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A systematic, statistical-mechanics-based analysis of the response of dielectric elastomers to coupled
electromechanical loading is conducted, starting from the monomer level through the polymer chain and
ending with closed-form expressions for the polarization and stress fields. It is found that the apparent
response at the macrolevel is dictated by four microscopic parameters—the monomer type and polar-
izability and the chain length and density. Our analysis further reveals a new electrostrictive effect that
either reinforces or opposes the polarization-induced deformation. The validity of the results is attested
through comparisons with well-established experimental measurements of both the polarization field and
the electrostrictive stress.
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Dielectric elastomers (DEs) are promising materials with
a wide range of possible applications. These materials, that
deform in response to electrostatic excitation, have been
extensively investigated in the past 15 years [1,2]. Broadly
speaking, the idea is to convert electrical energy into
mechanical actuation by squeezing a DE medium between
two oppositely charged electrodes (Fig. 1). In spite of
attractive features such as a simple actuation mechanism,
light weight, fast response time, and, above all, ability to
undergo giant deformations, their development is hindered
due to the low energy and the small forces they produce [2].
These shortcomings stem from the poor ratio between the
dielectric and the mechanical properties in common soft
elastomers.
Recent attempts to overcome these obstacles by enhanc-

ing the electromechanical coupling in DEs imply that it can
be dramatically improved by tailoring their microstructures
[2–8]. Motivated by these findings, the aim of this study is
to progress along this path and introduce a novel model that
enables us to accurately predict the electromechanical
response of DEs in terms of the microstructural parameters
at the polymer chain level. This model differs from existing
ones, which are phenomenological in essence and are
commonly based on the widely used ideal dielectric
elastomer (IDE) model. According to the IDE model,
the polarization linearly depends on the electric field,
and the stress is the sum of a purely mechanical deforma-
tion-dependent term and an electrostatic stress that depends
quadratically on the electric field [1,8,9]. While a few
attempts to incorporate information concerning the network
structure were made, these involved qualitative consider-
ations that led to approximate or adjustable phenomeno-
logical models [2,6,9]. At present, systematic models that
connect the microscale to the macroscale describe only
either the electrical or the mechanical responses of DEs, but
not the coupled one. Here we present a methodical,
statistical-mechanics-based model that describes the

coupled behavior of DEs and properly reduces to the
appropriate uncoupled model when the DE is subjected
to either electrical or mechanical loading.
Our analysis emanates from the first law of thermody-

namics for DEs [10], where we assume that the energy
stored in a polymer network can be expressed as the sum of
the energies of the chains [11,12]. Locally, the electrical
enthalpy of the monomers composing the chains is
u ¼ −mðEÞ · E, where m is the monomer electric dipole
and E is the electric field. Taking the linear term of Taylor
expansion series ofm about E [11], we examine two types
of monomers [13,14]. First, a uniaxial (U) monomer whose
dipole is aligned with the monomer direction

m ¼ KUðE · ξ̂Þξ̂; ð1Þ

[Fig. 2(a)]. Here, ξ̂ is the unit vector along the monomer
and KU is the monomer polarizability (units F · m2).
Second, a transversely isotropic (TI) monomer whose
dipole is along the projection of the electric field on the
plane perpendicular to the monomer direction

m ¼ 1

2
KTI½E − ðE · ξ̂Þξ̂�; ð2Þ

with KTI the polarizability of the TI monomer [Fig. 2(b)].
At the chain level, we adopt the affine deformation

assumption according to which the deformations of the
chain’s end-to-end vectors (r in Fig. 2) are governed by the

FIG. 1. A DE layer in its (a) unloaded and (b) electro-
mechanically loaded configurations.
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macroscopic deformation [15]. This enables us to impose
three constraints on the conformations of the chains in
terms of three Lagrange multipliers [16]. The first corre-
sponds to the number of the monomers in the chain, the
second corresponds to the prescribed electrical enthalpy of
the chain, and the third Lagrange multiplier τ, which is a
vector, corresponds to the imposed deformation of the end-
to-end vector. Subjected to these constraints, we determine
the entropy in terms of the most favorable chain confor-
mation under the applied electromechanical loading [16].
In this chain,

pðξ̂; uÞ ¼ 1

Z
exp

�
τ · ξ̂ − u

kθ

�
ð3Þ

is the probability density function that a monomer is
directed along ξ̂ and its electrical enthalpy is u. Here, k
is the Boltzmann constant, θ is the temperature, and Z ¼R
expðτ · ξ̂ − u

kθÞdΓ is the partition function, where dΓ is a
differential solid angle. The Lagrange multiplier τ in
Eq. (3) is extracted from the constraint

nl
Z

τpðξ̂; uÞdΓ ¼ r; ð4Þ

where n is the number of the monomers in the chain and l is
the monomer length. Finally, assuming that the chains have
an identical number of monomers and a random referential
distribution [15], we integrate over all the chains in the DE
and derive the macroscopic polarization and stress fields in
the deformed dielectric [17].
Hereafter, we examine the common setting of a thin DE

layer between two electrically attracted flexible electrodes.
We restrict the analysis to a deformation range substantially
smaller than the chain’s extensibility limit [5,6,8,9,18–20].
This, in turn, allows us to extract an explicit expression for
τ from Eq. (4). In its unloaded state, the layer dimensions
are L1 and L2, and its thickness is H [Fig. 1(a)]. When
loaded, the layer dimensions are held fixed at λ1L1 and
λ2L2, and the thickness of the incompressible layer is
h ¼ H

λ1λ2
[Fig. 1(b)]. The electric potential ΔV between the

electrodes induces the electric field E ¼ −λ1λ2ðΔV=HÞ
along the E axis.

The predicted polarization along the electric field is

PEðλ1; λ2; EÞ

¼ N0KEη

�
n
2
þ c2

½2ða− 1Þ2 − λ21λ
2
2ðλ21 þ λ22Þ�ðb− aÞ

24ω2λ21λ
2
2

�
;

ð5Þ

and the stress in the transverse direction is

σXðλ1; λ2; EÞ ¼ σmX − EPE − ε0E2; ð6Þ

where

σmX ¼ N0kθ
c
3

�
λ21 −

1 − a
λ21λ

2
2

�

is referred to as the mechanical component of the stress,
ω ¼ ffiffiffiffiffiffiffiffiffiffiffi

K=kθ
p

E, N0 is the number of chains per unit
referential volume, and ε0 ¼ 8.85 × 10−12 F · m−1 is the
permittivity of the vacuum. The expression for σY, the stress
in the Y direction, is identical with a switch of the roles of
λ1 and λ2. In the above expressions, K ¼ KU and K ¼ KTI
for dielectrics with uniaxial and transversely isotropic
dipoles, and η, a, b, and c are even functions of E only.
For a dielectric with uniaxial dipoles, η ¼ ðω −DÞ=ðω2DÞ,
a ¼ ð3η − 2Þ=ð2ηÞ, b ¼ ω2½1 − ðη=2Þ�, c ¼ 4=ð2 − ηÞ, and
D ¼ R

ω
0 et

2−ω2

dt is the Dawson integral. For a dielectric
with transversely isotropic dipoles,

η ¼ 1 −
1

ω2
þ

ffiffiffi
2

π

r
expð− ω2

2
Þ

ωErfð ωffiffi
2

p Þ ;

a ¼ ð2=ηÞ − 3, b ¼ ω2ðη − 1Þ, and c ¼ ð2=ηÞ. Note that η
is a smooth monotonic function of ω varying from ηð0Þ ¼ 2

3

to η ¼ 2 as ω → ∞ for dielectrics with uniaxial dipoles and
in the range from 2

3
to 1 for those with TI dipoles.

Before proceeding, four observations are in order. (i) In
the limit of small electric fields and moderate deformations,
Eq. (5) recovers the IDE model PE ¼ χ0ε0E, where χ0 ¼
ðnN0=3ÞðK=ε0Þ is the elastomer initial susceptibility.
(ii) The incompressibility assumption requires the addition
of a pressurelike workless term to the stress whose value is
extracted from the boundary condition. Thus, σX in Eq. (6)
incorporates a pressure term corresponding to a zero traction
boundary condition on the electrodes (i.e., σE ¼ 0).
Accounting for this term, in the limit of purely mechanical
loading σmX recovers the well-known neo-Hookean model
with initial modulus μ ¼ N0kθ [6,15]. Moreover, by setting
η, a, and c to their initial values and taking only the first term
for PE, under coupled electromechanical loading Eq. (6)
recovers the IDEmodel. (iii) The contour length of a chain is
nl, whereas the length of its end-to-end vector in the
unloaded state is

ffiffiffi
n

p
l [15]. Thereby, the lockup stretch of

FIG. 2. Polymer chains with (a) uniaxial and (b) transversely
isotropic monomers [13].
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the chain is λc ¼
ffiffiffi
n

p
[6]. (iv) When the layer thins under

mechanical loading, then, according to the affine deforma-
tion assumption, in the deformed state the sum of the dipole
projections in the direction of the electric field will decrease
in chains with uniaxial monomers. Therefore, in these
networks the susceptibility and the electromechanical cou-
pling will diminish. For chains with TI monomers, the
situation is reversed, and both the susceptibility and the
coupling improve.
These observations enable us to deduce n,N0, K, and the

monomer type from measurements of λc, μ, χ0, and the
trend of the polymer response relative to the IDE model.
Thereby, we infer that the VHB-4910 monomers are
uniaxial and for this material λc ¼ 9.6, μ ¼ 73 × 103 Pa,
and χ0 ¼ 3.7 [21]. The Elastosil monomers are of the TI
type with λc ¼ 7, μ ¼ 342 × 103 Pa, and χ0 ¼ 1.7 [22].
Shown in Fig. 3 are four sets of experimentally measured

results for VHB-4910 together with the predicted suscep-
tibility χ ¼ ðPE=ε0EÞ according to Eq. (5). Following the
experimental setups, χ is determined with λ1 ¼ λ2 ¼ λ and
shown versus the planar stretch λ2. Kofod et al. [18]
conducted the measurements at a frequency of 0.1 Hz
and used metal conductor electrodes with carbon black.
McKay, Calius, and Anderson [19] used gold and Nyogel
electrodes. Wissler and Mazza [20] used gold plungers, and
measurements were done at 100 Hz. Equation (5) accu-
rately reproduces the measurements with metallic electro-
des [18,19]. In the other two cases, the low values of the
measured susceptibilities can be attributed to the highly
resistive Nyogel electrodes [19] and the high frequency at
which the experiments were conducted [20].
Next, we examine the model predictions for the stress.

Figures 4(a) and 4(b) show the measurements carried out
by Pelrine, Kornbluh, and Kofod [23] and Wissler
and Mazza [20] with VHB-4910 samples, respectively.
Figure 4(c) shows results for Elastosil samples by Kofod
and Sommer-Larsen [22]. Following the experimental
setups, we fix the deformation and determine the
difference between the stresses without and with electrical
excitation. Thus, shown in Fig. 4 is the difference

σXðλ1; λ2; 0Þ − σXðλ1; λ2; EÞ versus the electric field for
the reported stretches and materials. In all three cases,
there is a fine agreement between the outcomes of the
analysis and the experiments.
Also shown in Fig. 4 are the curves for the quadratic

electrostatic stress ðχ0 þ 1Þε0E2 according to the IDE
model. This model overestimates the results measured
for the VHB-4910 and vice versa for the Elastosil.
Thereby, according to observation (iv) above, we assume
uniaxial and TI monomers for the VHB-4910 and the
Elastosil, respectively. The error of the IDE model relative
to both the present analysis and the experimental measure-
ments can be as large as 20%.
An important outcome of our analysis concerns the

dependence of the mechanical component of the stress σmX
on the electric field. Thus, while the influence of the
deformation on the polarization was phenomenologically

Eq. 3
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FIG. 3. Normalized susceptibility versus deformation.
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FIG. 4. Stress versus electric field. Analytical predictions and
experimental measurements of (a) Pelrine et al. [23], (b) Wissler
and Mazza [20] and (c) Kofod and Sommer-Larsen [22].
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tackled in previous works [9], the countereffect was
neglected. This electrostrictive effect can be explained in
terms of the kinematic constraint imposed on the chain’s
end-to-end vectors [17]. In a way of an example, consider a
chain with uniaxial monomers whose end-to-end vector is
along the electric field [Fig. 5(a)]. The uniaxial monomers
tend to line up in order to align their dipole with the electric
field, and their combined motion prompts elongation of the
end-to-end vector. At the macrolevel, this leads to a
thickening of the layer, hence opposing the deformation
induced directly by the electric attraction between the
electrodes. In a chain whose end-to-end vector is
perpendicular to the electric field, the tendency of the
monomers to align with the electric field prompts a short-
ening of the chain and hence, once again, a thickening of
the layer due to Poisson’s effect [Fig. 5(b)]. This reasoning
can be easily extended to any chain with uniaxial dipoles.
In DEs with TI dipoles, the situation is reversed, and this
electrostrictive effect acts to further squeeze the layer. Thus,
this effect may reinforce or attenuate the electrostatic stress
component EPE in Eq. (6). To quantify this effect, in
Fig. 4(a), we added the short-dashed curve denoted
mechanical model, resulting from the replacement of σmX
in Eq. (6) with the purely mechanical term μ½λ21 − ðλ1λ2Þ−2�
of the IDE model. It is evident that the contribution of this
new electrostrictive term is substantial, and in this case its
negligence results in a 13% error.
We conclude this Letter by recalling that the weak

coupling between the electrostatic and the mechanical
fields in currently available DEs motivated this study. To
overcome this limitation, which is the main obstacle to
widespread applications of these materials, the interplay
between the origins of the electromechanical coupling at
the monomer level and its apparent expression at the
macrolevel, through the DEs chain network, must be
analyzed. Accordingly, the goal of this Letter is to
introduce a novel, statistical-mechanics-based model that
accurately predicts the coupled response of DEs by
elevating relevant information from the monomer and
chain levels to the macroscopic level. Indeed, we obtain
closed-form expressions for the stress and the polarization

in terms of two parameters that are associated with the
monomers (type and polarizability) and two parameters of
the chains (length and density). The model demonstrates
that the high electric fields that are being used to obtain
meaningful deformations have a substantial influence on
both the microstructure and the response of the polymer.
Moreover, we reveal a new electrostrictive effect that is
associated with the tendency of the monomers to align their
dipole with the electric field and the kinematic constraint
imposed on the chain’s end-to-end vectors. We also certify
our predictions against well-established sets of experimen-
tal results. Finally, note that the procedure followed in this
work can be applied to characterize the behaviors of DEs
with more complicated structures, such as ones with highly
polarized side molecules that are attached to the primary
chain network [2]. Thus, it provides a methodology to
optimize the performance of DEs through enlightened
enhancement of their microstructure. In this regard our
analysis indicates that from a practical viewpoint DEs with
TI dipoles are preferable, since the electrostrictive effect
due to the kinematic constraint enhances the polarization-
induced stress, whereas in DEs with uniaxial dipoles this
effect diminishes the overall deformation.
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