
Conjugate Schema and Basis
Representation of Crossover and
Mutation Operators

Sanza T. Kazadi
Department of Computation

136-93 Moore Laboratories
Caltech
Pasadena, CA 91 125
sanza@cco.caltech.edu

and Neural Systems

Abstract
In genetic search algorithms and optimization routines, the representation of the mutation
and crossover operators are typically defaulted to the canonical basis. We show that this
can be influential in the usefulness of the search algorithm. We then pose the question of
how to find a basis for which the search algorithm is most useful. The conjugate schema
is introduced as a general mathematical construct and is shown to separate a function
into smaller dimensional functions whose sum is the original function. It is shown that
conjugate schema, when used on a test suite of functions, improves the performance of the
search algorithm on 10 out of 12 of these functions. Finally, a rigorous but abbreviated
mathematical derivation is given in the appendices.

Conjugate schema, representation, genetic algorithm.
Keywords

1. Introduction

The traditional view of the genetic algorithm (GA) makes use of binary strings in the en-
coding of optimization problems (Holland, 1975). However, several researchers (Eshelman
& Schaffer, 1993) have made use of real-encoded genetic algorithms. A real-encoded genetic
algorithm (REGA) is a genetic algorithm in which the vectors are represented in the natu-
ral real vector notation. In this paradigm, the functions are as initially encoded, and they
are acted upon by the standard operators of a genetic algorithm (mutation, crossover, and
reproduction), where the actions are on components of the vector, analogously to the bi-
nary representation. This use of the genetic algorithm removes several of the limitations of
the traditional Holland-style genetic algorithm. These limitations include the difficulty in
obtaining precise results, and the inability to dynamically change a GA's representation. Al-
though the use of the real encoding is liberating in some sense, the theoretical underpinning
of this type of optimization algorithm is less developed.

In our studies of the real-encoded genetic algorithm, we came to realize that many of the
main properties of the original model of the GA remained intact. The concepts of building
blocks, schema, the building block hypothesis (Forrest & Mitchell, 1992); (Vose, 1991), and
so forth all remain unchanged in REGAmodels. However, much of the energy spent studying
this model has been devoted to creating various operators in the GA paradigm and testing

@ 1998 by the Massachusetts Institute of Technology Evolutionary Computation 6(2): 129-160

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216252235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Sanza ’I.. Kazadi

their usefulness on the G=\. These new operators perform well on several functions, but much
work remains to be done before a true understanding of the genetic algorithm paradigm is
built. In this paper, we seek 21 more complete understanding of the genetic algorithm and
what it is doing. IYe seek to answer the question of why certain encodings, even in the more
general framework of the REGA, are more successful in optimizing functions than others.
In so doing, we seek to generate a general understanding of the genetic algorithm paradigm
that will aid in building more useful siinulations, and yield better results when undertaking
optimizations. \Ye seek also to answer the question “What is the best ~-epplw~ntcrtion one
might hope to obtain and use in implementing a GA, and how can we find such a best
representation?”

In Section 2 , we give an overview of other work on representational issues in genetic
algorithms. In Section 3, we introduce our basic CX paradigm, which will become our test
bed for our representational alterations. This paradigm is intended to mimic as closely as
possible the binary basis GX (and in fact may indeed be used in a binary vector space). We
significantly simplify the paradigm in order to focus attention on representational issues. In
Section 4, we provide motivation for considering representational issues. In Section 5, we
give 311 intuitive definition of the concept we call soi’jz[grrte si.hemn and provide motivation
fur their consicleration. In Section 6, two approximation methods for calculating conjugate
cchcma are presented. IZ’e show the behavior of both of these approximation methods on
several hvo-diinensional examples. In Section 7 , empirical evidence for the usefulness of
conjugate schema is presented. In Section 8, a closer look is taken a t how the basis variation
affects the performance of the (21. Finally, in Section 9, we discuss other possible uses for
this formalism and future research directions. X rigorous proof of several facts is given in
the :ippendis. The appendix may be omitted without a loss of understanding of the central
concepts.

2. Representation, Mutation, and Crossover

Though a complete understanding still eludes us , a partial understanding of the function
of the genetic algorithm has emerged. Among the most important properties of genetic
algorithms ranks their implicit parallelism. This properq ofa GA allows part of a population
of a (;.4 to investigate one portion of a vector, while another part ofthe population investigates
another portion of the vector, concatenating the useful parts of these vectors to generate more
desirable ones. T h e key to this abili?. is the crossover operator, and the crossover operator’s
behavior under linear transformation (Leipins c9r I’ose, 1990).

The representation of :I search space changes the behavior of the search algorithm
being used through the operators’ altered interaction with the vectors within. By altering
the representation of the search space, one can modify the effect of both the mutation and
crossover. Rana and \.$‘hitley (1997) introduce an exhaustive search of encodings for all
possible functions of eight real numbers encoded with three bits per number, using Gray
code string representation. They find that a great deal of variability exists in the behavior
of estrenia, and that by a careful choice of Gray code representation, they can change the
number o f extrema in the function. This greatly alters the effect of the mutation operator,
indicating that the use of differing representations can have a large effect on the operaturs
thernselves.

Real-encoded genetic algorithms have the added flexibility of allowing one to change the
representation of the operators in a genetic search space, and not simply the neighborhood
strumire. This allows one to use representations of vectors that may be more conducive to

1 3 0

Conjugate Schema and Basis Representation

recombination of relevant disparate parts of the vector, without the concomitant damaging
effects of crossover. Ono and Kobayashi (1997) implement a crossover operator designed to
be independent of the representation of the vectors. This crossover creates children from
parents which will be more “like” their parents because they are arranged in space along and
nearby the line connecting the parents. This produces offspring that are more likely to be
arranged along ridges or valleys produced by the function, a situation impossible for many
of their test functions without the use of the invariant crossover operator. In four of five
simulations, they report a marked improvement in performance. Moreover, in graphing the
elements of the population that occur throughout the search, Ono and Kobayashi find that
the new representation-invariant crossover operator (UNDX) is more successful in searching
areas of importance than the previous model (BLX-a), and that members of the population
in UNDX are more likely than those in BLX-a to be in areas that have high fitness values.

The building block hypothesis is an important notion for GAs. It seems important not
only to cross over in a way that preserves “important building blocks,” but also to create
representations of vectors in which fundamental building blocks may be redundant. Wu and
Lindsay (1996) comment on their use of a floating and overlapping representation of building
blocks akin to those found in DNA chains. They find that the use of multiple building
blocks allows them to have significantly better performance on the royal road function using
a floating building block representation than a fixed building block representation. The use
of this floating representation allowed building blocks to be duplicated, which reduced the
disruptive effects of both crossover and mutation. Moreover, the floating representation
allows larger noncoding regions, which seems to allow crossover to fail to disrupt existing
building blocks more often, making even single copies more stable under crossover.

Work is still continuing on the use of specialized crossover operators and subspace par-
titioning. Arabas, Mulawka, and Pokraniewicz (1995) report on the use of adaptive crossover
operators that perform better, although in some cases marginally so, on a test suite of func-
tions. Smith and Fogarty (1995) report on the use of gene linhng, or connecting different
subsets of vector components. They find that gene linking improves the search through a
multidimensional space. Tsutsui, Fujimoto, and Ghosh (1997) provide an example of sub-
space search, in which individual subspaces are searched to alleviate population convergence,
providing partial solutions that may be recombined with other partial solutions.

In most of this work, the principal aim is to build an understanding of the subspace
structure of a function and how to exploit it (Wright, 1991). As the crossover operator deals
with this subspace structure directly, understanding of either one indicates an expanded
understanding of the other.

3. The Use of Differing Mutation and Crossover Bases

Our aim in this paper is to understand the effect of the representation of the mutation and
crossover bases in the effectiveness of the algorithm. As a first step, we consider a simple
two-dimensional example that may be analytically solved.

Let the space be TI2 and the function be

f (3) = V1V2

Now, the natural representation of this space, and indeed the simplest one, is one in which
each of the components is the projection along the basis elements of the basis.

Evolutionary Computation Volume 6, Number 2 131

Sanza T. Kazadi

where we take the rows to be the basis elements. Now, let us consider the mutation of a vector
I’ = (ill, 1’2) in this basis. Suppose that one element is increased by t, a change equivalent to

multiplying the first basis element by t and adding the two vectors. The new function value
is

i

However, if we note that the function niay be written as

(q + I’# - (q - 2‘$) (4)

(ill, u?) , 4 (711, -w)}, which becomes this leads LIS to consider the hasis {l

{ $ (1, I) , 1 (1, -l)} when i y = q. Now, if we alter the vector by adding a vector aligned
uith the first basis element, the new function value is

& fl
d3

so that if

(2 + t) Z ’ , > da
the effect of the mutation will be greater than that of an improving step along either a positive
or negative step in the direction of the basis element (1 , O) with a similar condition for (0,l).
Using the other basis element gives us a different result.

malungf(c”) > f’(z1’) if t < - 1. This would seem to imply that a mutation can be moulded
into different forms, with each one providing differing effectivenesses in the optimization,
depending on the direction in which the mutation occurs. The most advantageous mutation
direction, however, is highly dependent on the position in the space in which the mutation is
taking place. Thus, one might expect that there exist more advantageous bases for mutation
than the canonical basis a t most positions in the search space, though the identification of
this basis niay be difficult.

A similar analysis can be undertaken for the crossover basis. Let us first consider the
effect of a crossover operator. Suppose that we have a basis B.bI = {?I, . . . ,?N} given by -

el = (1,0,O,. . . ,O),?? = (0,1,0,. ..,(I), . . . ,&- = (O , O , O , . . . ,1)

and two vectors z’ and zi for which we want to carry out a crossover. This is the canonical
basis, and may be represented as

Evolutionary Computation Volume 6 , Number 2

Conjugate Schema and Basis Representation

where we take the rows to represent basis vectors. A standard crossover operation takes one
of the projections of the vector along the basis element of the canonical basis and switches it.
That is, if 3 = (WI, . . . , W k , . . . , W N) and u = (ul, . . . , Uk,. . . , U N) , then the crossover of the

two vectors using the kth basis element will produce the vectors W' = (~ 1 , . . . , Uk, . . . , W N)

and U' = (ul, . . . , Wk, . . . , UN). Single point and two-point crossover may be built using
combinations of simple crossovers built in this way.

+
+

+

We may write this crossover as

In this case, changing the basis will effectively change the crossover, and it is perfectly clear
what is meant by altering the basis. Now, consider the problem that we mentioned above.
Consider the crossover of two vectors done in the canonical basis. Take, for instance (5,6)
and (4,3), which have the function values 30 and 12, respectively. Then, the new vectors
are (5,3) and (4,6) with function values 15 and 24, respectively. What has happened is that
the crossover operator has disrupted the connection between the vector components during
recombination.

Suppose that we use the basis

(1 1)
1

B c = { (Vl, v2) (vl, -v2) d n 'JG
which is a basis as long as neither vl nor v2 is zero. We take the center of our population to
be the mean of the coordinates, (4.5,4.5) in this case. At this point, our new basis is

Then, if the crossover is undertaken in the first basis element, we have new vectors given by

--f
WI =

11 7
= (5,6) - - (1,l) + - (1,l) Jz Jz
= (2.1716,3.1716)

r 1

7 11
= (5,6) - - (1,l) + - (1,l) Jz Jz
= (6.8284,5.8284) (14)

The function values are 6.8873 and 39.799, respectively. This computation shows that,
instead of radically disturbing the link between vector components, this basis combines
vector components in a significantly less damaging way than the previous method. With

Evolutionary Computation Volume 6, Number 2 1 3 3

Sanza T. Kazadi

Two GAS with Differing Bases
I

Figure 1. This hipre shows the differing performance of h v o genetic algorithm paradigms. The
differences between paradigms are their representations. T h e striking performance variation manifests
itself in the convergence rate and final ralue.

the other basis element, we obtain the vectors (6.4142,7.4142) and (2.5858, 1.5858) with
function values of 47.556 and 4.1006, respectively.

Let us consider for a tno~iient why we might want to change to this basis as opposed to
using the canonical basis. In two out offour crossover products, a function value is produced
 that^ is significantly higher than the previous, while the other two are significantly lower.
'l'his nieans that, if we use a proportional reproduction, the new vectors are easily sorted
accortling to their fitness, leaving only the higher scoring vectors and removing the lower
scoring vectors. Moreover, the new values are significantly better than the previous ones,
indicating a successful crossover operation.

One notable fact appears in this analysis. T h e effects on the operators are quite different.
'The effect on the mutation operator is bounded by the use of the step size. Thus, ifE is small
enough, the effect on the inutation operator is negligible. O n the other hand, the effect on
the crossover operator is independent of such parameters and exhibits its effect only in the
coi-nbinatorial construction of new vectors froni existing vectors. Mre can, therefore, expect
the greatest effect o f the representation to occur when we are making use of crossover in
coiiihinatorially building up vectors. L\40reover, we expect the effect on niutation only to
conic in when precise results are required and the step size is practically limited to be above
a particular 1-alue.

As a n illustration, we include here the effect of three modified representations 011 "re-
tarded" (niore formally defined in Section 5) GA siiiiulations. We test two representations
011 the fiinction taken from Michaleuicz and Schoenauer (1996):

This function is borrowed from a bounded optimization problem. We have not included
the bounciing relations here, as they ma!' be ohtained from Michalewicz and Schoenauer
(1906). 'I'he key idea in Figure 1 is that the mutations and crossovers in one basis may
he niore or less effective than in another basis. Thus, it is important to understand what
a 'good' hasis is for each of these operations, and how it can be found. These bases may
not he o\~erlapping, however. There is no a priori reason to believe that a (better) basis
for ci-ossover will be better when used for mutations, and, in seneral, we have found this
reasonin- confirrned. 14% have found that multiple mutation bases are more often helpful,

134

Conjugate Schema and Basis Representation

but specific crossover bases are more advantageous. This difference would seem to stem
from the observation that building blocks should be representation invariant at a particular
point in space (Battle & Vose, 1993). However, mutations often require weighted alterations
along differing directions in the basis being employed to make advantageous steps. Thus,
the way in which these concerted alterations are weighted will greatly affect performance,
and it is generally reasonable to expect that multiple bases will be able to take advantage of
many differing groupings.

4. The Conjugate Schema

Our primary motivation in searching for more effective bases is to remove the damaging
effects of crossover. Typically in crossover, there is a tendency to pick groups of vector
components without considering the effect of that particular group on the vector as a whole.
There is no way that one will know ahead of time that one group of vector components is
indeed the set that is providing good function values, and so one typically opts to choose
crossover components at random, using a variety of methods.

Our goal, then, is to find bases that partially or wholly remove this uncertainty, so that
one might carry out combinatorial trials in the most effective way. For instance, if we knew
ahead of time that three basis elements out of N were functionally dependent, but that they
were independent of all other basis elements, this would put strong constraints on the form
of the function, and indeed its solution. It would indicate that we could carry out a separate
optimization on this set of basis elements and simply add that to the rest of the components.
In the author's opinion, this is the spirit behind the Schema Theorem. Thus, our goal is
to find bases in which there are a maximal number of such subgroups, and to identify those
groups of basis elements.

Before proceeding more formally, we consider another point. We have noted in Sec-
tion 3 that we would like to vary the mutation basis during the optimization. The reason
is that the use of varying mutation bases can lead search in different directions, connecting
mutations along differing basis elements differently than in previous steps. This type of
connection may prove to be quite important to us. Using the conjugate schema basis is one
way to have this variation, a t no extra computational cost. Since the conjugate schema basis
is typically changing, we may simply use it to carry out mutations. This will tend to restrict
mutations to occur within single subsets, restricting the mutation to a smaller-dimensional
subspace. Such a restriction effectively reduces the dimension of the search by removing mu-
tations across larger-dimensional and functionally independent blocks. Thus, the probability
of achieving a good step would tend to be higher than if the whole vector were employed.
This would tend to be an important consideration when using functions for which concerted
mutations of different vector components was important (Page & Hong, 1998).

Let us restate our goal with more rigor. First, we assume thatf is a function that maps
a vector space to the real numbers. If 3 = (711, . . . , v,) and we can writef as

f = g + h (16)

where

and

Evolutionary Computation Volume 6, Number 2 1 3 5

Sanza '1: Kazadi

(where * means that the element is irrelevant), then the function is separable, and the di-
mension of the problem has been reduced (provided that k is not zero). If this is the case,
then we may optimize h and g, and the building block hypothesis tells us that the solutions
of these optitnizations may be combined for a single solution of the larger problem.

Let us now define some terms. Given a vector space I-, if two basis elements b; and bj
i i

i

have the property that a sinall variation of a given vector T' along b, produces a variation of

f(T'+b 6,) that is independent of another variation along k, , then we call the two-@nctiorzally
iizdependent. If there is a small dependence within a hypersphere of radius h , we call them
h-filnctionrd/y iiidependeiit. That is, if

4 i

these definitions hold, with similar conditions for approximations to functional indepen-
dence.

Lt/e seek bases iiz which the jm-tionnl
ciepende7ir.e oj'the separate basis rlemeiits is wzinivzul. That is, we wish to find bases in which the
elements may be partitioned into separate groups of elements that have the property that
each basis element in one group is functionally independent of any basis element in another
group. This allows us to rewrite the function as a sum of smaller-dimensional functions, each
acting only on the subspace of the larger-dimensional space spanned by the basis elements
in a given group.

Let us define coiljirgateschema as disjoint subsets of a basis in which any two basis elements
chosen from different subsets are functionally independent. Clearly, conjugate schema are
not generally global structures. In general, conjugate schema are position-dependent struc-
tures and vary with the position in the vector space. Moreover, conjugate schema may be
defined differently depending on the degree of locality used. That is, one may compute coii-
jugate schema by using infinitesimally small steps, or one may compute conjugate schema
by using extended averages over space. We shall see that this will provide differing degrees
of structure.

Conjugate schema provide one with information about the separability (if locally) of a
function. Occasionally, such information may be global. This information may he exploited
in two ways. T h e most important way is by crossover. Once conjugate schema have been
identified, these portions of vectors may be crossed over with a minimal disruption in the
information upon recombination. Making use of the conjugate schema basis minimizes the
size of these groups of vector components, making the effective dimensionality of search in
these subspaces minimal. T h e second way is by mutation. lZilutations can be restricted to
occur within conjugate schema subspaces, again reducing the dimensionality of the problem.
Empirically, we have found that the crossover is much more important in this respect than
the mutation, though such a restriction of mutation operators does have a large effect in
some cases, as in protein design and folding in the HP heteropolymer model.

One possibility for the enhancement of conjugate schema-based methods is to include
the gradient vector in the basis used. Such an inclusion would make extremely favorable
mutations available via this mutation basis element. However, this is not the goal of the
conjugate schema, nor schema in general. T h e Schema Theorem refers to combinatorial
reduction via the use of schema that partition the search space into separate parts which may
be independently optiniixed. These parts are more robustly recombined, and mutations
can he restricted to occur within the conjugate schema, effectively reducing dimensionality.

\I'e may restate our goal in the following way.

Evolutionary Computation Volume 6 , Number 2

Conjugate Schema and Basis Representation

Because of these considerations, the gradient vector is not a natural consequence of the
search for conjugate schema. We do not exclude the utility of using the gradient vector for
carrying out some mutations. We note only that it is not generally true that a gradient vector
will lend itself to functional separability.

Let us consider again our trivial example functionf(3) = ~ 1 ~ 2 . We already noted that
the function may be rewritten as

(1 7)

We saw in Section 3 that the transition to another basis yielded a more effective crossover.
Now, if our basis takes on the form

(18)

and we let ~1 = then f (3) = g(u,w) = h(u) + k(w), where h and k
are appropriately defined. This is precisely the result we were after when we defined the
conjugate schema. We identify the sets { u } and { w } as conjugate schema and note that these
are global. The use of these conjugate schema in the mutation basis allows us to optimize
one function separately from the other. Indeed, k is always nonpositive, and this forces us to
choose its optimum as zero, a value it reaches along the diagonal only. This type of insight
can be quite useful when considering bounded optimization problems, as we do in Section 7 .

If we graph the conjugate schema over the surface, we find that they are indeed variable,
but do not coincide with the gradient, as expected. This is not surprising, as conjugate
schema give us information about the local separability of the space, and not the optimal
mutation direction. There are instances when one ofthe conjugate schema basis elements will
overlap with the gradient, but this simply states that the direction of maximal improvement
lies entirely within one conjugate schema, not a surprising or unexpected occurrence. One
thing that the conjugate schema do provide, however, is information about how to obtain
the maximal vector that is less susceptible to boundaries. If one were to imagine a circular
boundary superimposed over the graphs in Figure 2 , we would see that the use of the gradient
a t the boundary would not help us to overcome the boundary, but the use of one or both
conjugate schema basis elements would.

As indicated above, the mutation basis is often most effective when one does not make use
of a single mutation basis. The conjugate schema basis found by solving for the eigenvectors
of the absolute Hessian, defined in the appendices, provide a convenient way of continually
modifying the mutation basis, providing a basis that will readily change throughout the
search. The crossover basis, Bc, can be found computationally in two steps: (1) Find the
eigenvectors of the absolute Hessian matrix, or the matrix formed by computing the Hessian
matrix and take the absolute value of each of its components. (2) Multiply each row of the
eigenvector matrix by the current position of the population in the space and normalize. We
show in the appendices that this is precisely the matrix that yields the conjugate schema for
continuous problems, but that these conjugate schema are local. That is, they may change as
the position of the population, or the algebraic mean of the vectors in the population, in our
solution space changes. However, an analytic expression for these conjugate schema allows
us to, a t every step of the simulation, have an accurate ‘guide’ through the fitness landscape.

We may begin to understand how to characterize the various GA operators. If crossovers
are limited to crossovers in conjugate schema, then we will be combining building blocks

(Dl - a 2) &qw=@’

Evolutionary Computation Volume 6, Number 2 137

Sanza T-. Kazadi

Figure 2. In these graphs, ~ v e hare the cotijugate schema (left) and the conjugate schema with the
superimposed gradient vector (right). The fact that there are three unique vectors at most points, and
that each rector is different a t different points in the space, illustrates the locality of the conjugate
schema structure and also that this structure does not, in general, include the gradient, although, in
some cases, the gradient is coincidentally identical to one of the conjugate schema basis elements.

during crossover. It can be shown (Kazadi, 1997) (and we do so in the appendix) that the
existence of conjugate schema implies separability, as given above, and so any crossover
operator built in this way will be ‘sorting out’ the schema. ‘The reproduction operator will
remove those elements from the population that have low function values. Together with
the crossover operator, this produces a sort-purge algorithm. Thus, by paying attention
to how these crossovers are accomplished, we will develop an efficient sorting algorithm,
particularly in, but not limited to, large populations. If’e return to this characterization of
operators in Section 6.

5. Approximations to the Conjugate Schema

T h e conjugate schema is a mathematical construct formed by the use of differential relations,
and is thus, by definition, local and variable. In inany cases, the conjugate schema cannot
be generalized to more than neighborhoods. Other times, an analytical expression for the
absolute Hessian and its eigenvector matrix is not available. If this is the case, then one
must create methods for estimating the conjugate schema numerically. Once this is done,
the search may resume, and should be more effective than its predecessor. Suppose that
the function that we have chosen is indeed analytical. For instance, suppose that we have a
function

f’(x,y) = -yy sin (.Y) sin (y) (19)
whose graph is shown in Graph 1. This function has the Hessian

y sin (11) (2 cos (x) - s sin (x))
sin (,I) + y cos (y)) (sin (x) + .Y cos (x))

(sin (1,) +y cos (y)) (sin (x) + x cos (x)) H = ((.
x sin (x) (2 cos (y) - sin (y))

tvhose eigenvectors are wildly varying and are analytically difficult to write out. In order
to tackle this problem, one might try to solve the general eigenvector problem analytically,
yielding fast computational solutions. However, this is iinpossible to do in large-dimensional
cases, as the algebra quickly becomes intractable, even with the aid of symbolic computer
progrmis.

138 Evolutionan Computation Volume 6 , iVinnber 2

Conjugate Schema and Basis Representation

Graph 1. Graph of functionf(x,y) = xy sin (x) sin (y).

Graph 2. Larger-scale graph of functionf(x,y) = xy sin (x) sin (y).

Consider two graphs (Graphs 1 and 2) of equation (19), in which Graph 2 shows more
global structure than Graph 1. This second plot has global behavior that might be exploited,
but will be obscured by considering only local conjugate schema. In this section, we discuss
two methods by which one might build suitable bases that have subbases that approximate
conjugate schema. In our study, we implement the latter of these two methods.

5.1 Numerical Hessian
The first method is a Straightforward extension of the theory of conjugate schema. In the
theory of conjugate schema, one seeks to minimize the functional

under changes of the basis. We have noted, and shall prove in the appendix, that the
absolute Hessian matrix achieves this desired goal in a small hypersphere around a point
in the n-dimensional space over which the function is defined. Each differential operator
of the absolute Hessian may be sampled numerically, yielding an approximate value for the
absolute Hessian. Once this has been done, one may solve for the eigenvectors of the matrix.

This method is quite straightforward, but still has some problems. Discretization in-
troduces problems with finding the ‘true’ value of the absolute Hessian. One must juggle
the questions of how small the step must be made when calculating the differentials. The
step size determines the accuracy with which the Hessian is calculated. Because of this re-
lationship, and the variation of the function in space, the decision on a step size might have
great repercussions on the conjugate schema eventually found.

Evolutionary Computation Volume 6 , Number 2 139

Sanza 7: Kazadi

In our sirnulations, we define a step size and a “smudge” parameter (T. The value of any
particular point is estimated as the average over a hypersphere of radius (T. By increasing c,
we can choose the level of locality our Hessian deals with. We estimate our Hessians using
50 points. This is a large number of estimations, but the estimate may be done with less
accuracy with as few as five. These estimations may be done by simply using new vectors
created in the population, thus obviating the need for any new fitness calculations.

Consider again the function

f (xy) = ”yy sin (.Y) sin (y)

with the I-iessian as given above. If we take (s , ~) = (1, I), the analytic Hessian becomes

0.20122 1.9093)
1.9093 0.10122

Nuinerically, we estimate the Hessian as

0.303044 2.043232
1.863924 0.134599

H = (

using a step size of 0.1 and a ”sniucige” parameter of 0.01. The eigenvectors of the analytic
basis are

n = ((0.70711 1, (0.70711))
-0.7071 1 0.7071 1

whereas those of the estimated are

n = ((0.70883) , (0.73785))
-0.70687 0.67 407

‘I’hese agree very closely, considering our purposes for them. If the step size becomes 5.0
with a “smudge” parameter of 1 .O, the absolute Hessian hecoines

0.2 05 042 0.2 7 3 82 5
0.254801 0.217083

I d = (
with eigenvector basis

Note that the eigenvector basis seenis to he quite resilient to changes in the absolute Hessian
estimation. These bases mimic that for the functionf (s,~) = y, thus apparently overcoming
the difficulty introduced by including the sine functions. Although local estimations involv-
ing small step sizes and “smudge” parameters seem to estimate the Hessian well, larger values
do not, in general. For instance a t (2, l) , the eigenvector matrix is

-0.90826) , (-5g:;N3j2Y2
while estimations using a step size of 0.1 antl “smudge” parameter of 0.01 give

0.99359 -8.2178 x lo-’
’= ((0.11301) ’ (0.9971

Conjugate Schema and Basis Representation

which velds a close match. However, using a step size of 5.0 and “smudge” parameter of 1.0
give

0.84015 -0.54186
= ((-0.54236) ’ (-0.84047))

which is likely a result of the differing global and local behavior, as these seem to more closely
agree with the Hessian off(x,y) = xy at this point.

This estimation technique is a rather straightforward and reasonably robust method
that requires minimal (quadratic) computation at sparse intervals. However, the compu-
tation of eigenvectors is problematic, and dense for large-dimensional problems, though
simplifications exist for symmetric matrices, as the absolute Hessian is. This technique is
not implemented here, though it may be in future studies. It would appear to be a useful
technique that is capable of taking advantage of the information continually made available
through mutation and crossover in the population.

5.2 Basis Rotation
An alternative method that is somewhat more computationally dense is called basis rotation,
and the resulting algorithm is called a rotated-basis genetic algorithm (RBGA). In this scheme,
one creates an initial basis and ‘rotates’ it iteratively to generate a new basis that has a smaller
functional dependence between basis elements. Suppose that we begin with a basis

h B = {?I,. . . , en}

First, the two basis elements 21 and 22 are chosen. Two new basis elements
h

e’l = 21 cos (0) +72 sin (0)
e’2 = e2 cos (0) - 21 sin (0) A
h

are generated such that they minimize the functional D, given in Equation (2 1). The next
two elements, 22 and 73 are then rotated, generating new elements e”2 and e’3. The process
is continued until the last element is reached, and repeated until the basis converges.

That this method will converge can be seen by the following considerations. At every
step, the value of D is decreased, yet it is bounded below by 0. Thus, the values of D form
a Cauchy sequence and must converge. That it converges to a unique basis may only be
argued if all pairs of basis elements are included in the basis rotation, a process that is more
computationally dense than that given. Since this point is more mathematics than method,
we mention it only in passing and do not attempt to prove it here. It is not known if such a
calculation will lead to a minimum basis, but it is clearly known that it will not, in general,
lead to the conjugate schema basis, as that basis is not necessarily orthonormal.

In cases where the eigenvectors are mutually perpendicular, such a rotation algorithm
may yield the conjugate schema matrix. In fact, this type of basis construction is capable of
finding, in every case, the mutation bases of the function f = xy, which may then be modified
to form the crossover basis. The mutation bases and the crossover bases are not, in general,
identical.

This method also has two main drawbacks. One constraint of the method is that it re-
quires the basis to be orthonormal. Since the conjugate schema basis may not be orthogonal,
this method will not be able to find the conjugate schema basis in general, except when it is
orthogonal. The second drawback is the discretization problem, as previously mentioned.
As in the previous method, differing step sizes may veld different bases, yet we have found

h h

Evolutionary Computation Volume 6, Number 2 141

Sanza T. Kazadi

this to be a minimal problem. The apparent resilience under changing step sizes of the con-
jugate schema basis calculation using the Numerical Hessian technique seems empirically
to extend to the basis rotation technique, indicating that there is more than an accidental
reason for this resilience.

Note however, that this method has the advantage of being derived directly from the
conjugate schema formalism. At every step, we reduce the functional that defines the con-
jugate schema. We will see that this adaptation is curiously successful on our test functions
during our simulations. We postulate that this is due to the overwhelming effect of the
adapting mutation basis, as this effect largely disappears when mutation is not dominant.

6. A Basic GA Test Bed

Throughout this study, a single, extremely simple model of the GA is used. Although many
other authors have discussed more ambitious models of the GAin which specific operators are
proposed (Davis, 1991; Eshelman & Schaffer, 1993), we believe that more will be understood
hy examining the GA through a simple model. The main advantage of this approach stems
from the fact that we need not concern ourselves with special purpose operators or carefully
crafted constructs. Instead, we deal only with properties of the GA that are shared by all
users of this paradigm.’ In order to more carefully examine the behavior of the genetic
algorithm on our optimization problems, we have further “retarded” the GA by limiting its
maximum step size so as to slow its convergence. \Ve define a step size to be the maximum
distance from a current vector that a new vector may be when created by mutation. Clearly,
not all algorithms have a well-defined step size, but we employ such a construct here. We
further define the retarded genetic dgoiithm to be a genetic algorithm that employs a step size
so small that it significantly adversely affects the speed of convergence as compared to larger
step sizes. In our simulations, the “unretarded” version is observed to converge in under
10,000 iterations in all cases, and in under 3,000 iterations in many cases. (24.879879 was
found in 2,999 iterations using the canonical basis for test function G7, while 24.653364 was
found in 2,999 iterations using the rotated basis for the same function.) Since this is not our
primary concern, we will not return to this point.

We first give a few comments about each G X operator, and then describe our model.
We assume that fitness is a well-defined real-valued quantity, which may be different for each
vector in our vector space, and we wish to optimize it.

6.1
In the basic GA paradigm, there are three main operators. The first is a mutation operator.
This operator is responsible for introducing new vector components to the population by
making an alteration in one or more elements of the GA. The second, the crossover operator,
is responsible for the sharing of components between vectors. By swapping vector compo-
nents bemeen vectors, the operator carries out the combinatorial rearrangement of vector
components. Finally, the reproduction operator is responsible for removing lower-scoring
individuals from the population, while enhancing the representation of higher-scoring indi-
\-iduals in the population. By removing vectors that have lower fitness from the population,
those vector components that cause a vector to score badly are removed, leaving a popula-
tion with a more desirable set of vector components. In this paper, we take the reproduction
operator to he fixed, as representational issues are not important for such operators.

The GA Operators and Search Space

1 Intlccd. inany uf thrso propcrtics are also shared lib- other stocha\tic sc,irch pimdipi i i~ . T h e upcoming i1iatheiiiatic:il ~ ~ i i ~ t r i i c t s
inin hc applied to those search pdrdipiiis as readily as to gcnctic .iIp~irithiiis. thouph thcir cfkcts iirc often quite different.

142 El olutionar?; Cornputation Volume 6 , Numlw 2

Conjugate Schema and Basis Representation

In our study, we take the space of all possible vectors to be a subset of the n-dimensional
space Rn. For this, we consider our population to be a set of n-dimensional vectors, whose
representations in any chosen basis can be written in the form

+ v = (q,. . . ,vn)

In this representation, the mutation operator (kf) may be defined as an operator that takes a
vector and modifies it by modifying one or more of the components. It is implicitly assumed
that the modification of each component is derived from an independent random distribution
with mean zero. Many researchers have shown the effectiveness of many different mutation
methods, but we choose to simply use a mutation scheme that randomly alters a given vector
component by adding to it a number dv; selected from a bounded, symmetric, uniform
distribution around zero. The bound is called the step size, which we adapt throughout our
simulations. We have commented that the step size doesn’t strongly affect the computation
of conjugate schema bases. Thus, we can choose any step size and this choice will not
greatly affect the use of the conjugate schema. We choose a particularly small step size in
each simulation, typically reducing it after 20,000 iterations once convergence has begun,
to allow our simulations to evolve slowly and for their relative behaviors to be measurable.
We carry out several bounded mutations per iteration, with probability pz of carrying out
n mutations per iteration. The constant pm is dubbed the mutation probabijity, which in this
case refers to the probability of a single mutation of a single vector component. The vector
components are randomly chosen from the vector, and so this is an example of a uniform
mutation operator.

The crossover operator (Cr) is equally straightforward in this representation. The
crossover operator takes one or more elements from one vector and swaps it with the same
element(s) from another vector. For a given n.offoverprobabijityp,, we have the probability of
k crossovers given bypt. This is a form of a uniform crossover that does not require a specific
number of crossover events to occur at each iteration, allowing us to have single crossover
events and to have multiple crossover events. This is desirable, as it is more amenable to
changing crossover requirements.

6.2 Population Initialization and Parameters
In all our simulations, the population initially created is uniform; all elements of the popula-
tion are initialized with the same vector. This is quite different from the standard technique
found in the literature, in which a random population is initially used. This paradigm al-
lows us to examine the initial behavior of the algorithm as well as the long-term behavior.
Initial behavior is typically dominated by mutation, whereas longer-term behavior is in-
creasingly dependent on crossover. Although we found no discernible difference in the final
performance of the algorithm due to this modification in comparison to the random initial
population model, the initial dynamics are quite different.

Other standard parameters that we made use of are the population size, the mutation
probability, and the crossover rate. These are set to population size 30, mutation rate 0.01,
and crossover rate 0.4. While the crossover rate would seem to be low, we find no significant
improvements by increasing the crossover rate, and chose not to waste the computational
resources.

As we will show, this model of the GA is highly dependent on the use of specific bases.
The representation of the vectors in our model will change if the basis is changed. This will
also affect the sharing of “good” vector components due to crossover and the discovery of
new advantageous vector components introduced when undertaking a mutation.

Evolutionary Computation Volume 6, Number 2 143

Sanza '1: Kazadi

6.3
As discussed in Section 3 , the use of differing mutation bases may be more advantageous than
a single mutation basis. On the other hand, the use ofa specific basis, namely the conjugate
schema basis, seems appropriate for the crossover operator's representation. As we require
a continually changing mutation basis and an adaptive crossover basis, we combine the two
throughout the simulation.

In our simulations, we use nvo differing mutation bases. T h e first basis is the canon-
ical hasis, while the second is the closest available approximation of the conjugate schema
basis. 14% alternate these each iteration, as the conjugate schema-based basis is updated each
500 iterations. T h e combinatioii of the two s e e m to outperform either one separately on
mutation-dominated improvement.

'The crossover basis is either the canonical basis in the canonical GAS, or generated by
the conjugate schema, with each one acting separately in a given simulation. In the canonical

over paradigms, we use only the canonical hasis to carry out crossover, whereas in each
of the conjugate schema paradigms (rotated basis or analytic) we generate new bases by one
of t-he nvo methods and use that to c a r q out crossovers. One of the difficulties also in
the use of the conjugate schema basis is that it is continually changing as the population
~ ~ i o v e s in the search space. Thus, a basis that might be appropriate a t one point in the
search may be inappropriate at a second point in the search. This requires the basis to be
recalculated when it has changed significantly. In our simulations, we empirically chose
an interval of 500 iterations to c a r n out this calculation. For small-dimensional problems,
this is a simple calculation, but for larger-dimensional problems, the calculation through
basis rotation becomes coniputationall~ dense. Our simulations were small enough that this
wasn't ''1 problern. For bases with an analytical expression, this calculation could he done off
line, and the recalculation w a s very quick.

'I'he design of each ofthese operators defiiietl the algorithm. Thus, those algorithms that
employed only the canonical hasis are dubbed the CGX, those in which the conjugate schema
bases Lire analytically found are called the CBG-4, and those in which the conjugate schema
are found by hasis rotation are kno\~-i i as RRGA. Conjugate schema bases that were used
for crossoiw- were calculated in the follou-ins way. First, the mutation basis was generated
by using either the analytic expression for conjugate schema or basis rotation. Once this
was tione, each coinpoIieiit o f the basis had its vectors altered hy multiplying the vector
components by the \ d u e of the population's current positions' vector components. This
process is called positioiiNl i:",i'hting. T h e resulting inatrix was then the crossover matrix.

Bases for Mutation and Crossover

6.4 Constraints
\Tk chose a particularly siniple method o f enforcing the constraints for each of the test
fiinctions. T h e subject of how to introduce constraints is a topic of continuing work, and we
do not make any claiins as to the generalit\. of these methods. In all of our sample functions,
constraints were inodelet1 as

f(, (7) 2 0 (3 3)

or

Thus, in each test function we incorporate a penalty function that linearly penalized the
xtiouiit by which these were not satisfied. Thus, our peiialg. function was modeled as

pt, = .+g (f;,) (3 5)

144

Conjugate Schema and Basis Representation

for the inequalities and

for the equalities, where

-x x < o
g (x) = { 0 x > o (3 7)

and where the constantA was chosen empirically for each function. Again, since our goal here
was not to explicitly produce simulations that yelded “best” results, we are not concerned
with creating automatic routines for assigning these constants and are quite happy to do this
assignment by hand.

7. Test Functions

In this section, we present the results of our simulations. These simulations have all been
built using the same genetic algorithms toolbox (a general purpose collection of routines
implementing both traditional GA paradigms and methods introduced here) and the same
base program. The only difference in all simulations is the basis of mutation and crossover
and in the function being optimized.

An important consideration when using these algorithms to optimize these functions is
the way that the optimization is carried out, in terms of how the constraints are handled. In
our simulations, as discussed in Section 6, constraints are handled by adding linear penalties.
In at least one case this technique is not capable of making the algorithm find vectors that
bring this constraint to zero. This is because it is often times possible to find vectors that
successfully trade off the penalties of the constraint enforcement with improvements in
unconstrained variables. How constraints are imposed is an important and ongoing area of
study. However, in our application, we are not interested in such questions, as we want only
to understand how best to apply the conjugate schema structure of the search space. We
present one function in which infeasible vectors minimize the function. The failure here is
not in the ability of the search algorithm to find the minimum, but rather in the designer’s
ability to design rigorous enough constraints to make the search of the infeasible region of
space disallowed.

The functions of Michalewicz and Schoenauer (1996) were tested in our study. Because
of the nature of these functions, only five were able to be tested using the analytic conjugate
schema formalism. A sixth ‘home-grown’ (HG) function’ was also tested using the analytic
conjugate schema. The remainder were tested exclusively with the basis rotation strategy
outlined in Section 5.2 and using the canonical basis. As the functions can be readily found
in the literature (Michalewicz & Schoenauer, 1996), and their exhaustive listing is extremely
long, we list only several functions, but omit their constraints. One function, G7, has already
been given in Section 3 , and two more will be given in this section. We list their maxima or
minima in Table 1 and those found by our methods.

Table 1 gives the maxima or minima of the test suite of functions, as found in the
literature. G4 appears with a star, indicating that the value given is that found during the
course of our simulations, and replaces the current literature value. Table 2 gives the average

2 T h e home-grown function is givrn $ f (l) = c:=, s2i- ,x2i . This function is siinilar to the simple function discussed in
Sections 2 and 3; I t should be easy for the conjugate schema GA to optimize it cornparcd to thc canonicd (;A\. Thc constraints
in this case are given by zj 5 10.

Evolutionary Computation Volume 6 , Numher 2 145

Sanza T. Kazadi

Max/Mi 11

Min
Max
1\11 ax
lllin
-Uin
,Min
Min
Max
hlin
Min
Min
Max

Table 1. This table gives the set of maxima for the functions that were used in this study. T h e starred
function is that for which the miiiimum value is reported for the first time in this paper. Those with
plus marks are functions for which the maximum was verified with our model, though often times
requiring long (more than 10’ iterations) runs. \.lie did not find the value quoted in Michalewicz and
Schoenauer (1996) for the huiction G5, as the quoted value was found to be unfeasible.

Value
-15

0.803553 (so far)
1

-3 1010.437912
5 126.4981

-6961.81381
24.306209 1

0.1
680.6300573
7049.3 3092 3

0.75
500

Function name
G1’
c; 2
G3
c;4 -
G 5
c;6+
Gi’
G8’
G9’
G10
G11
HG‘

Table 2. l’his table gives the average performance of 10 runs on the test functions. All simulations
were 100,000 generations with the exception of the last one, which was 10,000 generations.

Average performance on test functions
CGA

-9.086 i 0.660
0 3 5 1 f 0.036
0.486 f 0.0008
-30994.2 i 6.4

101 7.5 i 0.2
-6938.0 f 0.1
290.0 i 20.5

0.002741 f 0.0008
960.0 i 0.8

0932.5 f 918.2
0.889 f 0.005

246.7 f 0.8

CBGA
-

-

-

-30952.5 i 10.3
3017.2 f 0.4

142.8 i 14.8

884.6 i- 7.1
5175.8 * 286.5

452.3 f 15.1

-

-

-

KBGA
-12.1 f 0.3

0.329 f 0.02s
0.501 f 0.045

-30998.3 i 4.1
41 18.5 i 59.6

-6961 5 6
29.1 f 0.8

0.09.5795 f 2 r - j

900.7 i 1.3
2369.3 i 153.2
0.875 f 0.005

198.1 f 7.1

performance of each scheme over 10 runs, excluding the analytic conjugate schema runs that
could not be run. Table 3 gives the best value found during the search and the algorithm
that produced it.

During the course of our simulations, the maxima or minima reported in the literature
were found in seven of 12 cases, a striking fact, since our intention was not to optiinize
our routines to find inaxirna efficiently. In six of those cases, the niaxiina reported in the
literature were confirmed, while in one of those, a new maximum was found. In five of 12

Conjugate Schema and Basis Representation

Table 3. This table gives the best performance on these problems obtained in our simulations. All
simulations are “retarded,” limiting their ability to find the maxima in 100,000 steps. The starred
function records the best-known performance on this function, while the double-starred function has
a best performance that is due to its smallest constraint levels on this particular run (0.49). Though
the other models scored lower final function values, they were much more highly unfeasible.

Function name
G1
G2
G3
G4“
GS**
G6
G7
G8
G9
GI0
G11
HG

Best performance
MadMin
- 13.7392 56

0.62
0.655493

4362.190060

26.67623 1
0.095798

846.5 1 3 489
2100.143456

0.847067
497.048 187

- 3 10 10.43 79 12

-696 1.5 1

Algorithm
RBGA
RBGA
CGA

CGA/RBGA
RBGA
RBGA
RBGA
RBGA
CBGA
RBGA
RBGA
CBGA

cases, the maxima were not found; the reasons for this result will be discussed in the next
section. However, the failure of the algorithm to find the maxima or minima of the function
in question was in many cases due to an inefficient way of handling constraints, rather than
from a failure of the search algorithm itself. In all but two cases, the CGA scored lower than
or equal to one or more of the conjugate schema-based algorithms, CBGA and RBGA. In
only one case did CGA score higher, when averaged over all 10 runs. However, even in this
case, the RBGA was able to find a higher-scoring peak than CGA. These results indicate that
the conjugate schema-based algorithms CBGA and RBGA are capable of taking advantage
of local and global information more efficiently than CGA.

8. Discussion

In order to truly understand how these algorithms are behaving, we need to dig somewhat
deeper. In this section, we will discuss several of the simulations in detail. We will also discuss
the role of mutation basis variation in aiding the generation of lower-level convergences.

8.1 Individual Cases
We consider first the case of function G2, given by

In two dimensions] this function is as shown in Graph 3 , which has a relatively flat global
structure, with all near-optimal values located near the origin. This function has a Hessian
that is algebraically extremely complicated, and cannot be given here. Because of the nature
of the function, the Hessian is rapidly varying, and this means that the eigenvector matrix

Evolutionary Computation Volume 6, Number 2 147

Sanza T. Kazadi

Graph 3. Graph of function G?(T') etc.

Graph 4. Larger-scale graph of function GI(??) etc.

is also rapidly varying. Moreover, there is little global structure to take advantage of, as the
function is uninteresting far from the origin. The CBGA was not implemented, since there
is no simple analytic form of the conjugate schema matrix. The RBGA was implemented,
but as the current best basis for the search changes greatly at each step of the search, it is not
expected that the RBGA will have a significant improvement over the canonical GA. The
performance is expected to depend, in both models, on the initial position of the population.

Other functions behaved well under our formalism. Noting that the maximum of this
fknction is reported to be 0.803553, we expect that both of the optimization methods being
used here will fall short of this. Since the RBGA is an effective way of climbing narrow peaks,
we expect that it will he more consistent than the CGA. We also expect that the RBGA will
be easily caught by one of the many peaks, trapping it in local maxima. Inspection of Table 2
indicates both of these effects. The variance of the RBGA sainpling is smaller than that of
the CGA, indicating a more uniform final solution set. Moreover, the homogeneity of the
solutions indicates only local search, as expected. A different initial population might have
served to alleviate this problem. The best values over 10 runs of the RBGA and the CGA
paradigms were 0.62 and 0.53, respectively, from different random number sequences. As
shown in Figure 3 below, while the best performance of the RBGA has a higher maxima than
the best of the CGA on this problem, the CGA outperforms the RBGA on average. This
fact notwithstanding, we find also that the CGA is not as reliable as the RBGA and varies
more wildly than the RBGA. Other functions behaved well under our formalism. The most
striking of these is the H<; function. This function has the form

/= 1

constrained by

14.8 Evolutionary Computation Volume 6, Nuiriber 2

Conjugate Schema and Basis Representation

Conpgate Schema and Canonical Bans GA ws on 61

3 0553

30361

30168
OC 199 !98 597 796 93.5 1!4L 1393 159'2 '791

Iterrtlon It (x5aw)

Figure 3. This figure gives the performance of the CGA and the RBGA on G2. In this case, the
CGA outperforms the RBGA, but it still fails to find the maximum function value. Moreover, both
paradigms are prone to quick convergence and sporadic fluctuations of the population. As we expected,
the basis rotation does not help much on this function.

which has the Hessian

H =

(0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 \

with the eigenvector matrix

1 E = -

' 1 0 0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 0 0 0
0 1 - 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 1 - 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 - 1 0 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 - 1 0
1 0 0 0 0 0 0 0 0 -1

\

Evolutionary Computation Volume 6, Number 2 149

Sanza T. Kazadi

This basis is a global conjugate schema for this function, and represents one of the simplest
functions for which we expect the conjugate schema to do better than any other model.
The crossover basis is given by

Cr = (43)

'This basis is clearly not orthogonal and cannot be approximated by a orthogonal basis.
Thus, we expect that of the three GA paradigms, the pure conjugate schema paradigm
will outperform both other algorithms. Moreover, since each basis element is a substantial
departure from the canonical basis, we expect that any basis approximates many of these.
O n the other hand, our rotation algorithm will alter all vectors significantly. None will
approximate, after one or two iterations, the true conjugate schema because of the constraint
that the basis must be orthonormal. Thus, a single mutation will affect multiple vector
components. Since a t most two vector components need be altered simultaneously, we
expect that the basis rotation will cause a more problematic algorithm, rather than aiding
the algorithm in this case. Because of these concerns, we expect that the conjugate schema
will have the best performance, followed by the canonical basis GA, and finally followed by
the rotated basis GA.

Dynamically, we expect very similar behavior over an initial population that is uniform
and initialized a t the origin. This is because all of the vectors of the conjugate schema are
nearly identical to a rotated canonical basis, with a small functional dependence. However,
the farther the population is from the origin, the better we expect the conjugate schema model
to do with respect to the canonical model. The reason is that the mutations will be more
likely to lead in advantageous directions, and as one goes on, the effect of correct crossover
becomes particularly important as opposed to inefficient crossovers from an inappropriate
basis.

'The average data over 10 runs is plotted in Figure 3. Initially, all of the algorithms
perform similarly. In Figure 4, we plot the average behavior of the various models over
10,000 generations. The conjugate schema model clearly dominates within 500 generations
and gives a near-optimal value within 10,000 generations. The next-best performance is,
as predicted, the CGA, followed closely by the RBGA. All of these behaviors have been
anticipated by consideration of our model.

A more striluiig example of the difference in performance due to the choice of basis is
given in our simulations' performance on the optimization of the function G10 shown in
Figure -5. This function, given by

and subject to constraints involving eight variables has a theoretical minimum of2,IOO. The
constrajnts make this minimum infeasible, although it is possible to get very close and have all
hut one constraint satisfied, with the last constraint smaller than 0.4. The performance ofthe
rotated basis model completely outstrips that of the canonical basis model and the conjugate

170 Evolutionary Comput'ition Voluinc 6, Number 2

Conjugate Schema and Basis Representation

f 300- -
5

Performance of GA Paradigms on HG
500, I

+
+

* -

+
_ -

2 4 6 8 10 12 14
Generation Number (~500)

L
16
I

18 20

Figure 4. This figure gives the performance of the three GA paradigms on the HG problem. The
CBGA model clearly dominates, yielding a near maximal value of 500 in 10,000 generations, while the
other two models lag significantly behind.

schema basis model, even though the latter also does significantly better than the first. While
the canonical basis model makes almost no progress in 100,000 generations (although the
larger step-size models had no trouble optimizing this function), the rotated-basis model finds
a minimum value at 2100.143456 in the same number of generations, reaching almost that
value in a fraction of that number of generations (<10,000). The conjugate schema model
finds a minimum of 4332.699078. All solutions, however, are infeasible. This is viewed
as a failure in the inclusion of the constraints, rather than the optimization method, and
more successful algorithms must use more aggressive optimization methods. It is somewhat
alarming to note that the canonical model seems to have made almost no progress. As stated
in Section 5, the simulations have been retarded, making it difficult to optimize the functions,
by using small step sizes. For this reason, the canonical model made minimal progress over
the entire simulation, though its apparent lack of progress is augmented by the logarithmic
scale. However, with the same step sizes, both of the conjugate schema-based algorithms
were able to find much lower minima.

That the conjugate schema-based algorithms should be able to do better than the canon-
ical basis is expected from the knowledge that the absolute Hessian matrix is given by

H =

(0 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 1
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

(0 0 1 0 0 0 0 0

(45)

giving the eigenvector matrix

Evolutionary Computation Volume 6, Number 2 151

Saiiza 'T: Kazadi

Peilorinance of GA Models o n G 10
- ~ ~~ ~~ ~ _ _ _ __

Figure 5. T'his figure giws the performance of the G.4 paradigms on GIO. T h e best perforinance
is given by the basis rotation paradigm, followed by the conjugate scheina basis, and a distant last by
the canonical basis. \.\'hat s e e m to have happened here is that the conjugate schema, fommed over
an approximated functional form, has impro.c-ed the search, but not quite to the extent that the basis
rotation is capable of doing.

E =

' 1 -1 0 0 0 0 0 0
0 0 0 O f i - f i O 0
0 0 0 0 0 0 f i -a
0 0 - 1 0 1 1 0 0
0 0 0 - 1 0 0 1 1
1 1 0 0 0 0 0 0
0 0 1 0 1 1 0 0

\ o 0 0 1 0 0 1 1

The fact that this matrix is orthogonal indicates that the RBGA should work very well on
this problem, assuming t h a t the basis rotation algorithm can find this basis. That these are
global conjugate schema also indicates that the conjugate schema method should work very
well. I-Iowever, it is difficult to know how much local behavior we will run into, and so one
expects that the basis rotation will do better, which I)? its evaluation i s more global than the
conjugate schema. This behavior is observed.

Through this work, we were able to efficiently find a novel maxima, and to verify
the niaxirna of at least four other optimization problems in the framework of the current
simulations (longer simulations, of course, yielded better results). Other simulations were
able to verify other maxima published in this test suite more efficiently than with the canonical
bases. These data are given in Table 4. More generally, in every simulation except two, the
optimum average final state is found by one of either the basis rotation or the conjugate
schema. T h e dramatic improvement of the RBGX in the initial steps of several simulations
indicates that the adaptive capability of the R R G 4 allowed it to take advantage of more
useful mutation bases, an advantage not shared in other cases. In most cases, the conjugate
schenia state did not produce particularly encouraging results. However, notable exceptions
to this rule came from G!, and HG. These problems possessed unchanging global conjugate
schema and thus could be easily exploited. RBGAYs advantage made it a considerably better

152 Evolut ionan Coinputation L'olu~iie 6 , Numher 2

Conjugate Schema and Basis Representation

Function
G4
G6
G7
G8
HG

Table 4. These functions’ maxima are verified during our simulations. In one case (G4), a new
minimum is discovered.

Maxima found New (Y/N)
-31010.437912 Y

696 1 .S 1 N
24.306 N

0.095798 N
500. N

performer, supporting conjugate schema-based algorithms. Other functions did not contain
such conjugate schema, and so the bases were approximations to the conjugate schema except
directly after an update (an update occurred each 500 generations). These approximations
clearly did not function well.

On the other hand, the basis rotation did yield excellent results, as did the conjugate
schema when they were global. Both of these results support the theoretical underpinnings
of conjugate schema, and they indicate that conjugate schema are important elements of
global search that should be carefully considered during the search.

8.2
In the previous discussions, we have illustrated the use of the basis as a driving force in the
success or failure of the GAparadigm. We have seen that in some cases, the conjugate schema
basis is very effective. In other cases, however, approximations to the conjugate schema are
more effective, as in the case of basis rotation. In still other cases, the canonical basis was as
effective a search basis as any. However, this knowledge does not put us much closer to an
understanding of why these bases should cause better or worse performance. In this section,
we will attempt to ascertain the root of the success or failure of a particular basis.

One characteristic of the crossover basis that seemed to serve as an indicator of the
usefulness of the algorithm was its variation over a run. That is, in both the conjugate
schema model and the rotated basis model, we use bases that vary as the run progresses. It
was noted that the variation of the mutation and crossover bases was commensurate with the
success or failure of the GA paradigm.

We define the pseudomeasure between two bases, B1 = {?I ,?I, . . . ,’&} and Bz =

{e/I ,e’2, . . . , e /~hF} as

The Role of the Basis

h h h

This is not a metric since it does not obey the triangle inequality, but it does serve to illustrate
the effect of the variation of a basis on a GA performance. That is, if the basis is varying
over iterations, a graph of this pseudomeasure will be varying as well, even though it gives
nonspecific information about the relative distance between bases.

Let us reconsider the function HG. On this function, the conjugate schema basis’
performance dominated the other two models. We note that the canonical basis’ variation
over a run is zero, and its performance is not of interest in this section. On the other hand,
we would like to know why the rotated basis did not do as well as the nonrotated basis.

Evolutionary Computation Volume 6, Number 2 153

Sanza 7.. Kazadi

Variation 01 Canonrcal Crossover Basis over GA Run
118- v- -

Figure 6a. 'I'he variation of the crossover basis over one run of the GA paradigm for the RBGA is
rather monotonic. As seen in Figure 3, the method did not succeed in optimizing the function. This
may lie a useful fingerprint for useful bases.

Vanation ot Conlugate Schema Crossover Bass over GA Run

1 -__ 111 4-

1

1104

I

0 2 4 6 8 10 12 14 16 18
t102---

Generalion Number (~500)

Figure 6b. This figure illustrates the crossover basis variation due to adaptation over the course of
one CBG4 run. M'e view the variation of the basis as an indicator of good progress, as we empirically
find that small variation accompanies stagnation.

O n e clue is that the crossover basis seemed to vary monotonically, and over a wide range,
during any run. This variation is shown in Figure 6a. In this figure, the variation is more
or less monotonic, and takes place over a range of -7. O n the other hand, a nonmonotonic
variation was observed in the distance of the basis from its original basis over the simulation
of the conjugate schema basis. (See Figure 6b.) T h e amplitude of this variation had a
considerably 5maller range than that of the conjugate schema basis, but was less predictable.
From this data, we would begin to conclude that the adaptation of the basis is an important
tool in the success or failure of the paradigm.

This last point is further supported by a closer look a t the performance of the conjugate
schema and basis-rotated models of the GAon the function G7. In this function, the variation

154 Edutionary <:omputation \'oluine 6 , Nnrnber 2

Conjugate Schema and Basis Representation

Fitness Minimization during one Run on G7
5 . 5 , I I I

I

lo4
1 2 3 4 5 6 7 8 9 10

Generalion Number

Variation of Basis in one Run on G7
2

I

lo4
1 2 3 4 5 6 7 8 9 10

Generation Number

-6'

Figure 7. This figure gives the effect of basis variation on the convergence of the GA paradigm in
the RBGA. Initially, the basis rotation has been turned off, and the scheme converges to a value that
i s -200, much higher than the minimum. Once the basis variation is turned on, as can be seen in the
lower graph, the fitness value falls dramatically to nearly the minimum.

of the basis closely follows the optimization of the function. Optimization occurs while the
basis is varied, but convergence occurs once the basis variation is ceased. This result can be
seen quite strikingly in Figure 7, which gives the effect of basis variation on a simulation that
had already converged. As one can see, the convergence is alleviated, and the simulation
finds a more minimal fitness value.

Typically, basis variation may be used as a measure of the specificity of the basis being
used. If a large variation is found, then the basis is adapting to the search, whereas if a
monotonically varying or set basis is being used, the search is independent of the basis.

9. Concluding Remarks

The importance of the correct representation of any problem cannot be overstated. This uni-
versal difficulty finds its home in all areas of science from theoretical mathematics to physics.
Any improvement in the representation will result in more useful ways of computationally
attaclung a problem. We have seen that in real-encoded genetic algorithms, representa-
tions deriving from conjugate schema provide improved performance both in terms of the
convergence speed and maxima located.

Over a space of binary strings, representational issues are also important. It is not
difficult to construct an example of a simple function over which modification of single
bits is useless, but modification of many bits together will result in improvements in the
string's current function value. At least one researcher has found a representational issue
for crossover that serves to support the usefulness of conjugate schema. Syswerda (1993)
investigated the usefulness of uniform crossover over several standard test problems. His
conclusion was that the simulations malung use of uniform crossover were more successful
in combining useful information than one or two-point crossover. It is straightforward to
show that schema define conjugate schema if they do not overlap in a string. Thus, finding

Evolutionary Computation Volume 6 , Number 2 1 5 5

Sanza T. Kazadi

of conjugate schema, which may be carried out by rnalung use of the basis rotation protocol,
may s e n e to aid in discretely encoded problems.

T h e preceding fact is quite compelling. If we consider the problem of putting specific
elements together, if the elements are not contiguous, then the uniform crossover will be
more likely to transfer information between two vectors successfully. This is similar to the
use of conjugate schema because it allows arbitrary schema to be addressed with a nonzero
probability, while the previous models typically allow it to be addressed with a zero probabil-
ity. Thus, uniform crossover, like conjugate schema crossover, helps to preserve information.
On the other hand, if our prescription for basis rotations is sound, we may bypass uniform
crossover, and use conjugate schema subbases. In fact, there are many problems outside of
the restricted realm of the genetic algorithm for which this type of analysis can be useful.
In molecular dynamics, conjugate schema will produce motion eigenvectors, while in sim-
ulated annealing algorithms (Koonin, 1986) the combining of several directions may aid in
the creation of useful mutations, yielding better inaxirnal states. If this formalism can be
used i n discrete bounded vector spaces, then this formalism might be useful for both protein
structure determination and Monte Carlo integrations. These possibilities deserve more
careful study.

Acknowledgments
I would like to thank Drs. Jerry Solomon and Steve Mayo. This work was completed
under their auspices, and both provided the time and location for the work to he completed.
Dr. Solomon provided a backboard for the theoretical development of the theory ofconjugate
schema. It was he who helped me to begin to ask the right questions about the genetic
algorithm.

I would like to thank Dr. Scott Page. It was Dr. Page who first introduced me to the
genetic algorithm. It was he x-ho introduced me to the building block hypothesis, and who
helped me develop earlier versions of this work. His assistance in the steps leading to the
present work was invaluable. His critiquing of the final forms of this paper was invaluable.

I would like to thank Dr. Chris Adami for his long discussions with me about this paper.
It was his discussions that helped me to finalize the form, and stress important points in the
paper. Under his guidance, I was able to extract the details from the theoretical work in a
way that made the paper clearer and more incisi1.e.

I would like to thank ak-i Hershowitz, who provided useful coinnients which helped me
to finish writing this paper. His careful attention to eve]? detail of the paper was greatly
appreciated. I would like to thank the reviewers of this paper for their useful comments.
This was invaluable in helping to rearrange and focus the paper.

This work is dedicated to m y wife, Jisoo Park.

Appendix A. Proofs of Various Facts

Let us define the functional D. Given a real hnct ionf ' over a linear space r and given an
orthogonal basis {z,. . . ,.G} is given by

11 = 1 D,/

where

D,, = if (z) +f' (;;;(; + f,X? + F / S / - -1 f' (., + t, "; -

(141)

Conjugate Schema and Basis Representation

This will form the basis for what is to follow.

A. 1 Absolute Hessian
First, we prove a proposition which we will use in our proof of the main result. We assume
that r is an n-dimensional vector space.

PROPOSITION 1 : Given a linear operatov-A overa linear spacer, asdeJinedabove, the minimization
of D carvied out over the inner product finction f (x) = (Axlx) picks out the eigenvectors of the
operator A.

PROOF: First, we assume tha t we have a linear space l- and that A is a linear operator over
r with nondegenerate and nonzero eigenvalues {kl, . . . , K N } . We assume that r contains a
zero element denoted 0 for which x + 0 = 0 and A0 = 0. Consider

D, = i f@) +f ($ 1 + $1) -f (4,) -f ($1) I

f (cp) =f (4 1 + w,) = k,a2 + k,b2

f (4) =f (b+1 - a$,) = k b 2 + 5.’

(A3)

Now, if a and b are real constants, and if cp = a$+ + bg, and q5 = b+, - a$,, then

644)

(A5)

f(P.4) = f ((a + b) $ t + (b - a) + ,)
=

= 2ab (k, - k,) + (a2 + b2) (k, - k,)

k, (a + b>’ + k, (b - a)2

so that

D, = 12ab (k , - k,) I
which will be zero, in general, iff ki = k3 or either a or b is zero. Since we already assumed
that the eigenvalues are nondegenerate and nonzero, this requires a or b to be zero, meaning
that the functional is minimized iff all directions q5 and cp are along the directions of the basis
elements. 0

We use this fact in the next proof of our main result. Let us recall first that if two

First, we recall that the Hessian matrix is calculated from a continuous function by
eigenvalues of a symmetric matrix are nondegenerate, the eigenvectors will be orthogonal.

setting th

H =

yth element to the second order differential &. In other words,

a2f a2f . . . a2f
ax.,.ax, B X , ~ ~ ~ , ax, axN

The absolute Hessian matrix is the same as the Hessian matrix with the exception that
each element of the matrix is the absolute value of the corresponding element from the
Hessian matrix.

Evolutionary Computation Volume 6, Number 2 157

S a n n T. Kazadi

.4H =

PRoi)[.: Again, let us consider D,.

D,,= if (.i) + f . (Z + F , ~ + € / ~) - f - (z+F,F) -f (Z+€J) l

S o u , for sinall F , , we have

and for sufficiently sniall F , and f i , we have

AlO)

so that

Together with the first proposition, this proposition proves our assertion that the eigen-
vector matrix of the absolute Hessian matrix will be the minimized form of D.

A.2 Separability
Our next proposition indicates that conjugate schema induce separability in the function.
This means that one may separately optimize the parts of the vector, and this will yield the
global optimum.

PKoPi)Si7'I<)N 3 : Given f :
then if-4 m r l B m e ionjzigdte sclxnin, then

-+ Y?, i f ' d is n bnsi.sfol- r, arid A - B = flfolnrs N sepnmntion qfd,

PROOF: Suppose everything is as given above. Then given any t , 6 > 0, b, E A and bi E B,

1-58 Evolutionan Cornputation Volurne 6, Nuiiiber 2

Conjugate Schema and Basis Representation

If(2)+f (2+€X+6T) -f(2 + € q -f (2+6$)/=0

This means that

f(2)+f (2+J+6T) =f +f (1+6$)

which can be rearranged to read

f - (2 + € ; + 6 q -f (2+6T) =f (;i+€Z) -f (2)

and finally,

- -
€ E

so that if we take the limit, we find that

or that the partial derivative is completely independent of any of the elements in the opposite
conjugate schema. 0

References
Arabas, J., Mulawka, J,, & Pokraniewicz, J. (1995). A new class of the crossover operators for the

numerical optimization. In L. Eshelman (Ed.), Proceedings of the Sixth International Conference on
Genetic Algorithms (pp. 42-47). San Mateo, CA: Morgan Kaufmann.

Battle, D., & Vose, M. (1993). Isomorphisms of genetic algorithms. Artij;cial Intelligence, 60, 155-165.

Davis, L. (1991). Hybridization and numerical representation. In L. Davis (Ed.), The Handbook of
Genetic Algorithms (pp. 61-7 1). New York, Ny: Van Nostrand Reinhold.

Eshelman, L., & Schaffer, D. (1993). Real-coded genetic algorithms and interval schemata. In
D. Whitley (Ed.), Foundations of Genetic Algorithms 2 (pp. 187-202). San Mateo, CA: Morgan
Kaufmann.

Forrest, S., & Mitchell, M. (1992). Towards a stronger building-blocks hypothesis: Effects of relative
building-block fitness on GAperformance, Technical Report SFI-TR-92-06-029, Santa-Fe Institute.

Holland, J. H. (1975). Adaptation in natural and artificalystems. Ann Arbor, MI: University of Mich-
igan Press.

Kazadi, S. (1997). Conjugate schema in genetic search. In T Back (Ed.), Proceedings of the Seventh
International Conference on Genetic Algorithms (pp. 10-1 7) . San Mateo, CA: Morgan Kaufmann.

Koonin, S. (1 986). Compututionalphysics. Menlo Park, C A Benjamin Cummings.

Leipins, G., & Vose, D. (1990). Representational issues in genetic optimization. JournalofExperimental
Theoretical Artificial Intelligence, 2, 1 0 1 -I 1 5.

Michalewicz, Z., & Schoenauer, M. (1996). Evolutionary algorithms for constrained parameter opti-
mization problems. Evolutionary Computation, 4(l), 1-32.

Ono, I., & Kobayashi, S. (1997). A real-coded genetic algorithm for function optimization. In T. Back
(Ed.), Proceedings of the Seventh International Conference on Genetic Algorithms (pp. 246-2 5 3) . San
Mateo, CA: Morgan Kaufinann.

Evolutionary Computation Volume 6, Number 2 159

Sanza ’I.. Kazadi

Page, s., & &ng, L. (I 998). Di?~i:~ip r r i d optinidip. hheographed article. University of lowa,
Department of lconoinics.

Rana, S., & \\%itley, L. D. (1997). K i t representations with a twist. In ’I: Kick (Ed.), Proceedings of’
t h Seiwth 17zte7-nfitio/?~I Co7!fEi.~nre 071 Gwetic. .-f/goi~it/~7~s~ (pp. 188-1 9.5). San Mateo, CA: Morgan
Kaufniann.

Smith. J., & Fogart)., T. C. (199-5). .hi adaptive poly-parental recombination strategy. In 7.. C. Fogarty
(Ed.), Lectrrre X0te.s in C‘oinpiitcv. S r i c w ~ 993 E‘diitioiimy Coinpirtiiig (pp. 48-61). New York, NY:
S pringer-I’erlag.

Syswerda, G. (1 093). Uniform crossover in genetic algorithms. In D. Schaffer (Ed.), Waccedings ofthe
Thiid 1i/t~i7ir?tioii~~ (,‘ovfeiui7c.c o i l Griietic. .d/goi-ithms (pp. 2-9). San Mateo, cL%: hforgan Kaufmann.

‘Ikut\iii, S., Fujimoto, Y . , CYr Ghosh, Ll. (1997). Forking genetic algorithms: G i s with search space
chision schemes. Ei’ol/rrio~imy Goniptiltion, i(I) , 6 1-80.

Ihse, 21. (1991). Generalinng the notlon of schema in genetic algorithms Ai.t2ficiri/ Intellzgeizre, 50,
18i-i96.

\\-right, -1. (1991). Genetic algorithms for real parameter optimization. In G. Kawlins (Ed.), Foimrln-

\ ~ ‘ L I , -I., CYC Lindsay, R. (1906). r\ coinparison of the fixed and floating building block representation in

tiom. qf’C;rnetir.-f~~oi.ith7~/s (pp. 205-2 18). San hlateo, CA: Morgan Kaufmann.

the genetic algorithm. Ei’oliitioi1~7y Conrpiitdon, 4(2), 169-193.

1 no E d u t i o n a n Computation Voliime 6, Number. 2

