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A simplified Bcl-2 network model 
reveals quantitative determinants 
of cell-to-cell variation in sensitivity 
to anti-mitotic chemotherapeutics
Hao Yuan Kueh1,2,†, Yanting Zhu2,3 & Jue Shi2,3

Anti-mitotic drugs constitute a major class of cytotoxic chemotherapeutics used in the clinic, killing 
cancer cells by inducing prolonged mitotic arrest that activates intrinsic apoptosis. Anti-mitotics-
induced apoptosis is known to involve degradation of anti-apoptotic Bcl-2 proteins during mitotic 
arrest; however, it remains unclear how this mechanism accounts for significant heterogeneity 
observed in the cell death responses both within and between cancer cell types. To unravel quantitative 
determinants underlying variability in anti-mitotic drug response, we constructed a single-cell 
dynamical Bcl-2 network model describing cell death control during mitotic arrest, and constrained 
the model using experimental data from four representative cancer cell lines. The modeling analysis 
revealed that, given a variable, slowly accumulating pro-apoptotic signal arising from anti-apoptotic 
protein degradation, generation of a switch-like apoptotic response requires formation of pro-apoptotic 
Bak complexes with hundreds of subunits, suggesting a crucial role for high-order cooperativity. 
Moreover, we found that cell-type variation in susceptibility to drug-induced mitotic death arises 
primarily from differential expression of the anti-apoptotic proteins Bcl-xL and Mcl-1 relative to Bak. 
The dependence of anti-mitotic drug response on Bcl-xL and Mcl-1 that we derived from the modeling 
analysis provides a quantitative measure to predict sensitivity of distinct cancer cells to anti-mitotic 
drug treatment.

Anti-mitotic drugs, one of the most commonly used anticancer chemotherapeutics in the clinic, inhibit cancer 
cell growth mainly by disrupting the formation of bipolar spindle in mitosis, subsequently arresting cells in pro-
longed mitotic arrest, from which cells may die or slip out to an abnormal G1 state1. Current anti-mitotic drugs 
include the classic microtubule-targeting drugs, such as taxanes (paclitaxel and its derivatives) and vinca alkaloids 
(vinblastine, vincristine and their derivatives), as well as the new, more spindle-specific drugs, such as inhibitors 
of Kinesin-5 (aka KSP, Eg5, KIF11), Aurora-A, Aurora-B and Polo-1 kinases2–4. Although widely used, in particu-
lar taxanes for treating solid tumor, anti-mitotics are ineffective for many types of cancer; and sensitive cancers 
tend to acquire resistance. In order to improve the effectiveness of current anti-mitotic therapy, a better under-
standing of the quantitative mechanisms underlying the strong cell-to-cell variation in anti-mitotic drug response 
is clearly needed, and shall provide the molecular basis to develop diagnostic measure to identify sub-populations 
of patients that may respond well to anti-mitotics as well as for designing new combinatorial therapies.

While anti-mitotics at sufficiently high concentration can induce mitotic arrest in all proliferating cells, sen-
sitivity and kinetics to induction of cell death during or after the arrest is highly variable across different cancer 
cell types in both cultured human cells5 and syngeneic mouse tumors6. In other words, the most variable point 
of anti-mitotic drug effect both within and between cancer types is in activating cell death, which is known to 
be mostly mediated by the intrinsic, or mitochondrial, apoptosis pathway7,8. One prominent characteristic of 
anti-mitotics triggered apoptosis is that cells arrest for many hours in mitosis before apoptosis is initiated; and the 
long delay from mitotic entry to apoptosis is highly variable in individual cells. We have previously investigated 
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the slowly accumulating pro-apoptotic signal in prolonged mitotic arrest and identified depletion of Mcl-1, due 
to transcriptional silence, was one key pro-apoptotic trigger to activate mitotic death9. Moreover, by imaging a 
live-cell fluorescent reporter of mitochondrial outer membrane permeabilization (MOMP)10, the committed step 
of intrinsic apoptosis, we have shown that MOMP preceded nearly all cell death activated during mitotic arrest, 
and was rapid and switch-like, completing within minutes. MOMP is known to be regulated by Bcl-2 family 
proteins, such as Mcl-1; however, it is unresolved how a long, gradual pro-apoptotic signal from Mcl-1 depletion, 
which decays exponentially in the time scale of hours, may give rise to a sharp, all-or-none induction of apoptosis 
within minutes. In this study, we will perform both analytical and numerical analysis of the dynamics of a simpli-
fied Bcl-2 network to elucidate the quantitative mechanism that links a gradual, exponential signal to MOMP and 
the rapid MOMP induction across distinct timescales.

The other key question that we will address in this computational study is the quantitative origins of cell-to-cell 
variation in both sensitivity and kinetics to apoptosis during anti-mitotics-induced mitotic arrest. We chose to 
focus on analyzing mitotic death control, but not death after slippage, as it is the most variable point in the 
response to anti-mitotic drugs. Mcl-1 is known to be depleted to similar final levels in both apoptosis-sensitive 
and -resistant cell lines, thus loss of Mcl-1 alone cannot account for the apoptosis regulation during mitotic arrest. 
Based on results from gene knockdown by RNA interference (RNAi), we previously pinpointed Bcl-xL, but not 
Bcl-2, Bcl-w or pro-apoptotic BH3 proteins, as the other key regulator of apoptosis in mitotic arrest9. Variation 
in expression levels of Mcl-1 and Bcl-xL largely determine variability in sensitivity to mitotic death induced by 
anti-mitotics, such as paxlitaxel and Kinesin-5 inhibitor, across different cultured cancer cell lines. That is, the 
threshold for triggering cell death during mitotic arrest is mainly determined by basal expression levels of Mcl-1 
and Bcl-xL. However, in order to employ Mcl-1 and Bcl-xL as diagnostic markers to predict anti-mitotic drug 
response in patients with distinct cancer types and heterogeneous tumor mass, we need to establish the quan-
titative, beyond qualitative, dependence of anti-mitotic drug response on Mcl-1 and Bcl-xL expression levels 
and their depletion kinetics, as well as determine to what extent the variation in the above dynamic parameters 
impacts the degree of variability in drug response both between cancer cell types (i.e., inter-cell line variability) 
and within a cancer type (intra-cell line variability). Therefore, in this study we conducted computational simula-
tion of the simplified Bcl-2 network model for mitotic death control to analyze cell-to-cell variation at the single 
cell level, profiled the parameter space of levels and kinetics of Mcl-1 and Bcl-xL, and then derived the quantita-
tive dependence of individual cell response to mitotic death induced by anti-mitotic drugs.

Results
Defining Bcl-2 network components for mitotic death control. We had previously identified the key 
Bcl-2 family proteins responsible for mitotic death control by studying four representative cancer cell lines: HeLa, 
U-2 OS, OVCAR-5 and A5499. These lines were chosen, as they cover a wide spectrum of sensitivity to mitotic 
death induced by anti-mitotic drugs (e.g., paclitaxel and Kinesin-5 inhibitor), based on drug response profiling 
experiments5. By knocking down candidate Bcl-2 family proteins using siRNA treatment and then determining 
the resulting effects on mitotic death, we found that knockdown of the anti-apoptotic proteins Bcl-xL and, to a 
lesser extent, Mcl-1, enhanced cell death during drug-induced mitotic arrest (Fig. 1A) in all four cell lines, in 
particular the three resistant cell lines (U-2 OS, OVCAR-5 and A549), albeit to varying degrees. In contrast, 
knockdown of Bcl-2 or Bcl-w showed mostly minimal effect across the cell lines, suggesting that they play largely 
negligible roles in regulating mitotic death. Together with data showing that activator BH3 proteins, such as Bim 
and tBid, or up-regulation of sensitizer BH3-only proteins are not required for mitotic cell death, we concluded 
that Mcl-1 and Bcl-xL are the key negative regulators of cell death acting during prolonged mitotic arrest5,9.

Mcl-1 and Bcl-xL are known to inhibit cell death by sequestering the pro-apoptotic proteins Bak and Bax, 
which oligomerize to form pores in mitochondrial membrane to trigger MOMP. To determine whether Bak and/or  
Bax are involved in mitotic death control, we knocked down both proteins by RNAi in HeLa (the cell line that is 
highly sensitive to mitotic death), and determined the resultant effects on cell death by measuring Parp1 cleavage 
(Fig. 1B). We found that loss of Bak, but not Bax, significantly attenuated the extent of mitotic death (Fig. 1C), 
suggesting that Mcl-1 and Bcl-xL protect cells from mitotic death primarily through inhibitory interactions with 
Bak during mitotic arrest.

Transcription and translation are attenuated during prolonged mitotic arrest11–13, and we proposed that such 
mitotic silencing of gene expression selectively depletes unstable anti-apoptotic proteins to trigger cell death. 
Consistent with this idea, we found that Mcl-1 protein levels decreased steadily upon mitotic arrest in all four cell 
lines, with half-lives shorter than the observed timescales of mitotic cell death (τ d ~ 3–8 hrs, Fig. 1C). In further 
agreement with this model, Bcl-xL has a measured protein half-life comparable to the timescales of mitotic death 
induction (τ d ~ 10 hours14), whereas Bak is significantly more stable (τ d ~ 170 hours15). Taken together, these 
results point to a mechanism, where degradation of Mcl-1 and Bcl-xL protein during mitotic arrest relieves Bak 
from inhibition, allowing it to form pores that permeabilize the outer mitochondrial membrane and trigger cell 
death.

Modeling of the simplified Bcl-2 network identifies a requirement for high-order cooperativity 
in Bak pore formation. After cells enter mitotic arrest upon anti-mitotic drug treatment, they typically per-
sist for many hours in a live mitotic state before undergoing apoptosis (Fig. 2A, see also16). The switch from a live 
to dead state with a permeable outer mitochondrial membrane occurs rapidly, reaching completion in minutes 
(Fig. 2A and Supplementary Movie SM1). Here, we first determined whether the ‘inhibitor decay mechanism’ 
described above accounts for kinetic properties of such a cell death switch. Specifically, we used mathematical 
modeling to determine what Bcl-2 network reaction schemes can give rise to: 1) long time delays preceding apop-
tosis induction, typically 10 hours or more; and 2) rapid MOMP execution, within 20 minutes or less. Our analysis 
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combines numerical simulations of ordinary differential simulations (Fig. 2B,C) with analytical approaches  
(see Materials and Methods), which generate insights that hold, independent of the exact parameter choices or 
specific network architecture.

Based on existing biochemical evidence17, we first constructed a model, where Bak monomer either binds 
Mcl-1 to form an inactive complex, or undergoes two sequential dimerization reactions to form tetramer pores 
on the mitochondrial membrane, resulting in cytochrome C (CytC) translocation from mitochondria to cyto-
plasm (Model I, Fig. 2B). The total Bak protein level remains constant due to its high stability, whereas Mcl-1 
level decreases over time with first-order kinetics. From numerical simulations (see Materials and Methods, and 
Table 1), we found that this model can give rise to delayed apoptosis induction after Mcl-1 decay, as intuitively 
expected (Fig. 2B). After the onset of mitotic arrest (t =  0 hrs), the concentration of free Mcl-1 decreases over 
time, causing an eventual increase in the concentration of Bak tetramer and CytC in the cytoplasm. However, 
while the simulation results account for the delayed timing of apoptosis switch (~10 hours after mitotic arrest), 
they were not able to recapitulate the sharp switch itself. With the simulations, we found that the switch timing 
ΔT, taken to be the time for the fraction of CytC in the cytoplasm to increase from 0.1 to 0.5, was 3.8 hours, 
much longer than the switching time of < 20 minutes observed experimentally (Fig. 2A). This suggests that this 
Bak tetramer model, while intuitively appealing, is not sufficient to account for the switch-like properties of the 
apoptotic response in mitotically arrested cells.

In signaling systems, switch-like behavior can emerge from induced clustering of membrane-associated 
receptor proteins into large complexes18–20. Motivated by these examples, we examined an alternative possibility, 
where Bak oligomerizes to form large pores containing hundreds of subunits (Model II). We analyzed an exam-
ple reaction scheme, where Bak monomer undergoes multiple sequential dimerization reactions to generate an 
active pore consisting of 256 subunits. Nonetheless, the modeling results, as shown below, do not depend on 
the exact number of subunits of the active pore, or on the exact reaction scheme for generating this active pore. 
As before, Mcl-1 forms an inactive complex with Bak, and degrades with first-order kinetics. From numerical 
simulations (see Materials and Methods, and Table 1), we see that this model not only gave a delayed induction 
of Bak pores upon Mcl-1 protein decay (Fig. 2C, top and middle), but also generated a much sharper MOMP 
reaction compared to the tetramer pore model (ΔT =  0.44 hours), in closer agreement with experimental obser-
vations (Fig. 2A). These results suggest that a switch-like apoptotic response requires high-order cooperativity 

Figure 1. Defining key Bcl-2 network components for mitotic death control in different cell lines.  
(A) Inhibitory Bcl-2 family proteins were knocked down using siRNA treatment in the indicated cell lines. 
Cells were arrested in mitosis by treatment with an anti-mitotic drug, Kinesin-5 inhibitor (K5I), and dead 
cell percentages were then scored after 48 hours of drug treatment using time-lapse microscopy. Data were 
re-plotted from ref. 9. (B) Pro-apoptotic Bcl-2 family proteins Bax and Bak were knocked down in HeLa cells, 
using RNAi. Cells were then arrested in mitosis by K5I, and analyzed using western blotting for Parp1 cleavage, 
an indicator of apoptotic death. Results showed that knockdown of Bak, but not Bax, attenuates mitotic cell 
death. (C) Cells were arrested in mitosis using K5I treatment, and analyzed for Mcl-1 levels using quantitative 
western blotting at the indicated time points. Plot shows Mcl-1 levels over time, with curves indicating best fits 
to a single exponential decay in the form of f(t) =  A0 exp (− t/τ ). The decay time constants τ derived here are 
subsequently used to constrain modeling fits.
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from the formation of mitochondrial membrane pores consisting of hundreds of Bak/Bax subunits. To establish 
the generality of this result, we solved the models analytically to obtain Tc, the duration of the time delay before 
apoptosis, and ΔT, the induction time of apoptosis. For both models, we find that:

δ
≈T M M1 ln( / )

(1)C
M

0 1/2

where δM gives the first-order rate of Mcl-1 degradation, M0 represents the initial Mcl-1 level, and M1/2 (< M0) 
gives the critical Mcl-1 level for apoptosis induction, and

δ∆ ≥ −T A( ) (2)M
1

where A represents the number of subunits making up the active pore (A =  4 for Model I, and A =  256 for Model II).  
Evidently, when pore size is large, ΔT is small, corresponding to sharp MOMP induction. This result makes 

Figure 2. Switch-like apoptosis induction during mitotic arrest requires large oligomeric mitochondrial 
membrane pores. (A) Kinetics of MOMP in HeLa cells arrested in mitosis from time-lapse imaging. To induce 
mitotic arrest, cells were treated with 1 μ M K5I at t =  0 hrs. Still frames show phase-contrast images (top), and 
fluorescence images of the MOMP reporter, IMS-RP (bottom), which consists of monomeric red fluorescent 
protein targeted to the inter-membrane space of mitochondria by fusion to the leader peptide of SMAC10. In 
this example, the cell rounded up to enter mitosis at t =  17.7 hrs after drug addition, underwent MOMP at 
t =  28.5 hrs, indicated by a change from punctate to smooth distribution in fluorescence, and started to bleb 
and lyse about 20 minutes later (t =  29.2 hr). (B,C) Candidate models for explaining the observed kinetics of 
apoptosis induction, involving either the formation of a tetrameric Bak pore (B), or a massively oligomeric Bak 
pore with hundreds of subunits (C). Plots show simulated time evolution of free Mcl-1 concentrations (top), 
mitochondrial Bak pore concentrations (middle), and fraction of cytoplasmic CytC (bottom), an indicator of 
death induction. Red shaded area indicates the duration of death induction ΔT, defined as the time required for 
the cytoplasmic CytC fraction to increase from 0.1 to 0.5. The results show that the massively oligomeric pore 
model (C), but not the tetrameric pore model (B), can sufficiently account for both the delayed and switch-like 
kinetics of apoptosis induction observed experimentally.
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intuitive sense. As large pores require more Bak freed from sequestration by Mcl-1, Mcl-1 has to be depleted 
to a lower level than that for small pores in order to trigger the onset of MOMP. Depletion to lower Mcl-1 level 
obviously takes longer time, resulting in a longer delayed time to initiate MOMP and a sharper switch response.

Quantitatively, in order to generate a sharp switch of MOMP after a long delay, we must fulfill the requirement 
that Δ T ≪  TC, which requires:

A M M1/ ln( / ) (3)0 1/2

The logarithm of the fold change in free Mcl-1 levels on the right hand side of this expression is of order unity; 
therefore, consistent with our simulation results, this analytical result shows that sharp switching can occur only 
when the number of subunits in the active Bak pore, A, is much greater than one. Indeed, recent imaging stud-
ies have found the Bax and Bak structures on the mitochondrial membranes of apoptotic cells are estimated to 
contain hundreds or even thousands of subunits21–23, consistent with this notion. Our modeling results, taken 
together with these experimental studies, argue that sharp apoptotic switching cannot emerge simply through 
formation of small pores with < 10 subunits, but requires highly cooperative assembly of large mitochondrial 
membrane pores with hundreds or even thousands of Bak/Bax subunits.

Bcl-2 network modeling recapitulates and quantifies single cell variability in apoptotic 
responses for different cancer cell lines during mitotic arrest. Given that the simplified Bcl-2 net-
work model (i.e., model II) accounts for the basic kinetic properties of mitotic death response, we next investigate 
whether it can be employed to examine the variable single-cell death responses in different cancer cell types dur-
ing mitotic arrest, e.g., the four representative cell lines HeLa, U-2 OS, OVCAR-5 and A549 (Fig. 1A). Previous 
studies have implicated cell-to-cell differences in protein concentrations as a cause of non-genetic variability in 
apoptosis timing in human cell lines24. Therefore, we combined our kinetic model with probability distributions 
of apoptotic protein abundances in single cells to obtain predicted mitotic survival curves, which give the fraction 
of surviving mitotic cells as a function of the duration of mitotic arrest (Fig. 3A, center; see also Materials and 
Methods). In these single cell simulations, we explicitly included Bcl-xL level, in line with experimental results 
(Fig. 1A, see Materials and Methods), and also included an implicit requirement for switch-like apoptosis induc-
tion by large Bak oligomers, in line with insights from kinetic modeling (Fig. 2). We then used least-squares fitting 
to fit these survival curves to those acquired experimentally for the four cell lines, both under control conditions 
and upon knockdown of either Mcl-1 or Bcl-xL. Fits were constrained using measured Mcl-1 protein half-life 
data (Fig. 1C) and quantitative protein level measurements from western blotting (means and standard deviations 
shown in Fig. 3C as crosses), which constrained the means of the single-cell protein level distributions.

From model fitting and analysis, we found that this simple model for apoptosis induction recapitulates the fol-
lowing key properties of the variable apoptotic response in the four cell lines that we previously studied (Fig. 3B): 
(1) cell-to-cell variability in apoptotic death kinetics observed within individual cell lines, both under control 
conditions and upon Mcl-1 or Bcl-xL knockdown (Fig. 3B); (2) differences in apoptotic death timing between 
different cell lines, and, in particular, the differential sensitivities of the four cell lines to knockdown of Mcl-1 or 
Bcl-xL (Fig. 3B); (3) differences in the ratios of Mcl-1, Bcl-xL and Bak basal expression levels across the four cell 
lines (Fig. 3C,D); and (4) differences in Mcl-1 protein half-lives across the four cell lines (Fig. 1D). In addition 
to accounting for these experimental measurements, our model also recapitulates the published decay rates for 
Bcl-xL14 (τ  ~ 10–20 hrs, Fig. 3C), which were not used to constrain our model. While small differences in the 

Initial conditions/parameter values Value Units Description

[B1], [B2], [B4], [B8], [B16], [B32], [B64], [B128], [B256] 0.0 nM Bak oligomeric species

[M] 3000.0 nM Free Mcl-1

[MB] 1000.0 nM Mcl-1/Bak complex

[Cm] 1000.0 nM Mitochondrial CytC

[Cc] 0.0 nM Cytoplasmic CytC

σM 5 ×  10−6 nM/s Mcl-1 synthesis rate in mitosis

δM 1.3 ×  10−4 1/s Mcl-1 degradation rate in mitosis

αM 0.05 1/nM/s Bak/Mcl-1 association rate

βM 0.5 1/s Bak/Mcl-1 dissociation rate

γm
5000.0 (Model I) 

0.5 (Model II) 1/nM/s CytC cytoplasmic translocation rate

γC 0.5 1/s CytC mitochondrial translocation rate

α1→2 0.05 1/nM/s Bak dimerization rate

β1→2 500.0 1/s Bak dimer dissociation rate

α2→4 0.05 1/nM/s Bak tetramer association rate

β2→4 0.05 1/s Bak tetramer disassociation rate

αi→j 1 1/nM/s Association rates of all other oligomers

βi→j 1 1/s Dissociation rates of all other oligomers

Table 1.  Initial conditions and parameters for numerical simulations of apoptosis induction in mitotic 
arrest.
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shapes of the mitotic survival curves from experimental data were observed (Fig. 3B), the fairly close agreement 
of the models with data on multiple levels allowed us to derive quantitative insights and generate hypotheses 
beyond the experimental findings. Specifically, we made two major observations and predictions as follow:

Firstly, variability in the levels of anti-apoptotic regulators underlies heterogeneity in death responses within 
cell lines (i.e., intra-cell line variation). In all four cell lines examined, there was considerable cell-to-cell variabil-
ity in the timing of apoptosis induction within the cell line, with some cells dying shortly after mitotic arrest, and 
others persisting for over ten hours before dying (Fig. 3B). This intra-cell line heterogeneity could in principle 
arise from non-genetic variability in the levels of the anti-apoptotic regulators Mcl-1 or Bcl-xL, or in the level of 
the pro-apoptosis regulator Bak. Our modeling fits showed considerable cell-to-cell variation in the expression 
of anti-apoptotic regulators, with cells showing over three-fold variation in the levels of Mcl-1 (U-2 OS), Bcl-xL 
(Ovcar-5 and A549), or both proteins (HeLa). In contrast, the variation in the levels of the pro-apoptotic protein 
Bak was considerably smaller in all of the cell lines examined. These observations suggest that cells of the same 
genetic background may tightly regulate their expression levels of pro-apoptotic proteins, and generate variable 
death responses primarily through heterogeneous expression of anti-apoptotic proteins.

Secondly, different average levels of apoptotic regulatory proteins underlie the differential susceptibility of cell 
lines to mitotic death (i.e., inter-cell line variation). The inter-cell line variability is obviously much stronger than 

Figure 3. Quantitative insights into cell-to-cell variation in apoptotic response from modeling and 
computational analysis. (A) Procedure for fitting model-derived survival curves to experimental data. Mitotic 
survival curves derived from dynamical models were fit to experimental data for HeLa, U-2 OS, OVCAR-5 
and A549, obtained under both control conditions and upon Mcl-1 or Bcl-xL knockdown. (B) Fraction of 
mitotically-arrested cells surviving over time under control conditions (grey), upon Mcl-1 knockdown (purple), 
and upon Bcl-xL knockdown (gold). Dotted lines represent experimental data, and solid lines represent best 
fits to the model. (C) Mcl-1/Bak versus Bcl-xL/Bak ratios for best model fits to the four cell lines (solid circles). 
Crosses represent relative ratios between the cell lines measured by western blotting (mean and standard 
deviation, N =  3). Gray shaded area represents forbidden region where Mcl-1 and Bcl-xL levels are insufficient 
to maintain normal cell survival. (D) Histograms showing best fit model parameters (solid bars), along with 
experimentally measured values (hollow bars). Fold variation shows cell-to-cell variability in protein levels, as 
modeled using a log-normal distribution. Here, measured Mcl-1 and Bcl-xL to Bak ratios are scaled by constant 
factor to allow comparison with model parameters.
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that within the same cell line. The four cell lines also showed considerably differing responses to knockdown of 
anti-apoptotic proteins. Mcl-1 knockdown greatly accelerated apoptotic death in HeLa cells, but had negligible 
effects in A549 cells; conversely, removal of Bcl-xL increased both the extent and kinetics of death in U-2 OS, 
OVCAR-5 and A549 cells, but showed only moderate effects in HeLa cells. These differential susceptibilities 
could arise from cell-line specific differences in protein expression levels, or differences in their degradation 
rates during mitotic arrest. Our modeling fits showed that HeLa cells, which showed the greatest sensitivity to 
Mcl-1 knockdown, had the highest Mcl-1/Bak ratio but the lowest Bcl-xL/Bak ratio out of the cell lines exam-
ined (Fig. 3B–D); conversely, U-2 OS, OVCAR-5 and A549 cells, which were more susceptible to Bcl-xL knock-
down, but not Mcl-1 knockdown, had comparatively lower Mcl-1/Bak ratios but progressively increasing Bcl-xL/
Bak ratios. In contrast, we found no correlation between death sensitivity and the half-lives of Mcl-1 or Bcl-xL 
(Fig. 3D), even though they showed considerable variation between different cell lines. Instead, these parameters 
appeared to affect the total duration of mitotic arrest, which was longest in cells with the highest stability of these 
proteins (i.e., OVCAR-5, Fig. 3B–D). Together, our data illustrate that inter-cell line variability depends on the 
highly expressed anti-apoptotic proteins, and suggest that ratio of the levels of an anti-apoptotic protein to its 
pro-apoptotic partner may be used as a useful quantitative predictor of the susceptibility of distinct cancer cell 
types to mitotic death activated by anti-mitotic drugs.

Discussion
Building on previous experimental data, we constructed a simplified Bcl-2 network model consisting of three 
key components, Mcl-1, Bcl-xL and Bak, to elucidate the dynamic control of mitotic cell death induced by 
anti-mitotic drugs and the associated cell-to-cell variability. Computational analysis of this simple kinetic model 
not only revealed critical dynamical features of the network, e.g., high-order cooperativity arising from massive 
Bak oligomerization, but also allowed us to examine and pinpoint specific network parameters that provide a 
metric to predict the susceptibility of different cancer cells to mitotic death induced by anti-mitotic drugs. We 
found heterogeneity in mitotic death response within a cancer type can be attributed to mainly variation in Mcl-1 
and Bcl-xL expression levels in individual cells, but not Bak, with a 2 to 3-fold difference in expression being suffi-
cient to generate significant variation in drug-induced cell fate, i.e., dead vs. live, in a clonal population with iden-
tical genetic background. Response variation between different cancer types is also mainly attributed to variable 
expression, in this case ratio of Bcl-xL/Bak and Mcl-1/Bak. The extent of mitotic death is particularly dependent 
on the ratio of Bcl-xL/Bak, as a 2-fold difference in this ratio can already distinguish cancer lines that are resist-
ant (e.g., U-2 OS) and sensitive (e.g., HeLa) to mitotic death. In other words, our results suggest that tumor cells 
with a Bcl-xL/Bak ratio 2-fold larger than that of HeLa are resistant to mitotic death. Moreover, although there 
is considerable variation in Mcl-1 and Bcl-xL degradation kinetics between different cancer types, our dynamic 
modeling analysis showed that such variability mostly affects the timing to mitotic death, but not the extent.

Although the simplified Bcl-2 model for mitotic death control was constructed based on cell culture data, 
there are in vivo data that also support its validity. In a study of mouse xenograft models of non-small lung cancer, 
Tan et al. found that Bcl-xL and Mcl-1 are the key MOMP regulators with respect to paclitaxel responses in vivo25. 
Their mouse model data are clearly consistent with our results with cultured cell lines9, regarding the key regula-
tory roles of Bcl-xL and Mcl-1 in regulating anti-mitotics-induced cell death. Therefore, our Bcl-2 network model 
for cell death control upon anti-mitotic drug treatment is likely applicable for in vivo situation. Nonetheless, we 
note there are data that point to potential difference in the mechanism by which cell death is activated in vivo vs. 
in vitro by anti-mitotic drugs. While cell death seen in culture was all preceded by prolonged mitotic arrest, Orth 
et al. found that many tumor cells in a mouse xenograpt model of Fibrosarcoma did not enter or progress through 
paclitaxel-induced mitotic arrest, even though tumor significantly regressed26. The question of whether mitotic 
arrest is required for anti-mitotics-induced cell death in vivo, or paclitaxel can induce cell death in interphase 
without entry into mitotic arrest, clearly needs further mechanistic investigation. In addition, we also note that 
a previous study by Topam et al. showed that although anti-mitotics-induced cell death in cultured cell line was 
mainly repressed by Bcl-xL, it also involved up-regulation of pro-apoptotic BH-3 proteins27. Their result of BH-3 
protein involvement in regulating mitotic death was different from our previous experimental data on a cancer 
cell line panel5,9. Such discrepancy again requires further study to elucidate and clarify its mechanistic origin.

Both numerical and analytical results from the simplified Bcl-2 network model identified a critical require-
ment for high-order cooperativity in the generation of a sharp switch of MOMP. The major pro-apoptotic signals 
that activate mitotic cell death are Mcl-1 and Bcl-xL degradation, which occur in the time scale of hours following 
mitotic arrest. We find that this long, exponentially decaying signal can give rise to a sharp mitotic death response 
that completes in minutes, only if Bak pore complexes on the mitochondrial membrane are very large (with > 
102 subunits). In cells, assembly of such large protein complexes is typically highly cooperative, as it involves a 
phase transition process, occurring spontaneously when a critical parameter – in this case free Bak monomer 
concentration – reaches a threshold value. Such phase transition behavior is known to govern assembly in various 
biological systems, including cytoskeletal polymers28, amyloid fibers29, and membrane signaling clusters30, and 
our results indicate that it may also be utilized by pro-apoptotic proteins to generate all-or-none death responses. 
Indeed, it is been long suggested that the active pores that execute MOMP on apoptotic cells contain hundreds or 
even thousands of subunits21–23, consistent with this idea. Further testing of this hypothesis will require a combi-
nation of biochemical approaches, in conjunction with genetic and modeling studies.

In this study, we focused on analyzing the quantitative determinants of mitotic cell death induced by 
anti-mitotic drugs, as it is the drug mechanism that activates the most rapid cancer cell death and is also the most 
variable point in anti-mitotic drug response. However, anti-mitotic drugs are known to trigger cell death not 
only during mitotic arrest but also after mitotic slippage into an abnormal G1 state5,31. Molecular regulators that 
control cell death after slippage are distinct from those during mitotic arrest, mainly involving proteins associated 
with DNA damage response, e.g., the p53 pathway32–34. For simulation and fitting of the Bcl-2 network model in 
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this study, we explicitly excluded the slippage process and cell population that have exited the mitotic arrest, so 
as to examine only dynamic features of cell death control during mitotic arrest (refer to Materials and Methods). 
Given that cell fate after mitotic slippage is mainly regulated by DNA damage response, the quantitative predictors 
of death response after slippage can be investigated in further study, using various mathematical models of DNA 
damage response that are already available in the literature, such as the p53 pathway models.

Methods
Cell culture. All cell lines were purchased from American Type Culture Collection (ATCC, USA) and cul-
tured under 37 °C and 5% CO2 in appropriate medium supplemented with 10% Fetal Calf Serum (FCS), 100 U/ml  
penicillin and 100 μ g/ml streptomycin. HeLa was maintained in DMEM; U-2 OS was maintained in McCoy’s; 
OVCAR-5 was maintained in RPMI; and A549 was maintained in F-12K. The anti-mitotic drug, Kinesin-5 inhib-
itor (EMD534085), was provided by Merck-Serono.

Time-lapse microscopy. Cells were plated in 35 mm imaging dish (μ -dish, ibidi, Germany) and cultured in 
phenol red-free CO2-independent medium (Invitrogen) supplemented with 10% FCS, 100 U/ml penicillin and 
100 μ l streptomycin. Cell images were acquired with the Nikon TE2000-PFS inverted microscope enclosed in a 
humidified chamber maintained at 37 °C. Cells were imaged every 10 minutes using a motorized stage and a 20X 
objective (NA =  0.95). Images were viewed and analyzed using the MetaMorph software (Molecular Dynamics).

Gene knockdown by RNA interference (RNAi). siRNA oligos for knocking down Bak (#J-003305-07) 
and Bax (#J-003308-12) were purchased from Dharmacon. Dharmacon On-Target plus siControl (#D-001810-01)  
was used as non-targeting siRNA control. siRNA transfections were performed in HeLa cells using HiPerFect 
(Qiagen), according to manufacturer’s instructions. Experiments were conducted after 48 hrs of gene silencing.

Western blot analysis. Cell lysates were obtained using LDS sample buffer (NuPAGE, Invitrogen). Proteins 
were resolved on 10% or 12% Tris-glycine gels and transferred onto PVDF membranes. Blots were probed with 
commercial primary antibodies and chemiluminescent detection using ECL-plus (Amersham). Primary anti-
bodies: PARP1 (#9542), Bak (#3814) and Bcl-xL (#2762) were purchased from Cell Signaling; Bax (#sc-493) and 
Mcl-1 (#sc-819) from Santa Cruz; Anti-actin (#A5316) from Sigma was used as a loading control. For western 
blot analysis of Mcl-1 half-lives in synchronized mitotic cells, we grew large volume of cells in 25 cm dishes to 
90% confluency, and then treated the cells with 1 μ M Kinesin-5 inhibitor to induce mitotic arrest. After 3 hours of 
drug treatment, the mitotic fraction of cells was collected at the indicated time points and lysed using LDS sample 
buffer for western blot analysis of Mcl-1.

A simplified Bcl-2 network model of Bak pore formation and apoptosis induction in mitotic 
arrest. Model description. We present here two ordinary differential equation (ODE) models for apoptosis 
induction, explicitly considering degradation of Mcl-1 protein during mitotic arrest, sequestration of Bak mon-
omers by the anti-apoptotic protein Mcl-1, Bak oligomerization and resultant pore formation, and transport of 
Cytochrome C across the outer mitochondrial membrane. In Model I (Fig. 2B), the Bak tetramer forms the active 
mitochondrial membrane pore. This model is described by the following equations:

α β σ δ= − + + −
d M

dt
M B MB M[ ] [ ][ ] [ ] ( [ ]) (4)M M M M1

α β α β= − + − + +→ →
d B

dt
B B M B MB[ ] [ ] 2 [ ] [ ][ ] [ ] (5)I I

1
1 2 1

2
1 2 2 1

α β α β= − − +→ → → →
d B

dt
B B B B[ ] [ ] 2 [ ] [ ] [ ] (6)

2
1 2 1

2
1 2 2 2 4 2

2
2 4 4

α β= −→ →
d B

dt
B B[ ] [ ] [ 4] (7)

4
2 4 2

2
2 4

Here, M represents Mcl-1; Bn represents the Bak n-mer formed through the indicated oligomerization reactions; 
α and β give the rate constants of association and dissociation for the indicated Bak n-mers; σM gives the basal 
Mcl-1 synthesis rate during mitosis; and δM gives the first-order rate constant of Mcl-1 degradation during mitotic 
arrest. Here, we assume that Bak shows negligible degradation over the timescales of mitotic arrest, which is 
consistent with previous stability measurements of this protein in isotope switching proteomic experiments15.

For Model II (Fig. 2C), we assume the active membrane pore is Bak oligomer consisting of 256 subunits, 
formed through successive dimerization of smaller oligomers, as follows:

α β α β= − − +→ → → →
d B

dt
B B B B[ ] [ ] 2 [ ] [ ] [ ] (8)

4
2 4 2

2
2 4 4 4 8 4

2
4 8 8

α β α β= − − +→ → → →
d B

dt
B B B B[ ] [ ] 2 [ ] [ ] [ ] (9)

8
4 8 4

2
4 8 8 8 16 8

2
8 16 16
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α β α β= − − +→ → → →
d B

dt
B B B B[ ] [ ] 2 [ ] [ ] [ ] (10)

16
8 16 8

2
8 16 16 16 32 16

2
16 32 32

α β α β= − − +→ → → →
d B

dt
B B B B[ ] [ ] 2 [ ] [ ] [ ] (11)

32
16 32 16

2
16 32 32 32 64 32

2
32 64 64

α β α β= − − +→ → → →
d B

dt
B B B B[ ] [ ] 2 [ ] [ ] [ ] (12)

64
32 64 32

2
32 64 64 64 128 64

2
64 128 128

α β α β= − − +→ → → →
d B

dt
B B B B[ ] [ ] 2 [ ] [ ] [ ] (13)

128
64 128 64

2
64 128 128 128 256 128

2
128 256 256

α β= −→ →
d B

dt
B B[ ] [ ] 2 [ ] (14)

256
128 256 128

2
128 256 256

Here, Mcl-1 dynamics, Mcl-1/Bak monomer interactions and the Bak dimerization reaction all remain the same, 
and are given by (Eqs 4–6). While this model assumes that the active pore has 256 subunits, our subsequent anal-
ysis will show that our conclusions will neither depend on the exact size of the active pore complex, nor on the 
detailed reaction scheme underlying the generation of the massively oligomeric pore. In both models, the total 
concentration of Bak is a constant:

∑= +
=

B i B MB[ ] [ ]
(15)T

i

N

i
1

where the summation is performed over all Bak oligomeric species. Finally, for both models, the translocation of 
CytC from the mitochondria to the cytoplasm is given by the following equations:

γ γ= −
d C

dt
C B C[ ] [ ][ ] [ ] (16)

c
m m a c c

γ γ= − +
d C

dt
C B C[ ] [ ][ ] [ ] (17)

m
m m a c c

where Cc and Cm give the cytoplasmic and mitochondrial CytC concentrations; Ba denotes the Bak oligomeric 
species forming the active pore (a =  4 for Model I, and a =  256 for Model II); and γ m and γ c give the rate constants 
for translocation of cytoplasmic and nuclear CytC. The total CytC concentration, CT =  [Cc] +  [Cm], is taken to be 
a constant.

Numerical simulations. Simulations for both Models (Fig. 2B,C) were performed using numerical integration 
with a stiff ODE solver using the MATLAB SimBiology toolbox (Mathworks, Natick, MA). Initial conditions and 
parameter values for the simulations are shown in Table 1, and the simulation code is available as project files 
upon request.

Analytical solutions. To derive an analytical solution of the dynamics of the system, we first make the assump-
tion that the timescales of Mcl-1 degradation are slow compared to that of Bak oligomerization and CytC trans-
location. This allows us to set the time derivatives of all differential equations, except (Eq. 4), to zero, and solve 
for the pseudo-equilibrium concentrations of all other species. Doing so, we find a single first-order equation that 
governs the dynamics of this system:

σ δ= −
d M

dt
M[ ] [ ] (18)M M

which has the solution:

= − +δ−M t M M e M[ ]( ) ( ) (19)S
t

s0
M

where M0 and Ms are the initial and final levels of free Mcl-1 in this system. We also find that the steady-state 
concentrations of

=B K MB M[ ] [ ]/[ ] (20)M1

= →B B K[ ] [ ] /(2 ) (21)2 1
2

1 2

= →B B K[ ] [ ] /(2 ) (22)4 2
2

2 4
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where the dissociation constants are β α=K /M M M, β α=→ → →K /1 2 1 2 1 2, with higher order dissociation con-
stants and equilibrium expressions being similarly defined. If we further assume that only a small percentage of 
Bak is oligomerized during apoptosis induction, as observed experimentally35, such that most Bak is either bound 
to Mcl-1, or unbound in monomeric form, we get that:

= +B B MB[ ] [ ] (23)T 1

By combining this equation with (Eq. 20), we get the following relationship between free Mcl-1 level and Bak 
monomer level:

=
+

B B
M t K

[ ]
1 [ ]( )/ (24)

T

M
1

Next, by solving for the fraction of CytC in the cytoplasm using (Eqs 16–17), we can show that:

= =
+

f C
C

B
K B

[ ] [ ]
[ ] (25)c

c

T

A

C
A A

1

1

where A is the number of subunits in the active pore complex (A =  4 for Model I, and A =  256 for Model II), and 
KC is the critical value of [B1], at which the level of cytoplasmic CytC is half its maximal value. It can be shown that 
this critical value is a function of the dissociation constants of the oligomerization reaction (α and β), and also the 
forward and back rate constants for CytC translocation (γc and γm).

Based on these approximations, we now derive analytical expressions for: 1) time to the MOMP transition Tc, 
which we define to be the time at which there is half-maximal CytC translocation to the cytoplasm, and 2) sharp-
ness of the MOMP transition ΔT, which we define to be the time between 1/10 and 1/2 maximal CytC translo-
cation. To derive these quantities, we first use (Eqs 24–25) to derive the concentrations of free Mcl-1, where CytC 
translocation is 1/10 and 1/2 maximal:

= −M K B K( / 1) (26)M T C1/2

= −M K B K(9 / 1) (27)M
A

T C1/10
1/

Next, by substituting (Eq. 26) in (Eq. 19), we find that the time delay until the MOMP transition is given by:

δ
=







−
−





T M M

M M
1 ln

(28)
C

M

S

S

0

1/2

This expression reveals that the time delay preceding MOMP transition is set by the rate of Mcl-1 protein 
degradation δM, and also scales logarithmically with initial levels of Mcl-1 protein. Next, we can show that the 
sharpness in the timing of the MOMP switch itself satisfies the following inequality:

δ δ
∆ =







−
−





 ≥T

M M
M M

C
A

1 ln
(29)M

S

S M

1/10

1/2

where C =  In(9) ≈  2.2. Note that lower bound for the MOMP switch timing is independent of the initial Mcl-1 
level M0, as to be expected, and scales inversely with the size of the Bak pore. It is also independent of the detailed 
rate constants of the dimerization reactions, suggesting that this result does not depend on the exact reaction 
scheme, through which active pores are assembled.

Computational derivation of mitotic survival curves based on the Bcl-2 network model. Using 
the above kinetic model (Eqs 8–22), we now generate predicted curves for the fraction of surviving mitotic cells 
over time, which will then be used to fit curves from experimental data. To better account for the cell death kinet-
ics in the four cell lines studied, we first incorporate interactions between Bak and Bcl-xL by adding to the model 
the following rate equation:

α β σ δ= − + + −
d X

dt
X B XB X[ ] [ ][ ] [ ] ( [ ]) (30)X X X X1

where [X] is the concentration of Bcl-xL. By solving for the steady state of this system using (Eq. 30) and the above 
equations, we obtain the following equation for the time evolution of free Bak monomer:

=
+ +

B B
M K K K

[ ]
[ ]/ [ ]/ 1 (31)

T

M X
1

As the rest of the equations describing Bak oligomerization remain unchanged, the relationship between the 
concentration of Bak monomer and the cytoplasmic CytC fraction remain the same:
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=
+

f B
K B

[ ]
[ ] (32)c

A

C
A A

1

1

Taking into account our results (Fig. 2C), we now take the size of the Bak apoptotic pore to be very large, such 
that A→ ∞ . This allows calculation of the time of apoptotic induction tc, which occurs when [B1] =  Kc. By incor-
porating this equation into (Eq. 31), we now get that:

κ κ
+ ≈

m t x t( ) ( ) 1
(33)

c

M

c

X

where m(t) and x(t) represent the ratios of free Mcl-1 and Bcl-xL levels to Bak level respectively, κ = K K/M M C 
and κ = K K/X X C. Here, we have further made the assumption that the total Bak level far exceeds the level 
required for apoptosis induction (BT ≫  Kc), consistent with the observation that most cells can switch into an 
apoptotic state upon induction. Now, by combining these equations with decay curves for Mcl-1 and Bcl-xL:

= δ−M t M e[ ]( ) (34)t
0

M

= δ−X t X e[ ][ ] (35)t
0

X

we can determine the time to death tc as a function of variables that can be measured experimentally, including 
initial Mcl-1 and Bcl-xL levels, their decay time constants, and Bak levels (Fig. 3A). As the remaining biochemical 
parameters κ κ( , )M X  are properties of the proteins themselves, they would be expected to be invariant across 
different cells and cell lines; thus, they effectively provide scaling factors to the measured concentrations.

To obtain mitotic survival curves, defined as the fraction of mitotically arrested cells that remain alive as a 
function of time, we now use the results above to obtain the death time distribution for a cell population with 
variable levels of Mcl-1, Bcl-xL and Bak. This approach takes the hypothesis that non-genetic variability in protein 
levels constitutes the dominant source of variability in the timing of apoptosis decision, as previously proposed24. 
Following previous work36, we assume that variability of the protein level is well-described by a log-normal dis-
tribution, such that:

 µ σ=Mlog( ) ( , ) (36)M M

µ σ=Xlog( ) ( , ) (37)X X

 µ σ=Blog [ ] ( , ) (38)B B

where M, X and B are random variables of the concentrations Mcl-1, Bcl-xL and Bak, and  µ σ( , ) represents a 
normal distribution with mean μ and variance σ. Using these distributions, and the analytical expressions above 
(Eqs 33–35), we now numerically calculate the probability distribution of death times for a cell population as a 
function of parameters, which can then be integrated to obtain this cumulative distribution function:

∫ δ δ κ κ µ σ µ σ µ σ τ= τ
∞

F T p d( ) ( , , , , , , , , , ) (39)T
M X M X M M X X B B

This function gives the mitotic survival curve, i.e. the probability that a cell survives for time T during mitotic 
arrest (Fig. 3A, center).

Calculating the corrected mitotic survival curves from experimental single cell data. After cells 
enter drug-induced mitotic arrest, they can either die by apoptosis, or exit from mitosis, a competing processes 
that can cause cells to escape death5. Therefore, to properly compare mitotic survival curves derived from our 
kinetic model with experimental data (Eq. 39), we need to first generate experimental survival curves, where 
competing effects of mitotic exit are eliminated. In order to do so, we first take mitotic death and mitotic exit to be 
independent events, an assumption that has been validated experimentally37. This allows us to write the following 
simple model to describe the cell number dynamics during mitotic arrest:

δ= − +
dM
dt

t t M[ ( ) ( )] (40)

δ=dD
dt

t M( ) (41)

=
dE
dt

t M( ) (42)

Here M, D and E represent the number of mitotically arrest cells, dead cells and exited cells, respectively; and δ (t) 
and  t( ) represent the rates of death and exit, respectively, which can change in a time-dependent manner during 
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mitotic arrest, but vary independently. To estimate δ (t) from experimental data, we directly measure M, D and E, 
from time-lapse single-cell imaging data, then invert (Eqs 41 and 42) to obtain:

δ = ′t D t M t( ) ( )/ ( ) (43)

We can now use the following relations to obtain the mitotic survival curve, i.e. the probability that a cell sur-
vives in mitotic arrest, given that it does not undergo mitotic exit. We start with this equation:

δ= −
df
dt

t f( ) (44)
D

D

And plug in equation (43) to get:

∫
τ
τ
τ=






−







′
f D

M
dexp ( )

( ) (45)
D

t

0

Similarly, we can derive a mitotic exit curve, which is the probability that a cell exits from mitotic arrest, given 
that it stays alive:

∫
τ
τ
τ=






−







′
f E

M
dexp ( )

( ) (46)
E

t

0

Using Eqs 43 and 44, we then generated mitotic survival and exit curves for all cell lines studied both under 
control conditions and upon knockdown of apoptotic regulator proteins. The calculated mitotic survival curves 
were then used for fitting to the model curves (see below); mitotic exit curves were not further used, but were 
found to be invariant to knockdown of Mcl-1 or Bcl-xL for all cell-lines examined, consistent with our previous 
finding that mitotic death and exit are independent cellular processes37.

Constrained fitting of mitotic survival data to the kinetic model. Mitotic survival curves generated 
by model simulations were fitted to experimental data using a multi-step constrained least-squares procedure. We 
first determined initial conditions for least-squares optimization by performing a large random search of param-
eter space separately for each cell line, using bounds set by the experimental measurements of Mcl-1 half-life 
and average Mcl-1, Bcl-xL and Bak levels (Fig. 1C,D). From this search, we then chose a reduced set of points 
in this parameter space that gave the lowest value for the sum-squared of error, and then performed subsequent 
least-squares minimization using a pattern search procedure, using each point as an initial starting condition. 
This procedure gave rise to a set of optimized solutions for each individual cell line, accounting for mitotic sur-
vival kinetics under both control and protein knockdown conditions. From the set of solutions obtained from 
this procedure, a subset of solutions were found to recapitulate the observed cell-line differences in Bcl-2 protein 
levels from replicate western blot data. Mitotic survival curves for these fits, as well as corresponding parameters 
for all the cell lines are displayed in Fig. 3B–D.
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