechanism to enable a step-wise 

exchange with the translocon.

To provide direct evidence for this mechanism and resolve its molecular details, single-

molecule experiments on the prokaryotic SRP system were conducted by the Shan group. 

Single-molecule experiments are one of the major experimental breakthroughs in chemistry 

and biophysics in the last two decades: using advanced tools in optics, imaging, fluorescence 

tagging, biomolecule labeling, etc., researchers are able to study biological processes on a 

molecule-by-molecule basis (Moerner, 2002; Nie and Zare, 1997; Tamarat et al., 2000; 

Weiss, 2000; Xie and Trautman, 1998; Xie and Lu, 1999; Qian and Kou, 2014). Under 

single-molecule experiments, transient excursions of molecules to alternative structures can 

be directly visualized, rather than lost in the statistical averaging of bulk experiments.

The single-molecule experiments under our study employ an experimental technique, FRET 

(Föster resonance energy transfer) (Roy et al., 2008), which uses resonance energy transfer 

as a molecular ruler to track the dynamic movement of a molecule in distinct conformational 

states, providing information on the pathway, kinetics and equilibrium of the structural 

transitions of molecules. The experimental data consist of hundreds of FRET trajectories, 

three of which are shown in Figure 2. Each FRET trajectory is a time series (y1, y2, …). 

These experimental FRET trajectories provide crucial information on the structural 

dynamics for us to resolve the questions regarding the underlying mechanism of protein 

targeting. We will describe the experimental details as well as the molecular structures in 

Section 2.

Chen et al. Page 2

J Am Stat Assoc. Author manuscript; available in PMC 2017 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



From the hundreds of traces collected, we can clearly see a low FRET state and a high FRET 

state in each trace, with one or more possible intermediate states. Several critical questions 

arise regarding the correct interpretation of the data.

1. Molecular behavior is inherently stochastic. Ensembles of molecules that are 

chemically identical will vary in their behavior at the single-molecule level (in a 

manner predicted by the Boltzmann distribution). Thus, individual single 

molecule traces are inherently heterogeneous. In addition, due to the 

experimental limitations, such as uneven laser illumination, each FRET 

trajectory has its own FRET values and length. Moreover, it is possible that some 

observed molecules are partially damaged during sample preparation or 

application. Therefore, we want to carefully examine the homogeneity/

heterogeneity of the data set: Does the collection of FRET trajectories represent 

chemically homogeneous molecules or molecular complexes? If not, is the 

heterogeneity biologically relevant?

2. How many states are there in these FRET trajectories? Previous analysis utilized 

an arbitrary number of states for HMM (Shen et al., 2012). However, there is no 

statistical analysis to legitimate that number. A careful analysis is needed to 

unravel the existence of intermediate state(s) from the noisy experimental data; 

this information is critical, as it reflects possible pathways through which the 

SRP-SR undergoes its structural transitions.

3. Are these intermediates on-pathway or off-pathway? In other words, during the 

transition from the low FRET state to the high FRET state, must or may not the 

trajectory go through one or more intermediate state(s)? Clarifying the transition 

pathway will differentiate between different mechanisms. In one model, often 

termed trial-and-error, the intermediate states are “mistakes” made by the 

complex as it searches for alternative structures. This model predicts that the 

molecules must return from the intermediate back to the low FRET state before 

transitioning to the high FRET state. In an alternative model, the active-searching 

model, the intermediate FRET state(s) represent on-pathway intermediate(s) 

through which the SRP-SR complex attains the high FRET state. This model 

predicts that most of the successful low-to-high or high-to-low FRET transitions 

occur via the intermediate state(s).

4. During the protein targeting process, RNC and translocon regulate the 

conformation of the SRP-SR complex. This was also observed in the single-

molecule experiments. Addition of RNC or translocon changes the equilibrium 

and kinetics via which the SRP-SR complex transits between the different FRET 

states, as reflected by altered frequency and durations of these transitions. 

However, as individual single-molecule traces are stochastic due to a 

combination of inherent and experimental limitations (as explained in question 

1), it is not possible to accurately extract kinetic and equilibrium information 

from individual trajectories. Rigorous statistical analysis using the information 

from all trajectories is required to extract this information and understand 
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whether the RNC and translocon change the conformational space of the SRP-

SR complex, and if so, how.

With these questions posed, we employ a hidden Markov model (HMM), modeling each 

trajectory (y1, y2, …) as originated from a hidden Markov chain. The parameters governing 

the hidden Markov chain, such as the number of distinct states and the transition 

probabilities, capture the molecular conformations and dynamics of the underlying 

biological processes.

We note that the analysis of individual FRET trajectories based on HMMs has been 

considered in the biophysical community (Rabiner, 1989; Eddy, 1996; Liu et al., 2010). 

Software packages HaMMy (McKinney et al., 2006) and SMART (Greenfeld et al., 2012) 

give the maximum likelihood estimators of parameters for a single trajectory using the EM/

Baum-Welch algorithm (Baum and Petrie, 1966; Baum et al., 1970; Dempster et al., 1977). 

Variational Bayes method is also suggested in the FRET data analysis, which incorporates 

prior information about the range of parameter values into the model fitting (Bronson et al., 

2009). Empirical Bayes methods (van de Meent et al., 2014) and bootstrap methods (König 

et al., 2013) have also been proposed for the analysis of FRET data.

The information from individual FRET trajectories is rather limited, mainly due to the low 

signal-to-noise ratio and the limited observation time of each individual molecule (before its 

pho-tobleaching). Consequently, the inference based on single FRET trajectories is highly 

variable and unreliable in the sense that even for FRET trajectories recorded under the same 

experimental condition, heterogeneities of estimated parameters and the estimated number 

of hidden states across trajectories are apparent. Experimentalists address this issue by 

performing hundreds of replicate experiments. Quantifying cross-sample variability has 

recently drawn attention among the biophysics community (König et al., 2013; van de 

Meent et al., 2014). How to pool information from these replicate experimental trajectories 

as well as to account for their heterogeneity is the key statistical question.

Two statistical questions naturally arise in our analysis of the FRET trajectories: (1) the 

determination of the total number of hidden states and (2) a robust and reliable estimation of 

model parameters by pooling information from “seemingly” heterogeneous FRET 

trajectories obtained from the same experimental condition.

The first quesiton, which is a preliminary step of building models to pool information from 

multiple trajectories, has been widely studied in the statistics and chemistry literature 

(Finesso, 1990; Leroux, 1992; Ryden, 1995; Blanco and Walter, 2010; Bulla et al., 2010). 

We adopt a population approach based on the Bayesian information criterion, which 

estimates the number of hidden states by the majority rule (e.g., if the majority of the FRET 

trajectories under the same experimental condition shows three states, then the method 

selects three as the number of hidden states). This approach actually has been recommended 

in the chemistry literature (Watkins and Yang, 2005) and is described in Section 3, which 

also discusses our fitting of HMM to individual FRET trajectories.

Second, we propose a hierarchical model on top of the HMMs to combine information from 

multiple trajectories. The hierarchical model embodies the biological intuition that the same 
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dynamics underlies all the experimental replicates, but each replicate is a noisy realization of 

the common process due to intrinsic/experimental fluctuation and noise. The hierarchical 

HMM enables us to not only robustly estimate the parameters from the common dynamics 

but also fit the individual trajectories better than if fitted individually. Section 4 describes in 

detail our hierarchical HMM and how we use it to combine information from individual 

trajectories. Simulation studies demonstrating that the hierarchical model can work 

effectively under low signal-to-noise ratio, which is very difficult to analyze if one only fits 

individual trajectories.

From an applied angle, our statistical analysis of the experimental FRET data leads to a 

resolution of several questions about the protein targeting process that are described above. 

The model fitting and biological implications are discussed in Section 5, at the end of which 

(Section 5.4) we are able to provide a detailed molecular mechanism of the co-translational 

protein targeting process. Model assessment is conducted in Section 6. We conclude this 

article in Section 7 with a summary. The appendix contains the technical details of our 

computation and Monte Carlo sampling.

2 Single-molecule experiments on co-translational protein targeting

2.1 Single-molecule FRET experiments

The single-molecule experiments use the FRET technique to study the protein targeting 

process. FRET tracks in real time the distance and orientation between two microscopic 

tags, a donor fluorophore and an acceptor fluorophore, placed in a molecular complex (Roy 

et al., 2008). It is often the case that the experimentalists cannot directly observe the 

structural change of a bio-molecule. The FRET recording, on the other hand, measures the 

distance changes of the two tags on the bio-molecule and thus reveals the structural changes 

during a biological process.

Each experimental FRET trajectory is a time series (y1, y2, …), obtained at every 30 

millisecond (ms) in our case. yi ∈ [0, 1] is calculated as yi = acceptor fluorescence / (donor 

fluorescence + acceptor fluorescence). A high FRET value yi implies that the two tags, the 

donor and acceptor, are close to each other, while a low FRET value means the donor and 

acceptor are far apart. A sample FRET trajectory is shown in Figure 3. On the top panel, the 

red curve is the acceptor fluorescence and the green curve is the donor fluorescence. The 

black curve in the lower panel shows the FRET values, i.e., the ratio of acceptor 

fluorescence over the total fluorescence.

2.2 FRET on bacterial SRP system

In this subsection, we give the necessary background on the molecular structure of our 

experimental system and how FRET reveals information about protein targeting.

Single-molecule FRET technique was used to study the bacterial SRP system. The bacterial 

SRP is comprised of two subunits: an RNA segment (the SRP RNA) and an Ffh protein. Ffh 

contains two domains connected by a flexible linker: the M-domain binds tightly to the SRP 

RNA near its capped (tetraloop) end and recognizes the signal sequence on the nascent 

protein; the NG-domain interacts with the SRP receptor, termed FtsY in bacteria, and binds 
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a ribosomal protein at the “exit site” where the nascent protein emerges from the ribosome. 

We will use Ffh-M and Ffh-NG to denote the M- and NG- domains of Ffh (Akopian et al., 

2013b; Halic et al., 2004; Keenan et al., 2001; Zhang et al., 2008). The SRP RNA has an 

elongated structure: it stretches over 100 Å (angstrom) from one end (the capped end) to the 

other end (the distal end). Figure 4 illustrates ° the E.coli SRP and SR.

When the SRP-SR complex is formed, Ffh-NG binds FtsY (step 2 in Figure 1). In a single-

molecule experiment, we placed a FRET donor at Ffh-NG or FtsY and a FRET acceptor at 

the distal end of RNA. The resulting FRET trajectory tracks the movement of the FtsY-[Ffh-

NG] complex along the RNA in real time: a low FRET value implies the FtsY-[Ffh-NG] 

complex is far from the RNA distal end, whereas a high FRET value implies the FtsY-[Ffh-

NG] complex is close to the RNA distal end. See C and D of Figure 4 for illustration (where 

the FRET donor is the green star and the FRET acceptor is the red star). The FRET tracking 

provides direct information on the structural change of SRP-SR complex critical for the 

biological process. It is known that the FtsY-[Ffh-NG] complex initially assembles at the 

RNA capped end (the low FRET state of Figure 4(C)), where it excludes the translocon from 

binding RNC. When this complex moves to the RNA distal end (the high FRET state of 

Figure 4(D)), the ribosome is vacated to allow translocon binding, and disassembly of the 

FtsY-[Ffh-NG] complex is triggered (Shen and Shan, 2010; Ataide et al., 2011). Therefore, 

from the FRET trajectory, we know when the SRP-SR complex is positioned for assembly or 

disassembly, and when ribosome-translocon contacts are enabled.

To study how the RNC and translocon regulate the structural change on the SRP-SR 

complex, two more sets of single-molecule FRET experiments were done: one with RNC, 

SRP and SR, the other with all four components: translocon, RNC, SRP and SR. Together, 

these experiments reveal the functional role of RNC and translocon in the protein targeting 

process. Table 1 summarizes the four sets of data labeled Ffh-Data, FtsY-Data, RNC-Data 
and Translocon-Data obtained from these experiments, and Table 2 summarizes the lengths 

of the trajectories in each data set. We will analyze and discuss these data starting from 

Section 3.

2.3 More experimental details

This subsection gives the experimental details. A statistics oriented reader can skip it and 

directly go to the statistical analysis in Section 3.

2.3.1 Sample preparations—Single cysteine mutants of Ffh and FtsY were expressed 

and purified in bacterial cells and were subsequently labeled with Cy3-maleimide by the 

thiol side chain. Labeling reaction was carried out in 50 mM KHEPES (pH 7.0), 300 mM 

NaCl, 2 mM EDTA, 10% glycerol at room temperature for 2 hours. Free dyes were removed 

by a gel filtration column. Labeled SRP RNA was prepared by annealing a Quasar670-

labeled DNA splint with a T7-transcribed RNA. All the labeled protein or RNA was tested 

using a well-established GTP hydrolysis assay, and showed no functional difference with 

wildtype protein or RNA.

2.3.2 Single molecule instrument—All the experiments were carried out on a home-

built objective-type TIRF microscope based on an Olympus IX-81 model. Green (532nm) 
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and red (638nm) lasers were aligned and focused on the sample in a 100 × oil immersed 

objective. Cy3 and Quasar670 signals were split by a dichroic mirror and were 

simultaneously imaged using an Ixon 897 camera through DV2 Dualview. Data points were 

recorded at 30 milliseconds time resolution.

2.3.3 Single molecule assay—Before conducting experiments, all protein samples were 

ultracentrifuged at 100,000 rpm in a TLA100 rotor for an hour to remove possible 

aggregates. PEGylated slides and coverslips were assembled into a flowing chamber, in 

which fluorescent molecules were attached through biotin-neutravidin interaction.

SRP complexes were assembled in SRP buffer and diluted to 50 picomolar in imaging buffer 

with oxygen scavenging system (saturated Trolox solution containing 50 mM potassium-

HEPES (pH 7.5), 150 mM KOAc, 2 mM Mg(OAc)2, 2 mM DTT, 0.01% Nikkol, 0.4% 

glucose and 1% Gloxy), flowed onto the sample chamber and incubated for 5 minutes before 

imaging. Movies were recorded at 30 milliseconds time intervals for up to 3 minutes until 

most fluorescent molecules were photobleached.

2.3.4 Data aquisition—Single molecule data were initially processed by scripts written in 

IDL and Matlab. Fluorescent peaks in the images were identified and traced throughout the 

movie. Fluorescent trajectories that showed a single donor bleaching event, which implied 

single-molecule attachment, and no photoblinking event, were hand-picked for subsequent 

data analysis. The background was subtracted using the residual fluorescent intensities in 

both channels, after the fluorophore has been photobleached.

3 Preliminary analysis of individual trajectories

Let y = (y1, y2, …, yN ) be an observed experimental FRET trajectory. We model it as a 

hidden Markov model (HMM):

(1)

where z = (z1, z2, …, zN ) are the hidden Markov states, evolving according to a K-state 

Markov chain. Although, rigorously speaking, the FRET value yi is between 0 and 1, the 

Gaussian assumption is widely used and accepted in the single-molecule FRET literature in 

that with moderate observational noise Gaussian distribution is a good approximation 

(Dahan et al., 1999; McKinney et al., 2006; Liu et al., 2010). The distinct states of zi, K in 

total, model the different conformations of a biological complex. A conformation is a 

specific 3D structure of a protein or a protein complex. For example, the low- and high-

FRET states in C and D of Figure 4 correspond to two distinct conformations of the SRP-SR 

complex. Let P = (Pij) be the K × K transition matrix of z; it represents the conformational 

kinetics of a complex. For each FRET trajectory, the parameters are 

, where μk and  are the mean and variance of the FRET 

value at state k; k = 1,⋯, K. Let π = (π1, …, πK) be the probabilities that the first hidden 

state z1 is in state 1,⋯, K. The joint likelihood of observations y1:N and the hidden states z1:N 

is
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Please note that for notational ease, we use ym:n to denote the vector (ym, ym+1, …, yn) for m 
< n throughout this article. The marginal likelihood L(θ|y1:N ) = ∫ p(y1:N, z1:N |θ)dz1:N is 

given by integrating out z1:N in the joint likelihood.

3.1 Infer the parameters with a given number of total states

For each FRET trajectory, for a given K, we can use the Baum-Welch algorithm (Baum and 

Petrie, 1966; Baum et al., 1970), or equivalently, the EM algorithm (Dempster et al., 1977), 

to calculate the maximum likelihood estimator (MLE) θ̂. The Baum-Welch/EM algorithm, 

in addition, can yield the marginal likelihood evaluated at the MLE, L(θ̂|y1:N ). Appendix A 

gives the details of our implementation of the algorithm, which uses the forward-backward 

algorithm.

Alternatively, taking a Bayesian perspective, we can use the Gibbs sampler (Geman and 

Geman, 1984) together with data augmentation (Tanner and Wong, 1987) to jointly draw 

posterior samples of the parameters and the hidden states. This gives the posterior 

distribution (instead of point estimates) of the parameters. Appendix B gives the details of 

our implementation of the Gibbs sampler with data augmentation.

3.2 Detecting the number of hidden states

At the molecular level, the total number of states K corresponds to the number of 

conformations accessible to the complex in the experimental duration. The two 

conformations in C and D of Figure 4 have already been identified in previous studies, and 

one of our aims is to detect if there are more conformations involved in the protein targeting 

process (Shen et al., 2012). Statistically, we want to find the K that can “best” explain the 

variability of the observed FRET trajectories. As an exploratory analysis, we fit each FRET 

trajectory with the Baum-Welch/EM algorithm for K = 1, 2, 3, … and find that when K ≥ 6, 

the hidden states become highly non-identifiable in that the difference of the means of 

neighboring hidden states are less than 10% of their corresponding standard deviations, 

which are not experimentally meaningful; and the variance parameters converge to zero, the 

boundary of the parameter space. Thus, the candidates are K = 1, 2, 3, 4, 5 for our data.

Determining K for each trajectory is a model selection problem. Akaike Information 

Criterion (AIC) (Akaike, 1974) and Bayesian Information Criterion (BIC) (Schwarz, 1978) 

are two popular model selection methods. It is well observed in the literature that AIC has a 

tendency to overestimate the number of mixture components (Windham and Cutler, 1992; 

Hawkins et al., 2001; Frühwirth-Schnatter, 2006), which we also observe in our simulations. 

Thus, we focus on using the BIC in our study, which is known to be consistent (as the 

sample size goes to infinity) for mixture models (McLachlan and Peel, 2005; Frühwirth-

Schnatter, 2006; Biernacki et al., 1998; Leroux, 1992). Though the consistency of BIC for 

Gaussian HMMs has not been completely established (Cappe et al., 2005; Finesso, 1990; 

Ryden, 1995), it has been shown through simulations that BIC empirically tends to select the 
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correct model when the sample size is large but could give highly variable results when the 

sample size is small or moderate (Celeux and Durand, 2008; Ryden, 1995; MacKAY, 2002; 

Watkins and Yang, 2005; Frühwirth-Schnatter, 2006; Keribin, 2000). In the context of FRET 

trajectories, the variability of BIC for HMMs has also been observed (van de Meent et al., 

2014; Blanco and Walter, 2010; Keller et al., 2014). The general recommendation in the 

statistics literature and in the FRET literature for the state-selection of HMM is to use BIC 

as a first step of preliminary analysis and then assess the selection result based on scientific 

and experimental insight (McKinney et al., 2006; Greenfeld et al., 2012; Bulla et al., 2010; 

Keller et al., 2014; Celeux and Durand, 2008). We adopt this recommendation.

In our case of a K-state HMM, the BIC statistic, denoted by BICK, is

where θ̂ is the MLE of θ and K2+2K−1 is the total number of parameters: K2−K for the 

transition matrix, 2K for the mean and variance parameters, K−1 for the initial distribution 

of the first hidden state. Minimizing BICK over K gives the BIC selection of K for each 

trajectory. There are two potential issues with the computation of the BIC statistics: (i) the 

Baum-Welch/EM algorithm converges to local maximum (Baum et al., 1970; Dempster et 

al., 1977), and (ii) the likelihood function is unbounded at the boundary of the parameter 

space for Gaussian mixture models (Chen and Li, 2009). These problems make the choice of 

initial points of the Baum-Welch/EM algorithm critical (Frühwirth-Schnatter, 2006). We 

treat them by starting the Baum-Welch/EM algorithm from more than 500 randomly 

generated initial points: the initial values of the mean parameters μ are uniformly generated 

from [0, 1], the initial values of each row of the transition matrix P and the distribution π of 

the first hidden state are independently generated from the Dirichlet distribution with 

concentration parameters all equal to 1, and the initial values of the standard deviations σ are 

independently generated from uniform distribution on [0.01, 0.3]; these distributions are 

employed based on the scientific knowledge of the plausible ranges of the parameters. For 

each of the 500+ initial values, we run the Baum-Welch/EM algorithm until convergence. 

The minimum of the BIC statistic over the 500+ algorithm outputs is taken as the value of 

the BIC for model selection. Table 3 tallies the BIC selection of K for the experimental 

FRET trajectories. Note that we put the Ffh- and FtsY-Data together in the first row as they 

are both designed to study the SRP-SR interaction by itself.

Based on the mode, we select K = 3 for the Ffh-, FtsY- and Translocon-Data and K = 1 for 

RNC-Data. Using the estimation mode to select K reflects “majority rule”, i.e., using the 

consensus to capture the behavior in majority of the experimental replicates. We note that 

this approach has in fact been proposed in the chemistry literature: Watkins and Yang (2005) 

showed through simulation and real data studies that it gives a highly robust estimate of K. 

Note that although we cannot totally rule out the possibility of 4 or more hidden states for 

some trajectories, we have enough evidence that 3 is the minimum number of K, which the 

majority of trajectories support. We will see later (in Section 4.2) that K = 3 is well 

supported by the fitting of all the trajectories.
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4 Modeling FRET trajectories with hierarchical hidden Markov model

The analysis of individual FRET trajectories reveals that they could have significantly 

different θ. For instance, a likelihood-ratio test on the three trajectories in Figure 2, which 

are from the Ffh-Data, gives a p-value smaller than 0.01, soundly rejecting the hypothesis 

that the three trajectories share the same θ.

Biologically, the trajectories from replicate experiments under the same condition should 

reflect the common underlying process. Hence, our goal is to account for the heterogeneity 

among the experimental trajectories and at the same time to pool information from the 

trajectories under the same experimental condition. We propose a hierarchical HMM. 

Suppose {y(l), z(l)} are the observations and hidden states for trajectory l. We assume that the 

same transition matrix P is shared by all trajectories; for trajectory l, the means 

( ) come from a higher level distribution  with (vector) 

hyperparameters μ0 and , and the variances ( ) come from scaled inverse-

χ2 distributions with (vector) hyperparameters (ν, s2), where ν denotes the degrees of 

freedom and s2 are the scale parameters. The intuition behind this hierarchical HMM is that 

(i) the transition matrix P represents the conformational kinetics, which is intrinsic to the 

molecule; it thus should be the same across the trajectories. (ii) The experimental replicates 

are subject to equipment noise, thermal fluctuation and random variations in experimental 

samples; the hierarchical structure on μ(l) and (σ2)(l) reflects it – each trajectory can be 

considered as a noisy version of the underlying truth. Figure 5 diagrams our hierarchical 

HMM.

We note that the real experimental trajectories have different lengths: some are quite short. 

Within a short experimental time window it is possible that not every conformation shows up 

—some fast transitions and rare states might be missed in short trajectories. To 

accommodate this we incorporate a set of indicators into our hierarchical HMM: I(l) 

indicates which states are present in trajectory l. For example, if the maximum number of 

states is K = 3, I(l) can take four values I(l) = {1, 2, 3}, I(l) = {1, 2}, I(l) = {1, 3} or I(l) = {2, 

3}, corresponding to the states present in trajectory l. Note that we exclude the singletons 

(such as {1}, {2} or {3}) in the set of possible states, since we know from the preliminary 

analysis of individual trajectories that there are at least two states in each trajectory of the 

Ffh-Data, FtsY-Data and Translocon-Data.

Let  be the number of transitions from state i to j in trajectory l;  if either state i 
or j does not appear in trajectory l. The likelihood for trajectory l is
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where  is the re-normalized transition matrix for trajectory l according to 

which states are present in I(l), and Nl is the length of trajectory l. The likelihood function of 

all the trajectories (under the same experimental condition) under our hierarchical HMM is

4.1 Estimation under the hierarchical HMM

To obtain the posterior distribution of the parameters in this model, we use MCMC (Liu, 

2001) algorithms. The priors are specified as follows. Each row of the transition matrix P 
has a flat prior (i.e., a Dirichlet distribution with all parameters equal to 1), which is a proper 

prior. The global parameters μ0,  have flat priors. The categorical variable I(l) also has flat 

priors, with equal probability of falling into each category. Similar to the Bayesian data 

augmentation (Tanner and Wong, 1987) procedure for fitting a single trajectory in Appendix 

B, we augment the parameter space (P;μ0, ; {μ(l), σ(l); I(l)}) with the hidden states {z(l)} 

and sample from the conditional distributions of these two parts iteratively until 

convergence. The parameters (P;μ0, ; {μ(l), σ(l); I(l)}) are updated one at a time from the 

conditional distributions using Metropolis-Hastings (for P) or Gibbs (for μ0, ; {μ(l), σ(l); 

I(l)}). Conditioning on the parameters (P, {μ(l), σ(l); I(l)}), the hidden states {z(l)} are 

updated sequentially for l = 1, 2 …. The details of the sampling procedure are given in 

Appendix C.

Figure 6 shows the fitting of our hierarchical HMM with K = 3 to two representative FRET 

trajectories: one long trajectory from the Ffh-Data and one short trajectory from the 

Translocon-Data. The grey curves on the top two panels are the observed experimental 

FRET values. The solid black lines are the fitted values , where μ̂ and ẑn denotes 

the posterior modes from our MCMC sampling. The lower panel plots the histograms of yi, 

the FRET values, of the two FRET trajectories. The black curves overlaid on the histograms 

are the fittings from our hierarchical HMM, using the posterior mode.

4.2 Assessing the number of hidden states with the hierarchical HMM

The posterior distribution of the indicator I(l) gives the probability that a given trajectory l 
contains a specific collection of states. This posterior distribution thus provides a 

hierarchical-HMM-based method of model selection: we can allocate the number of hidden 

states for each trajectory based on the posterior mode of |I(l)|, the size of I(l). By combining 

multiple trajectories and allowing the sharing of information, we potentially obtain more 

stable model selection results — borrowing information from other trajectories helps 

identify rarely occurred hidden states for some trajectories.

Table 4 tallies the hierarchical-HMM based assignment of the number of hidden states for 

the experimental FRET trajectories. We apply the hierarchical HMM separately with K = 3, 

where the maximum number of states is three, and with K = 4, where the maximum number 
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of states is four. Table 4 shows that no matter we set three or four states as the maximum to 

begin with, the majority of the trajectories are assigned three states. The allocation of states 

based on the hierarchical HMM, therefore, corroborates our selection of three total states for 

the Ffh-, FtsY-and Translocon-Data, indicating the robustness of the selection.

4.3 Hierarchical fitting versus individual fitting

It is worth pointing out that by pooling the information from the multiple trajectories, we 

obtain more robust and reliable estimates. Figure 7 shows what happens if we only fit the 

individual trajectory by itself. The left panel shows the fitting of the 2-state, 3-state and 4-

state HMMs to the long trajectory of Figure 6(A) alone; the right panel shows the fitting to 

the short trajectory of Figure 6(B) by itself. The individual fitting is seen to be unstable in 

that it is quite difficult to judge which fitting is better. The hierarchical model, in contrast, 

allows the information to be pooled from all the trajectories, resulting in stable estimates.

To further compare the fitting under the hierarchical model versus the fitting on individual 

trajectories and to test the limit of the hierarchical model fitting, we conduct a sequence of 

simulations. The mean vector μ = (μ1, μ2, μ3) is generated according to μ1 ~ (0.1, 0.12), μ2 

~ (0.4, 0.12), μ3 ~ (0.7, 0.12). The standard deviation vector σ = (σ1, σ2, σ3) is taken to 

be σ1 = σ2 = σ3. Trajectories each with length N = 1000 are generated from a three-state 

HMM with transition matrix with diagonal elements equal to 0.9 and off-diagonal elements 

equal to 0.05. For each value of σ1 = σ2 = σ3 ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 

0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8}, we repeat the data generation 100 times, so we 

have 16 sets of simulated data, each set containing 100 trajectories with length 1000.

For each of the 16 sets of simulated data, we apply the hierarchical fitting as well as the 

individual fitting. Intuitively, as the hierarchical HMM pools information from multiple 

trajectories, it is able to handle data with much lower signal-to-noise-ratio (SNR) than the 

fitting of HMM to individual trajectories. Figure 8 provides an illustration, showing the 

results for the case of σ1 = σ2 = σ3 = 0.65. The left panel compares the estimation of the 

global means μ0 = (0.1, 0.4, 0.7). The right panel compares the estimation of the transition 

probabilities P11, P22, P33. In each panel, the left half shows the posterior distribution under 

the hierarchical HMM, and the right half shows the aggregated posterior distribution based 

on fitting the 3-state HMM to individual trajectories. It is evident that individual fitting gives 

highly variable and biased estimates; in contrast, by pooling the information from the 100 

trajectories together, the hierarchical fitting gives much more reliable and accurate estimates.

Formally, for each trajectory we can define SNR as 

(Greenfeld et al., 2012; Hawkins et al., 2001). For the 100 trajectories of Figure 8, the 

median SNR is 0.3. In contrast, we find from our 16 simulated data sets that for individual 

fitting to give meaningful result, the median SNR has to be as high as 2.0. As the standard 

deviation increases, the SNR decreases. Intuitively, as the SNR becomes smaller and 

smaller, eventually the hierarchical model fitting will start to break down. In our simulation, 

we observe that the breakdown happens at σ1 = σ2 = σ3 = 0.7, where the median SNR is less 

than 0.3. This number is in sharp contrast with the SNR limit of around 2.0 for the individual 

trajectory fitting. For the experimental data, the median SNR is 1.47 for the Ffh-Data, 1.36 
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for the FtsY-Data, and 1.46 for the Translocon-Data; all three are below the SNR limit of 

around 2.0 for reliable individual-trajectory fitting.

5 Resolving the biological questions

Based on our analysis of the single-molecule FRET data, we will address in this section the 

unsolved questions regarding the detailed mechanism of the protein targeting process put 

forward in Section 1, delineating the roles of different components in the protein targeting 

process. We will consider first the conformation change of the SRP-SR complex without 

RNC or translocon, and then the effect of RNC and translocon in regulating the protein 

targeting process. Based on the results of our data analysis, we will propose a refined 

mechanism for co-translational protein targeting process, addressing the biological puzzles.

It is worth pointing out that the hierarchical structure enables us to include heterogeneous 

trajectories in a single model, capturing common characteristics while allowing for 

individual variabilities. Our analysis allows us to distinguish between two possibilities that 

could give rise to the heterogeneous FRET trajectories: (i) heterogeneity of sample, meaning 

that the SRP-SR complex can exist in distinct populations that have different structural and 

chemical properties, therefore exhibiting different kinetic and equilibrium behaviors; and (ii) 

intrinsic noise due to the stochastic nature and molecular reactions and limited time scale for 

sampling in single-molecule experiments. Our result supports that the heterogeneous 

trajectories are well explained by (ii).

5.1 Conformational change of the SRP-SR complex

The Ffh-Data and FtsY-Data are obtained from the single-molecule FRET experiments on 

the SRP-SR complex in the absence of RNC or translocon. The only difference between 

these two datasets is the placement of the FRET donor. For the Ffh-Data the FRET donor is 

placed at Ffh-NG, while for the FtsY-Data the FRET donor is placed at FtsY; see Figure 4 

and Table 1. These data reveal the conformational fluctuation of the SRP-SR complex 

without RNC or translocon.

As we described in Sections 3.2 and 4.2, three FRET states are detected, corresponding to 

three conformations. For these three conformations, Table 5 lists the 95% posterior intervals 

of the global parameters μ0i and η0i for the data sets. The state with a low FRET value, μ0,1 

≈ 0.1, corresponds to the conformation where the FtsY-[Ffh-NG] complex is near the capped 

end of the RNA (see C of Figure 4). The state with a high FRET value, μ0,3 ≈ 0.6 ~ 0.8, 

corresponds to the conformation where the FtsY-[Ffh-NG] complex is near the distal end of 

the RNA (see D of Figure 4). It is noteworthy that in addition to these two major 

conformations, our analysis identifies a “middle” state with the FRET value μ0,2 around 0.3 

to 0.4, suggesting a third conformation of the SRP-SR complex. This conformation might 

correspond to alternative modes of docking of the FtsY-[Ffh-NG] complex at the RNA distal 

end (in which FtsY-[Ffh-NG] is oriented differently relative to the RNA), given the relative 

large value of μ0,2, or an alternative binding site of the FtsY-[Ffh-NG] complex on the RNA 

(Shen et al., 2012). As we shall see shortly, this conformation could serve as an intermediate 

stage that mediates the large scale movement of the FtsY-[Ffh-NG] complex, which travels 

100 Å from the RNA capped end to the distal end.
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Figure 9 compares the distributions of the mean parameters for the Ffh-Data to those for the 

FtsY-Data. It is also interesting to note from both Table 5 and Figure 9 that the FRET value 

μ0,3 of the FtsY-Data is higher than that of the Ffh-Data. This implies that FtsY is closer to 

the distal end than Ffh-NG is when the FtsY-[Ffh-NG] complex docks at the distal end. It 

thus gives a fine picture of the relative positions of FtsY and Ffh-NG as shown in Figure 4. 

This is consistent with findings from the crystal structures of the SRP-SR complex (Ataide 

et al., 2011; Voigts-Hoffmann et al., 2013).

The conformational change that SRP-SR undergoes on the RNA is unusually large, spanning 

over 90 Å. How this large-scale movement occurs is an interesting question. It is possible 

that the complex travels along the RNA via “intermediate” stops. Alternatively, the complex 

could constantly sample alternative potential docking sites on the RNA until it finds the 

distal site. The transitions among different states capture the pathways and mechanisms by 

which the SRP-SR complex undergoes the large-scale conformation change. Table 6 shows 

our estimates of the transition probabilities {Pij} for the data sets. We note that the estimates 

of the transition probabilities from the Ffh-Data are similar to those from the FtsY-Data.

We next investigate the functional role of the middle state based on the posterior 

distributions of {Pij} for the Ffh-Data. First, we obtain the 95% credible interval of di = 1/(1 

− Pii), the mean dwell time at state i. The intervals are [0.966, 1.057] seconds for d1, the 

low-FRET state; [0.228, 0.249] seconds for d2, the middle state; and [0.465,0.507] seconds 

for d3, the high-FRET state. The observation that both d1 and d3 are significantly larger than 

d2 indicates that the SRP-SR complex spends less time at the middle state than at the low- or 

high-FRET state, which are more stable.

Second, it is known that biologically the SRP-SR complex initially assembles at the RNA 

capped end and the complex disassembles at the RNA distal end (Shen and Shan, 2010). 

Thus, a “complete transition” is the one that goes from the low-FRET state to the high-

FRET state (see Figure 4). The observation that P13 is significantly smaller than P12 suggests 

that a direct transition from the low-FRET state to the high-FRET state is quite infrequent; 

rather, a “complete transition” more frequently proceeds through the middle state. In other 

words, without RNC or the translocon, the FtsY-[Ffh-NG] complex usually travels from the 

capped end to the distal end through an intermediate stage.

In fact, we can calculate the probability that a final passage from state 1 to state 3 goes 

through state 2 versus the probability that such a final passage does not go through state 2 as 

follows. For i, j = 1, 2, let us use  to denote the probability of transition from state i to 

state j in k steps without ever reaching state 3. Then the probability of going from state 1 to 

state 3 finally through state 2 is  (i.e., taking any number of steps between 

state 1 and 2 and then finally reaching state 3 from state 2 in the last step). The probability of 

going from state 1 to state 3 not finally through state 2 is . 

satisfies the following recursive formulas, owing to the first-step analysis:
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Summing over k on both sides of the equations yields

(2)

From these formulas and the posterior distributions of Pij, we find that 91.2% of the 

transitions from state 1 to state 3 occurs finally through the intermediate state 2 for the Ffh-
Data.

These observations and calculations reveal that (i) the movement of the FtsY-[Ffh-NG] 

complex from the RNA capped end to the distal end requires the middle state, which serves 

as an on-pathway intermediate to facilitate this largescale movement. (ii) The middle state is 

quite efficient in facilitating the search for the RNA distal site: once the SRP-SR complex 

reaches this state, over 50% of molecules move on successfully to the distal site (high-FRET 

state) (because P23 > P21); this over 50% probability is much higher than that from the low-

FRET state.

5.2 Effect of RNC

Once RNC is added to the SRP-SR complex, the experimental FRET trajectories, the RNC-
data, show the presence of only one state with a low FRET value: the FRET values are well 

fitted by yi = const + Gaussian noise, see Table 5. Comparison of these results with those on 

SRP-SR alone (the Ffh-Data and FtsY-Data) show that the RNC has a pausing effect: it 

holds the SRP-SR complex near the capped end and prevents its movement to the RNA 

distal end (see C of Figure 4). This pausing effectively prevents premature dissociation of 

SRP and SR, which happens at the distal end of the SRP RNA and results in abortive 

reactions. We thus see that RNC plays an important regulating role in ensuring the efficiency 

of a successful protein targeting.

5.3 Role of Translocon

When the translocon is further added to the RNC-SRP-SR complex, single-molecule 

experiments on the translocon-RNC-SRP-SR complex yield the Translocon-Data in Table 1. 

As shown in Table 5, the high-FRET state (μ0,3 ≈ 0.6) is restored in the Translocon-Data, 

which is completely absent in the RNC-Data. Therefore, the translocon enables the FtsY-

[Ffh-NG] complex to restore movement to the RNA distal end, where disassembly of SRP-

SR (by GTP-hydrolysis) can be initiated.

We also observe that the transition probabilities of the Translocon-Data, shown in Table 6, 

differ significantly from those of the Ffh-Data. This rules out the model that the translocon 

simply awaits for and binds the RNC that has spontaneously dissociated from the SRP-SR 
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complex. If this were the case, the FRET trajectories in the presence of both RNC and 

translocon (the Translocon-Data) would exhibit nearly identical features as those for the 

SRP-SR complex (the Ffh-Data). Instead, these data strongly suggest that the translocon 

forms a quarternary complex together with RNC, SRP and SR, in which attainment of the 

distal conformation is favored.

We next consider the role of the middle state. Using formula (2) derived in Section 5.1, we 

find that only 40.7% of the transitions from the low FRET to high FRET state occur via the 

middle state as an intermediate for the Translocon-Data. This is in sharp contrast with the 

91.2% probability for the Ffh-Data. This indicates that the translocon alters the pathway via 

which the FtsY-[Ffh-NG] complex searches for the RNA distal site, biasing them towards 

pathways in which transitions between low FRET and high FRET states occur directly. We 

note that it is possible that in the presence of translocon, the residence in the intermediate 

state could be too fast to be detected within the time resolution (30 ms) of the experiment.

To gain further insights into the regulatory role of the translocon, we asked whether and how 

it alters the kinetics by which the SRP-SR complex undergoes the structural change. To this 

end, we compare the dwell time of the FtsY-[Ffh-NG] complex at the high-FRET state, 

which is d3 = 1/(1 − P33), between the Translocon-Data and the Ffh-Data. The 95% posterior 

interval for d3 is [2.058, 2.577] seconds for the Translocon-Data and [0.465, 0.507] seconds 

for the Ffh-Data, respectively. Thus, the translocon enhances the kinetic stability of the SRP-

SR complex in the distal conformation by 4-5 fold. Table 7 contrasts the parameter estimates 

between the Ffh-Data and the Translocon-Data.

In summary, our statistical analysis shows that the translocon regulates the protein targeting 

process by (i) restoring the movements of the FtsY-[Ffh-NG] complex to the RNA distal 

end, (ii) promoting alternative pathways for this movement, in which the FtsY-[Ffh-NG] 

complex directly transitions from the low-FRET state to the high-FRET state, and (iii) 

prolonging the time that FtsY-[Ffh-NG] stays at the RNA distal end. It is known that 

movement of the FtsY-[Ffh-NG] complex away from the RNA capped end is important for 

vacating the ribosome binding site and initiating ribosome-translocon contacts during the 

handover of RNC to the translocon. It is also known that GTP-hydrolysis, which 

disassembles SRP and SR, occurs at the RNA distal end (Shen et al., 2013). Our findings 

thus reveal that the translocon, via mechanisms (i)-(iii), promotes both of these molecular 

events and allows them to be synchronized in the pathway. Collectively, these results show 

that the translocon not only serves as a channel through which the nascent proteins 

translocate, but also facilitates the productive handover of the RNC onto itself to complete 

the protein targeting reaction.

5.4 A proposal of detailed mechanism

Our statistical analysis of the single-molecule experimental data in combination with the 

known biological understanding (Halic et al., 2006; Pool et al., 2002; Peluso et al., 2001; 

Estrozi et al., 2011; Shen and Shan, 2010; Zhang et al., 2009a; Akopian et al., 2013a; Ataide 

et al., 2011) suggests the following detailed mechanism of protein targeting, which was 

conjectured in Shen et al. (2012), corresponding to the four steps of Section 1:
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1. SRP recognizes the signal sequence on RNC and binds it. The RNC is delivered 

to the target membrane where the SR can localize to.

2. When the SRP-SR complex is initially formed, the FtsY-[Ffh-NG] complex 

binds at the RNA capped end near the ribosome exit site, blocking the site from 

translocon binding.

3. As the RNC initiates contact with the translocon, the latter actively facilitates the 

conformation change of SRP-SR complex and drives the FtsY-[Ffh-NG] complex 

from the capped end to the distal end of RNA.

4. GTP-hydrolysis is initiated at the RNA distal end to disassemble the SRP and 

SR. Meanwhile, the nascent chain is released from the Ffh M-domain to the 

translocon on the membrane.

Figure 10 illustrates the detailed mechanism. The movement of the FtsY-[Ffh-NG] complex 

from the RNA capped end to the distal end is first negatively regulated by RNC, whose 

pausing effect keeps the SRP-SR complex from disassembly before the translocon is 

identified, and later positively regulated by the translocon, which actively facilitates the 

movement of FtsY-[Ffh-NG] to the RNA distal end. This mechanism allows the coordinated 

exchange of SRP and translocon at the RNC and the effective timing of GTP-hydrolysis, 

thus minimizing abortive reactions due to premature SRP-SR disassembly or non-productive 

loss of the RNC.

6 Model Checking

6.1 Check of detailed balance

In biophysics, the principle of microscopic reversibility states that at equilibrium the 

transition flux between any two states should be equal. In the familiar probability language, 

the microscopic reversibility translates into the detailed balance condition or the reversibility 

of the Markov chain: πiPij = πjPji for all i and j, where πi is the equilibrium probability of 

state i. This can be checked from the posterior samples of the transition matrix P.

Figure 11 compares the distribution of πiPij (first column) with that of πjPji (second column) 

from the Ffh-Data. The third column shows the distribution of the difference πiPij − πjPji 

compared to zero (the vertical bar), where i, j ∈ {1, 2, 3}, i ≠ j. It is clear that πiPij − πjPji = 

0 holds within the experimental error. The plots on the FtsY-Data and the Translocon-Data 
give very similar pictures. We thus confirm that indeed under our hierarchical HMM the 

principle of microscopic reversibility is satisfied.

6.2 Check of Markovian assumption

In our hierarchical HMM, the Markov assumption of the state transitions (or the 

conformation changes) plays a fundamental role. If the Markov assumption is correct, then 

the waiting time at the individual state should be exponentially distributed and that the 

successive waiting times should be independent of each other. Both can be checked under 

our Bayesian sampling approach, since we can straightforwardly obtain the waiting time at 

each state from the posterior samples of the hidden states z. Figure 12 shows the posterior 
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distribution of the waiting time at each of the low, middle and high FRET state of the Ffh-
Data based on the samples of hidden states z in its original scale (left column) and the log-

scale (right column). It is seen that on the log-scale the distribution of the waiting time is 

well fit by a straight line, supporting the exponential distribution. Quantitatively, we 

performed a chi-squared goodness-of-fit test for the exponential distribution using 30 evenly 

spaced bins. The resulting p-values for the waiting time at the low, middle and high FRET 

states are 0.72, 0.20 and 0.35, respectively. Figure 13 shows the autocorrelation of the 

successive waiting times from the Ffh-Data obtained from the samples of the hidden states z. 

It is evident that the successive waiting times are uncorrelated, as the Markov assumption 

requires. The posterior samples from the FtsY-Data and the Translocon-Data show quite 

similar pattern.

7 Summary

The advances in single-molecule experiments enable us to study the detailed mechanism of 

the co-translational protein targeting process. On the single-molecule level the data are 

necessarily stochastic. They are often noisy realizations of the underlying stochastic 

dynamics. To model the stochasticity of each individual experimental trajectory, we use 

HMM.

The experimental time windows in single-molecule trajectories are often of rather limited 

length, resulting in relatively short trajectories. As a result, the parameter estimation based 

on individual trajectories could be quite variable. Furthermore, the determination of the total 

number of states of the HMM based on individual trajectories is highly unstable. 

Experimentally, these issues are mitigated by recording hundreds of trajectories repeated 

under the same experimental condition. In this article, we use the mode of the BIC selection 

over multiple trajectories for reliable determination of the number of states of the HMM as a 

preliminary analysis. Then we propose a hierarchical HMM to pool information together 

from the different trajectories and at the same time to account for the heterogeneity among 

them. The heterogeneity among the different trajectories arises from the intrinsically 

stochastic nature of molecular actions, equipment noise, thermal fluctuation and random 

variations in experimental setups. We find that the proposed hierarchical HMM is highly 

robust to low signal-to-noise ratios. Finally, assessment of the fitting of each individual 

trajectory based on parameters estimated from the hierarchical model re-assured us of the 

model selection at the first stage and the assumption of the hierarchical model at the second 

stage.

Biologically, we corroborated many conclusions from the previous ad-hoc analysis, giving 

solid quantitative evidence for the proposed new mechanism of co-translational protein 

targeting. Instead of being passively involved in the protein targeting process, our analysis 

shows that the RNC and translocon play active regulatory roles to facilitate the accurate 

timing of the biological steps. Specifically, the RNC and translocon effectively regulate the 

movement of the SRP-SR complex between the capped end and the distal end of the RNA, 

which in turn regulates the assembly and disassembly of the SRP-SR complex and the 

preference of the RNC for binding the SRP-SR complex versus the translocon. Compared to 

the previous ad-hoc analysis, our statistical analysis clarifies the pathway for the structural 

Chen et al. Page 18

J Am Stat Assoc. Author manuscript; available in PMC 2017 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



change in the SRP-SR complex, and rigorously showed that the translocon alters the 

pathway, kinetics, and stability of this structural change, providing stronger evidence that the 

translocon actively facilitates the loading of RNC onto itself and drives the completion of 

protein targeting. From a modeling perspective, the hierarchical HMMs that we used for 

combining information are quite general. They appear effective for dealing with replicated 

experiments and can be potentially used for analyzing other biological or biochemical 

experiments. We thus hope that this article would generate further interest in studying these 

hierarchical models and in applying them for general data analysis.
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A Baum-Welch/EM algorithm for HMM

For a given value of K, the total number of states, we can use the EM algorithm (Dempster 

et al., 1977), a.k.a. the Baum-Welch algorithm for HMM (Baum and Petrie, 1966; Baum et 

al., 1970), to infer θ. For the ease of presentation, we assume here that the initial distribution 

of the first hidden state z1 is flat. The full likelihood function is

where Tjk denotes the total number of transitions in z from state j to state k, and (y; μ, σ2) 

denotes the normal density with mean μ and variance σ2 evaluated at y. For the EM 

algorithm, in the E-step, the expectation step, we have

where un,k = p(zn = k|y, θold) and vn,j,k = p(zn−1 = j, zn = k|y, θold) can be expressed in terms 

of α(zn) := p(y1:n, zn|θold) and β(zn) := p(y(n+1):N |zn, θold):

α(zn) and β(zn) can be efficiently calculated by the forward-backward algorithm (Rabiner, 

1989), a recursive formula that allows fast computation: evaluating the α’s forwardly from 1 

to N and the β’s backwardly from N to 1:

(3)

(4)

In addition, the forward-backward algorithm gives the marginal likelihood evaluated at the 

maximum likelihood estimate p(y|θ̂) = ΣzN α(zN) = ΣzN p(y1:N, zN |θ̂).

In the M-step of the EM algorithm, which maximizes E log L(θ| θold) over θ, we obtain 

θnew according to
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B Gibbs Sampling for HMM

In addition to the EM algorithm, which quickly obtains the MLE of the parameters, we can 

also use Bayesian MCMC sampling (Liu, 2001) to assess the entire (posterior) distribution 

of the parameters. Our MCMC sampling can be viewed as a special case of data 

augmentation (Tanner and Wong, 1987): augment the parameter space θ with the hidden 

states z, and iteratively sample one given the other (i.e., sample θ given z and sample z given 

θ).

Specifically, in our MCMC sampling, we adopt flat priors for P and μk, k = 1, …, K, and 

independent inverse-χ2 priors with parameters ν, s2 for  (the prior on μ is flat over the 

region 0 < μ1 <⋯< μK < 1). The posterior distribution is

It follows that in our (group Gibbs) sampler, the conditional distribution of the jth row of the 

transition matrix Pj· = (Pj1, Pj2, …, PjK ) is a Dirichlet distribution, the conditional 

distribution of μ is a multivariate normal distribution, the conditional distribution of σ2 is a 

multivariate inverse-χ2 distribution and that the hidden states z can be sampled sequentially 

from 1 to N through the following recursion:

where β(k) is the the backward probability defined in equation (4).

C MCMC sampling of the hierarchical HMM

The posterior distribution is proportional to

We use the Gibbs sampler to update a group of parameters at a time, conditioning on the 

others, and iterate until convergence. The sampling details are given below, where I(ω) and 

Iω denote the indicator function.
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1. Initialization. Fit each trajectory independently using the EM algorithm in 

Appendix A and set the initial values of {μ(l), σ(l)} at the corresponding MLEs. 

The initial values of {I(l)} are set to be {1, …, K}.

2. Update global parameters μ0, , s2. For 1 ≤ k ≤ K,

3. Update transition probabilities P according to

4. Update parameters for individual trajectories.

• Update {μ(l), σ(l)}. For k ∈ I(l), l = 1, …, T,

• Update {z(l)}. This is essentially the same as introduced in Appendix B 

except that when I(l) ≠ {1, 2, …, K}, the transition matrix is a re-

normalized submatrix of P according to which states are present in 

trajectory l.

• Update {I(l)}. I(l) is equal to A ⊂ {1, 2, …, K} with probability 

proportional to

where A stands for {1, 2, 3}, {1, 2}, {1, 3} or {2, 3} when K = 3, and 

{1, 2, 3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2}, {1, 3}, {1, 

4}, {2, 3}, {2, 4}, or {3, 4} when K = 4.

5. Iterate Steps 2 to 4 until convergence.
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Figure 1. 
The four steps of protein targeting.
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Figure 2. 
Three sample FRET trajectories.
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Figure 3. 
Sample trajectory of FRET observations. The upper panel is the fluorescence of the donor 

and the acceptor, respectively; the lower panel shows the FRET values.
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Figure 4. 
Molecular details of SRP and SR in E.coli. (A) SRP in E.coli is composed of RNA, Ffh-M 

and Ffh-NG. Ffh-M binds the RNA and the signal sequence (not shown); Ffh-NG binds the 

ribosome (not shown) and SR. (B) SR in E.coli is the FtsY protein. (C) FtsY-[Ffh-NG] 

complex is near the capped end of the RNA with a low FRET value. (D) FtsY-[Ffh-NG] 

complex is near the distal end of the RNA with a high FRET value. The red and green stars 

denote the FRET acceptor and donor, respectively.
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Figure 5. 
Diagram of the hierarchical HMM.
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Figure 6. 
Two sample FRET trajectories, one long trajectory from the Ffh-Data and one short 

trajectory from the Translocon-Data. The trace plots show the fitted hidden states. The lower 

panel shows the histograms of the experimental FRET values together with the fitted 

Gaussian mixtures.
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Figure 7. 
Fitting of individual FRET trajectories. The left column (A) shows the fitting of the 2-state, 

3-state and 4-state HMMs to the long trajectory of Figure 6(A) alone. The right column (B) 

shows the fitting of 2-state, 3-state and 4-state HMMs to the short trajectory of Figure 6(B) 

by itself.
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Figure 8. 
Comparison of fitting of the hierarchical HMM versus the fitting of individual trajectories. 

The left panel compares the estimation of the global means μ0. The right panel compares the 

estimation of the transition probabilities P11, P22, P33. Both panels use the boxplots. In each 

panel, the left half shows the posterior distribution under the hierarchical HMM; the right 

half shows the aggregated posterior distribution based on fitting the 3-state HMM to 

individual trajectories. The grey horizontal lines correspond to the true values of the 

parameters.
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Figure 9. 
The posterior distributions of the mean parameters for the Ffh-Data and FtsY-Data.
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Figure 10. 
The refined mechanism. Steps 1 & 2: SRP binds RNC at the RNA capped end and carries it 

to the membrane by forming a complex with SR located at the membrane. Step 3: The FtsY-

[Ffh-NG] complex goes to the distal end so that RNC can be loaded at the translocon. Step 

4: SRP-SR disassembles through GTP-hydrolysis and the nascent chain goes through the 

translocon on the target membrane.
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Figure 11. 
Check of detailed balance for the Ffh-Data. The first column is the posterior distribution of 

πiPij, and the second column is that of πjPji, where i, j ∈ {1, 2, 3}, i ≠ j. The third column 

shows the distribution of their difference πiPij − πjPji; the thick vertical bar is at zero.
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Figure 12. 
Posterior distribution of waiting time at the three states of the Ffh-Data on the original scale, 

the left column (A); and the log scale, the right column (B).
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Figure 13. 
Autocorrelation of the successive waiting times from the Ffh-Data.
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Table 1

Data sets and number of recorded trajectories in each set.

Data Abbreviation FRET Donor FRET Acceptor Complexes in experiments No. Trajectories

Ffh-Data Ffh-NG RNA distal end SRP-SR 142

FtsY-Data FtsY RNA distal end SRP-SR 208

RNC-Data Ffh-NG RNA distal end SRP-SR, RNC 97

Translocon-Data Ffh-NG RNA distal end SRP-SR, RNC, Translocon 138

J Am Stat Assoc. Author manuscript; available in PMC 2017 October 18.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 39

Table 2

Summary of the lengths (number of data points) of the recorded trajectories in each data set.

5% Quantile Median Mean 95% Quantile

Ffh-Data 518 1484 1681 3390

FtsY-Data 357 1027 1248 2993

RNC-Data 317 746 873 1864

Translocon-Data 338 918 1071 2357
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Table 5

95% posterior intervals of the global means μ0i and global standard deviations η0i; i ∈ {1, 2, 3} for Ffh-Data, 

FtsY-Data, RNC-Data and Translocon-Data.

Parameters Ffh-Data FtsY-Data RNC-Data Translocon-Data

μ0,1 [0.105, 0.116] [0.096, 0.107] [0.091, 0.099] [0.097, 0.104]

μ0,2 [0.319, 0.353] [0.348, 0.382] NA [0.380, 0.441]

μ0,3 [0.619, 0.646] [0.733, 0.761] NA [0.619, 0.635]

η0,1 [0.039, 0.048] [0.041, 0.049] [0.017, 0.022] [0.019,0.023]

η0,2 [0.110, 0.135] [0.122, 0.148] NA [0.131, 0.169]

η0,3 [0.087, 0.107] [0.101, 0.126] NA [0.044, 0.058]
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Table 6

Posterior estimates of the transition probabilites (mean ± 2× standard deviations) of Ffh-Data, FtsY-Data, 

Translocon-Data based on the hierarchical model fitting.

Data Ffh-Data FtsY-Data Translocon-Data

P11 0.9703 ± 0.0014 0.9798 ± 0.0013 0.9976 ± 0.0005

P22 0.8732 ± 0.0054 0.8776 ± 0.0058 0.9713 ± 0.0076

P33 0.9384 ± 0.0027 0.9217 ± 0.0039 0.9870 ± 0.0015

P12 0.0283 ± 0.0014 0.0186 ± 0.0015 0.0011 ± 0.0004

P13 0.0015 ± 0.0005 0.0015 ± 0.0005 0.0013 ± 0.0004

P21 0.0587 ± 0.0034 0.0579 ± 0.0044 0.0044 ± 0.0015

P23 0.0681 ± 0.0036 0.0646 ± 0.0037 0.0244 ± 0.0072

P31 0.0029 ± 0.0010 0.0057 ± 0.0017 0.0022 ± 0.0006

P32 0.0587 ± 0.0031 0.0726 ± 0.0045 0.0108 ± 0.0015
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Table 7

Compare Ffh-Data and Translocon-Data: 95% posterior intervals of mean values of the states (μ0,1, μ0,2, μ0,3), 

dwell time at the high-FRET state (d3) and the probability that a transitions from low- to high-FRET state goes 

through the middle state (pmiddle).

Parameters Ffh-Data Translocon-Data

μ0,1 [0.105, 0.116] [0.097, 0.104]

μ0,2 [0.319, 0.353] [0.380, 0.441]

μ0,3 [0.619, 0.646] [0.619, 0.635]

d3 [0.465, 0.507] [2.058, 2.577]

pmiddle 91.2% 40.7%
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