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Abstract

This work examines the features and capabilities of a tube comprised of stacked cylin-

drical dielectric layers separated by flexible electrodes with the applicative aim of electri-

cally controlling the inner radius. The study begins with the analysis of the non-homogenous

electromechanical response of a single-layer dielectric tube according to well-established

coupled models. Two boundary conditions are examined - traction free boundaries and a

fixed outer radius. The advantages and limitations of each boundary conditions are dis-

cussed. It is shown that dielectric tubes subjected to traction free boundaries experience

instabilities, an effect that can be avoided by fixing the outer surface. Next, the electrome-

chanical behavior of a stacked cylindrical actuator comprised of dielectric tubes that are

mechanically connected in series and electrically connected in parallel is determined under

the two boundary conditions discussed above. It is shown that the stacking of cylindrical

layers increases the range of available inner radii at the cost of design limitations. In-

terestingly, it is found that mounting layers on a stacked cylindrical actuator may lead to

instabilities even if the outer radius is fixed.

Keywords: electro-active polymers, smart materials, stacked dielectrics

1 Introduction

Electro-active polymers (EAPs) are materials that deform as a result of electric excitation. These

elastomers possess many promising properties such as low density, flexibility, ability to undergo

large deformations, fast response and availability. Therefore, EAPs are employed in many

actuation-based applications such as artificial muscles (Bar-Cohen, 2001), energy-harvesting
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devices (Springhetti et al., 2014; McKay et al., 2010), micropumps (Rudykh et al., 2012) and

tunable wave guides (Shmuel and deBotton, 2013), among others. The actuation is the result

of the attraction between two oppositely charged electrodes that are attached to a thin dielectric

film. Due to the Poisson’s effect, the film compresses in thickness and expands in the transverse

direction.

Depending on the application, EAPs may be employed in various configurations such as flat

films, dielectric tubes and dielectric spheres. For example, energy harvesting devices are com-

prised of elastomer sheets that are used to transform mechanical energy into electrical energy

(Due et al., 2010; McKay et al., 2010; Tutcuoglu and Majidi, 2014). Another novel application

that is based on EAP films is the stacked dielectric elastomer actuator. This device is comprised

of stacked capacitors, where each capacitor is composed of two thin flexible conductive lay-

ers that are perfectly adhered to an incompressible EAP film. The capacitors are mechanically

connected in series and electrically connected in parallel. An electric field is applied across the

thickness of the films and compresses them. Typically, these devices are composed of a large

number of films to obtain a large cumulative displacement. Three types of stacking have been

proposed: multi-layer stacking (Schlaak et al., 2005; Kovacs and Düring, 2009; Kovacs et al.,

2009; Lotz et al., 2011), where separate EAP films are stacked on top of each other, stacking

in a helical structure (Carpi et al., 2005), and a folded dielectric elastomer (Carpi et al., 2007),

where an EAP strip is coated with flexible electrodes and folded to a stacked shape. Practically,

Kovacs et al. (2009) demonstrated that such a device composed of ∼ 350 dielectric films is ca-

pable of lifting a weight of 2.1 [kg] to a height 2.5 [mm]. The capabilities of this actuator were

theoretically examined by Moscardo et al. (2008) and Cohen (2016), among others.

Pei et al. (2003) proposed to use EAPs as cylindrical actuators, or tubes, in a spring roll

configuration. This actuator is comprised of EAP films that are stacked and wrapped around

an elastic coil spring. An electric field is then applied across the layers and compresses them.

This, in turn, induces an axial extension of the device. Kovacs et al. (2007) employed this

motion in an arm wrestling robot. Another actuation that is based on a cylindrical configuration

was proposed by Shmuel and deBotton (2013) and Shmuel (2015). These works studied the

propagation of longitudinal and torsional waves in dielectric elastomer tubes. From a theoretical

point of view, Carpi and De Rossi (2004) and Singh and Pipkin (1966) examined the electro-

mechanical response of tubes under small and finite deformations, respectively.

This work examines the capabilities of soft tubes with electromechanically controlled radii.

Consider an actuator that is comprised of stacked cylindrical capacitors, where each capacitor

is made of two flexible cylindrical conductive layers that are perfectly adhered to a thin-wall

dielectric tube. The tubes are mechanically connected in series and electrically connected in

parallel. The capacitors are mounted on a soft dielectric vessel that holds the structure together.

The conductive layers are charged with alternating polarities such that the same voltage is ap-
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plied across each dielectric tube. Note that due to the geometry of the device, the induced

electric field, and consequently the resulting deformation, are non-homogenous. The electric

forces compress the layers and as a consequence, the inner radius increases and the inner tube

expands. This allows to control the opening of the soft dielectric vessel by an applied voltage.

This device may be used in many applications such as, for example, increasing or decreasing

the pressure, the velocity or the rate of flow of fluid through a pipe.

This work begins with a short theoretical background. The electro-mechanical response of

a single-layer tube is studied according to two electromechanical models under two boundary

conditions with the practical aim of finding the design that maximizes the range of available

inner radii of the tube. Next, the behavior of a stacked cylindrical actuator is examined. The

effects of the boundary conditions and the influence of the number of dielectric layers is dis-

cussed. The conclusions are gathered in the last section.

2 Theoretical background

Consider the deformation of a hyper-elastic dielectric subjected to an electro-mechanical load-

ing. The continuum occupies a region Ω0 ⊂ R3 with a boundary ∂Ω0 before the deformation

and a region Ω ⊂ R3 with a boundary ∂Ω at the current configuration. The material points at

the reference and the current configurations are denoted by X and x, respectively. The mapping

of the material points is x = ϕ (X) and the corresponding deformation gradient is

F = ∇Xϕ (X) , (1)

where ∇X is the gradient operation with respect to the referential coordinate system. The right

and left Cauchy-Green strain tensors are defined as C = FT F and b = FFT , respectively. The

ratio between infinitesimal volume elements in the current and the reference configurations is

J = detF > 0. Within the current framework, only incompressible materials are considered

and therefore J = 1.

The dielectric is subjected to an electric field

E (x) = −∇xφ, (2)

where φ (x) is the scalar electric potential and ∇x is carried out with respect to the current

coordinate system. The electric field satisfies Faraday’s law,∇x×E = 0, throughout the entire

space. The electric displacement field is

D (x) = ε0E (x) + P (x) , (3)
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where ε0 is the permittivity of vacuum and P (x) is the polarization, or the electric dipole-

density. Recall that in vacuum P = 0. In ideal dielectrics there are no free charges and

therefore the electric displacement inside the dielectric is governed by the equation

∇x ·D = 0. (4)

This relation also holds in the vacuum surrounding the dielectric.

The referential counterparts E(0) and D(0) of the electric field and the electric displacement

are (Dorfmann and Ogden, 2005)

E(0) = FTE, (5)

and

D(0) = F−1D. (6)

With the above definitions, ∇X × E(0) = 0 and ∇X ·D(0) = 0 inside the dielectric and in the

surrounding vacuum. Since the referential polarization P(0) is not uniquely defined, I follow

Dorfmann and Ogden (2005) and Cohen et al. (2016) and adopt the definition

P(0) = F−1P. (7)

Note that with this definition, the referential polarization and the referential electric field are

energy conjugates such that 1
J
E(0) ·P(0) = E ·P.

The stress and the polarization that develop in hyper-elastic dielectrics can be derived from a

scalar energy-density function Ψ
(
F,E(0)

)
. This work assumes that the energy-density function

can be decomposed into a mechanical and a coupled contributions (Dorfmann and Ogden, 2005;

McMeeking et al., 2007; Cohen and deBotton, 2014; Cohen et al., 2016),

Ψ
(
F,E(0)

)
= Ψm (F) + Ψc

(
F,E(0)

)
, (8)

where Ψm (F) characterizes the response of the material in the absence of electrical forces

and Ψc

(
F,E(0)

)
accounts for the difference between Ψ with and without electric excitation.

Accordingly, the electric displacement is determined via

D = −F ∂Ψc

(
F,E(0)

)

∂E(0)
, (9)

and the stress that develops in the material is
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σ =
∂Ψ
(
F,E(0)

)

∂F
FT − p I (10)

=

(
∂Ψm (F)

∂F
+
∂Ψc

(
F,E(0)

)

∂F

)
FT − p I.

The last term in Eq. (10) is a workless pressure-like term stemming from the incompressibility

of the the dielectric. It is determined from the equilibrium equations and the boundary condi-

tions.

The electrical boundary conditions are given in terms of either the electric potential or the

charge per unit area ρs, such that

JEK× n̂ = 0; JDK · n̂ = −ρs, (11)

where J•K = •(i)−•(o) denotes the jump in the vectorial quantity • across the boundary, •(i) and

•(o) are the vectors inside and outside the dielectric, respectively, and n̂ is the outward pointing

unit normal to the boundary at the current configuration. Practically, in common EAPs settings

ρs is the charge on the electrodes. The mechanical boundary conditions are given in terms of

the displacement of the boundary or the mechanical traction t such that

JσK n̂ = t. (12)

Outside the body, the electric field induces the the Maxwell stress

σv = ε0

(
E⊗ E− 1

2
(E · E) I

)
. (13)

The stress satisfies the equilibrium equation

∇x · σ = 0, (14)

throughout the entire space, where the body forces are neglected.

2.1 Coupled constitutive relations

Following the work of Dorfmann and Ogden (2005), this work employs the coupled energy-

density function

Ψc

(
F,E(0)

)
= −εrε0

2
E(0) ·C−1E(0), (15)
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where εr is the relative permittivity. Accordingly, Eq. (9) is employed to obtain the electric

displacement

D = εrε0E, (16)

where Eq. (5) is used. For later reference, also note that

∂Ψc

(
F,E(0)

)

∂F
= εrε0 (E⊗ E)F−T . (17)

Numerous energy-density functions have been proposed to characterize the mechanical be-

havior of the dielectric. The simplest one is the well-known neo-Hookean model,

ΨnH
m (F) =

µ

2
(I1 − 3) , (18)

where µ is the shear modulus and I1 = tr (C) is the first invariant of the right Cauchy-Green

strain tensor. Here, tr (C) denotes the trace of C. Note that this model contains only one

material parameter. The coupled resulting stress is computed with Eq. (10),

σnH = µb + εrε0E⊗ E− pI, (19)

where Eq. (17) is employed.

The Gent model is also frequently used to characterize the mechanical behavior of elas-

tomers (Gent, 1996). This phenomenological model accounts for the lock-up effect seen in

elastomers. The Gent energy-density function is

ΨG
m (F) = −µJm

2
ln

(
1− I1 − 3

Jm

)
, (20)

where Jm = I lu1 − 3 is a material parameter determined from the value of the first invariant at

the lock-up stretch I lu1 . Note that as I1 → Jm + 3, ΨG
m (F) → ∞ thus capturing the lock up

effect. The stress according to the Gent model is determined with Eqs. (10) and (17),

σG =
µJm

Jm − I1 + 3
b + εrε0E⊗ E− pI. (21)

In the following, we employ the two discussed constitutive models and examine the electro-

mechanical response of soft dielectric tubes.

3 The electro-mechanical response of a single layer tube

The electro-mechanical behavior of dielectric elastomer tubes has been previously modeled for

small and finite deformations by Carpi and De Rossi (2004) and Singh and Pipkin (1966), re-
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Figure 1: A cross section of a single layer tube (a) before and (b) after actuation.

spectively. Following these works, the applicative aim of this paper is to examine the expansion

of the inner tube under an applied voltage and to demonstrate that the inner radius can be elec-

trically controlled. To this end, the solution proposed by Singh and Pipkin (1966) is employed

and two boundary conditions are examined.

Consider the deformation of an infinite incompressible soft dielectric tube with initial inner

and outer radii Ri and Ro, respectively (Fig. (1a)). The inner and outer surfaces are coated

with flexible electrodes. The referential material points are described in a cylindrical coordinate

system (R,Θ, Z) where Ri ≤ R ≤ Ro and 0 ≤ Θ ≤ 2π. A voltage V is applied across the

thickness of the tube and induces a radial electric field which, in turn, deforms the tube. At the

current configuration the inner and outer radii are denoted ri and ro, respectively (Fig. (1b)).

The mapping of the material points is

r =
√
AR2 +B; θ = Θ; z =

Z

A
, (22)

where ri ≤ r ≤ ro, 0 ≤ θ ≤ 2π and the constants A and B characterize the deformation and

are determined from the boundary conditions. Consequently, the deformation gradient is

F =




∂r
∂R

0 0

0 r
R
∂θ
∂Θ

0

0 0 ∂z
∂Z


 =




AR√
AR2+B

0 0

0
√
AR2+B
R

0

0 0 1
A


 . (23)

Note that this deformation gradient satisfies the incompressibility constraint J = 1.

The radial electric field induced by the potential difference V inside the dielectric is

E =
V

ln
(
ro
ri

) 1

r
r̂, (24)

and in the vacuum surrounding the tube E = 0. The resulting stress according to the neo-

Hookean and the Gent based models is obtained via Eqs. (19) and (21), respectively.
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The equilibrium equations along the θ and the z directions are automatically satisfied with

the considered models. The pressure term p = p (r) is determined from the equilibrium along

the r direction,
∂σrr
∂r

+
σrr − σθθ

r
= 0. (25)

Additionally, the tube is free to expand along the axial direction and therefore,

ro
ˆ

ri

2π
ˆ

0

σzz r dr dθ = 0. (26)

According to the neo-Hookean model, the resulting pressure term is

p (r) =
Aµ

2

(
ln
(
ηnH

)
− B

r2

)
+
εrε0

2


 V

ln
(
ro
ri

)




2

1

r2
+ C, (27)

where Eqs. (19) and (25) are employed and ηnH = r2

r2−γ . The integration constant

C =
µ

A2
+

1

r2
o − r2

i


Aµ

2

(
r2
i ln
(
ηnHi

)
− r2

o ln
(
ηnHo

)
+B ln

(
ηnHo
ηnHi

))
− εrε0

V 2

ln
(
ro
ri

)


 ,

(28)

is determined from Eq. (26), where ηnHi and ηnHo take the value of ηnH with r = ri and r = ro,

respectively.

Substituting the stress according to the mechanical Gent model (Eq. (21)) into Eq. (25)

results in the pressure term,

p =
Jmµ

4η1

(
4A3B

η3

(
η2

1

(
r2 −B

)
− A3B

)
+ η2

1 ln

(
η3

r4

)
− η1η2 ln (f)

)
+
εrε0

2


 V

ln
(
ro
ri

)




2

1

r2
+C,

(29)

where η1 =
√
A2 (3 + Jm)− 1− 2A3, η2 =

√
A2 (3 + Jm)− 1 + 2A3 , η3 = A3B2 +

η2
1 r

2 (B − r2) and

f =
B (η2 + η1)− 2r2η1

B (η2 − η1) + 2r2η1

. (30)

Practically, Jm � A and therefore the expressions in the square root of η1 is greater than zero.

It is also noted that within the range of practical values discussed hereafter, η2 > 0, η3 > 0 and
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f > 0. The integration constant C is determined from Eq. (26)

C =
Jmµ

η2
1

+
1

r2
o − r2

i

(
r2
i

(
ln

(
η3i

r4
i

)
− η2

η1

ln (fi)

)
− r2

o

(
ln

(
η3o

r4
o

)
− η2

η1

ln (fo)

)
+

2A3B

η3
1η2

(
3− A2 (3 + Jm)

)
ln

(
fo
fi

))
, (31)

where fi and η3i assume the values of f and η3 with r = ri and fo and η3o take the values of f

and η3 with r = ro.

In the following, three tubes made of EAPs with different wall thicknesses are examined.

The properties of the EAPs are those of the VHB 4910 dielectric. Specifically, the shear mod-

ulus and the permittivity are µ = 73 [kPa] and εr = 4.7, respectively, and the Gent mate-

rial parameter Jm = 89 is determined from a uniaxial extension experiment where the mea-

sured lock-up stretch was 9.6 (Bozlar et al., 2012). The inner referential radius of the three

tubes is Ri = 1 [mm] and the outer referential radii are Ro = 1.1 [mm], Ro = 1.4 [mm] and

Ro = 2 [mm]. The ratio between the wall thickness H = Ro − Ri and the average referential

radius 〈R〉 = Ro+Ri

2
of the three tubes is H

〈R〉 = 0.095, 1
3
, 2

3
. Throughout this section, these

tubes are referred to as the thin, the intermediate and the thick wall tubes, respectively.

The constants A and B are determined from the boundary conditions on the inner and outer

surfaces of the tube. First, two types of boundary conditions are examined with the aim of

maximizing the range of available inner radii:

1. Traction free tube - the inner and outer surfaces of the tube are free to deform under the

influence of an electric field,

σrr (ri) = 0; σrr (ro) = 0. (32)

2. Fixed outer radius - the outer surface of the tube is fixed while the internal surface is

traction free,

ro = Ro; σrr (ri) = 0. (33)

For convenience, I define the dimensionless quantities V = V
H

√
εrε0
µ

, h = ro−ri
H

, ri = ri
Ri

and

ro = ro
Ro

which correspond to the normalized applied voltage, the relative wall thickness, and

the relative inner and outer radii, respectively.

Figs. (2a) and (2d) depict the relative inner radius ri and the relative wall thickness h as a

function of the normalized voltage V for the thin tube under traction free boundary conditions

(Eq. (32)). Throughout this work, the continuous and the dashed curves correspond to the

predictions according to the neo-Hookean and to the Gent models, respectively. Note that at

a critical voltage V c ≈ 0.7 the tube experiences an instability. According to the mechanical

neo-Hookean model, no physical solutions exist for voltages V > 0.7. This is expected since
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Figure 2: The relative inner radius ri (a-c) and the relative wall thickness h (d-f) as a function
of the normalized applied voltage V under traction free boundary conditions. The continuous
and the dashed curves correspond to the predictions of the neo-Hookean (Eq. (19)) and the
Gent (Eq. (21)) models, respectively. Figs. (a,d), (b,e) and (c,f) correspond to the thin, the
intermediate and the thick wall tubes, respectively.

the neo-Hookean behavior does not account for the lock-up effect. The mechanical Gent model

predicts that at this critical voltage the tube experiences a rapid reduction in thickness, as shown

in Fig. (2d), and a sharp expansion of the inner radius of the tube, as shown in Fig. (2a).

This phenomenon is known as the snap-through effect and is widely discussed in several works

(Suo et al. 2008; Rudykh et al. 2012; Cohen et al. 2016). To explain this behavior, note that the

electrical stress intensifies as a result of two factors - the increase in the voltage and the reduction

in the wall thickness of the tube. Beyond a critical normalized voltage V c, the neo-Hookean

model predicts that the increase in the electrical stress cannot be compensated by a mechanical

stress and equilibrium cannot be reached. According to the Gent model, in order to achieve

traction free boundaries with a normalized voltage V > V c, the tube wall must significantly thin

to a point that is near the lock up stretch. Such a deformation gives rise to a high mechanical

stress that satisfies equilibrium. It is emphasized that throughout the snap-through process, the

inner and the outer radii of the tube increase. However, since the intensity of the electric field

decays with the ratio 1
r

(Eq. (24)), the electrical forces on the outer boundary are weaker than

those on the inner boundary and the tube wall significantly thins as well. Note that the loading

and unloading paths of the voltage according to the Gent model differ. Specifically, decreasing

the voltage to V ≈ 0.3 after the instability occurred results in a sharp expansion of the tube wall

and a reduction in ri.

Figs. (2b) and (2c) depict the relative inner radius ri as a function of the normalized voltage

V for the intermediate and the thick wall tubes, respectively. It is shown that the normalized
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Figure 3: The relative inner radius ri (a-c) and the relative wall thickness h (d-f) as a function
of the normalized applied voltage V under a fixed outer radius. The continuous and the dashed
curves correspond to the neo-Hookean (Eq. (19)) and the Gent (Eq. (21)) models, respec-
tively. Figs. (a,d), (b,e) and (c,f) correspond to the thin, the intermediate and the thick tubes,
respectively.

critical voltage at which instability occurs is similar for the three discussed tubes. However,

since V is normalized by H the applied voltage V required to achieve V c is higher in thicker

wall tubes. Furthermore, the three tubes have the same initial inner radius and therefore we

find that an inner radius ri can be achieved with lower voltages at thinner wall tubes. This is

expected since the magnitude of the electric field in thinner tubes is higher. For example, a

relative inner radius ri = 1.1 is obtained with V ≈ 2.4 [kV], V ≈ 8.7 [kV] and V ≈ 18 [kV] in

a thin, an intermediate and a thick wall tube subjected to traction free boundaries, respectively.

Therefore, thin wall tubes are preferable for the discussed envisaged application.

Figs. (2e) and (2f) depict the relative wall thickness h as a function of the normalized

voltage V for the intermediate and the thick tubes, respectively. A comparison with Fig. (2d)

for the thin tube reveals that the dependence of the relative wall thickness h on the applied

voltage is similar for the three considered tubes. However, recall that h is proportional to one

over the initial wall thickness and therefore the wall thickness of the thick tube in a deformed

configuration is greater than that of the thin tube. This effect should be taken into consideration

in the design of soft tubes with the purpose of an electrically controlled inner radius.

To conclude, for the purpose of the envisaged application we find that under traction free

boundary conditions the thin tube is superior - a similar range of inner radii can be achieved

with lower voltages.

Next we examine the response of the three tubes subjected to an applied voltage under a

fixed outer radius (Eq. (33)). Figs. (3a) and (3d) plot the relative inner radius ri and the relative

wall thickness h as a function of the normalized voltage V for the thin tube. Since the outer
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radius is fixed, the displacement of the inner radius is limited and consequently a smaller range

of inner radii is available in comparison with the traction free tube. In addition, we find that

according to the neo-Hookean behavior no physical solutions exist beyond a voltage V ≈ 0.92.

However, the Gent model suggests that any voltage can be applied and predicts a lock up at a

wall thickness h ≈ 0.1. Due to the fixed outer radius, at high voltages the wall thickness is

larger than that of a tube subjected to traction free boundaries. Consequently, it is pointed out

that a compressive stress is required in order to hold the outer surface fixed. Interestingly, the

Gent model does not predict instabilities under these boundary conditions.

Following the applicative interest of this paper, note that significantly lower voltages are

required to attain a given displacement of the inner radius in tubes subjected to traction free

boundary conditions. Specifically, a relative inner radius ri = 1.05 is achieved with V ≈
1.9 [kV] (Fig. (2a)) and V ≈ 3.9 [kV] (Fig. (3a)) in a thin wall tube subjected to traction free

and fixed outer radius boundary conditions, respectively. Therefore, traction free boundaries

are preferable for this application.

Figs. (3b) and (3e) plot the relative inner radius ri and the relative thickness h as a function

of the normalized voltage V for the intermediate tube. A comparison with the predictions under

traction free boundary conditions (Figs. (2b) and (2e)) reveals that, as stated with regard to the

thin wall tube, fixing the outer radius increases the voltages required for radial expansions. It is

also pointed out that the range of available inner radii in intermediate tubes is greater than that

of thin tubes (note the scales of ri in figs. (3a) and (3b)). However, as previously mentioned,

the shortcoming of tubes with thicker walls is that the same radial expansions are achieved with

higher voltages.

The relative inner radius ri and the relative thickness h as a function of the normalized

voltage V for the thick wall tube are illustrated in Figs. (3c) and (3f). The thick wall of the

tube allows for a higher range of inner radii at the cost of higher applied voltages. Interestingly,

the dependence of the relative wall thickness h on the applied voltage V is similar for the three

considered tubes, as can be seen from Figs. (3d), (3e) and (3f). Furthermore, it is concluded

that a compressive stress is required in order to keep the outer radius fixed in the three discussed

tubes. Lastly, the Gent model predicts that instabilities in single layer tubes can be avoided

under this boundary condition.

To conclude this section, we find that tubes subjected to traction free boundaries experience

significantly larger expansions at lower voltages as a result of the freedom of the outer surface

to deform. If the outer surface is fixed, thicker tubes are capable of larger expansions of the

inner tube at the cost of higher voltages. It is also pointed out that by fixing the outer radius,

instabilities can be avoided.
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Figure 4: A schematic of a stacked cylindrical actuator.
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Figure 5: A cross section of a stacked cylindrical actuator (a) before and (b) after actuation.

4 The electro-mechanical response of a stacked multilayer

tube

Consider next a tube composed of m stacked infinite cylindrical capacitors, where each capac-

itor is composed of a dielectric layer sandwiched between two flexible conductors (Fig. (4)).

The capacitors are mechanically connected in series and electrically connected in parallel. The

referential inner and outer radii of the i-th layer are denoted R(i)
i and R(i)

o , respectively (Fig.

(5a)). A potential difference V is applied across each layer and as a result the inner and outer

radii at the current configuration are r(i)
i and r(i)

o , respectively (Fig. (5b)). The electric field on

the i-th layer is

E(i) =
V

ln

(
r
(i)
o

r
(i)
i

) 1

r
r̂, (34)

where r(i)
i ≤ r ≤ r

(i)
o . From Eq. (34) one may deduce that the intensity of the electric field

diminishes at layers that are further form the axis of the cylinder in a stacked cylindrical actuator
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comprised of capacitors with an equal wall thickness.

The mapping of the material points from the reference to the current configuration of the

i-th layer is

r =

√
A(i) (R(i))

2
+B(i); θ = Θ; z =

Z

A(i)
, (35)

where R(i)
i ≤ R ≤ R

(i)
o and A(i) and B(i) are deformation related constants determined from

the boundary conditions of the layer. Consequently, the deformation gradient of the i-th layer

is given in Eq. (23) where A and B are replaced with A(i) and B(i), respectively.

The continuity constraint across the interface between the i-th and the (i+ 1)-th layers

requires that

r(i)
o = r

(i+1)
i ; θ(i) = θ(i+1); z(i) = z(i+1). (36)

From Eq. (36) we find that A(i) = A(i+1) = A and B(i) = B(i+1) = B. In other words, the

constants in the mappings of all layers are identical. Physically, this indicates that all layers are

equally elongated along the longitudinal direction of the tube.

Furthermore, in order to maintain equilibrium

σ(i)
rr

(
r = r(i)

o

)
= σ(i+1)

rr

(
r = r

(i+1)
i

)
, (37)

σ
(i)
rθ

(
r = r(i)

o

)
= σ

(i+1)
rθ

(
r = r

(i+1)
i

)
, (38)

σ(i)
rz

(
r = r(i)

o

)
= σ(i+1)

rz

(
r = r

(i+1)
i

)
. (39)

It can easily be shown that Eqs. (38) and (39) are automatically satisfied. Eq. (37) is satisfied

through the integration constant that arises in the pressure term. Recall that this term stems

from the incompressibility of the tube and is determined through the equilibrium equation in

the radial direction. The pressure term for the i-th layer is given in Eqs. (27) and (29) for the

neo-Hookean and the Gent models, respectively, where the integration constant C is replaced

with C(i). Consequently, Eq. (37) contains four unknowns - A, B, C(i) and C(i+1). Note that in

total there are m− 1 such equations.

The tube is free to expand along the axial direction and therefore,

r
(m)
ô

r
(1)
i

2π
ˆ

0

σzz r dr dθ =
m∑

i=1




r
(i)
ô

r
(i)
i

2π
ˆ

0

σ(i)
zz r dr dθ


 = 0, (40)

where the integration is carried from the inner radius of the innermost layer r(1)
i to the outer

radius of the outermost layer r(m)
i . Eq. (40) contains m+ 2 unknowns - A, B, and m unknowns

that pertain to the integration constants C(i), i = 1, 2, ...,m.
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Figure 6: The relative inner radius ri as a function of the normalized applied voltage V under
traction free boundary conditions according to the (a) neo-Hookean and the (b) Gent models.
The number of stacked layers m is denoted in the plots.

The boundary conditions on the inner and outer surfaces of the tube provide the two remain-

ing equations that allow to determine the mapping parameters and the pressure terms in all of

the layers. In total, we have a set of m+ 2 equations with m+ 2 unknowns.

Following the previous section, two boundary conditions are considered:

1. Traction free tube - the inner and outer surfaces of the tube are traction free. Accordingly,

Eq. (32) can be rewritten as

σrr

(
r = r

(1)
i

)
= 0; σrr

(
r = r(m)

o

)
= 0. (41)

2. Fixed outer radius - the outer surface of the tube is fixed while the inner surface is free to

deform. Accordingly, Eq. (33) is modified to

σrr

(
r = r

(1)
i

)
= 0; r(m)

o = R(m)
o . (42)

In the following, four cylindrical stacked actuators with m = 1, m = 10, m = 25 and

m = 50 layers are examined under the two boundary conditions. The initial wall thickness of

each layer is H = 0.1 [mm] and the relative wall thickness h =
r
(m)
o −r(1)i

mH
is defined as the ratio

between the sum of the wall thicknesses of all layers before and after the actuation. We recall

the definitions V = V
H

√
εrε0
µ

and ri = ri
Ri

. As in the previous section, the layers assume the

properties of VHB 4910 (µ = 73 [kPa], εr = 4.7 and Jm = 89).

Figs. (6a) and (6b) plot the relative inner radius as a function of the normalized applied

voltage V for cylindrical stacked actuators with various layers according to the neo-Hookean

(Eq. (19)) and the Gent (Eq. (21)) models, respectively. It is demonstrated that a given voltage

induces larger expansions of the inner tube as the number of layers increases. Furthermore,

we find that a larger inner radius is obtained at the point of instability as additional layers are

mounted on the cylindrical actuator. Specifically, the values ri = 1.29, ri = 1.56, ri = 1.97
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Figure 7: The relative wall thickness h as a function of the normalized applied voltage V under
traction free boundary conditions for a stacked cylindrical actuator with (a)m = 10, (b)m = 25
and (c) m = 50. The continuous and the dashed curves correspond to the neo-Hookean (Eq.
(19)) and the Gent (Eq. (21)) models, respectively.

and ri = 2.59 are obtained at a voltage V ≈ 0.7 for tubes with m = 1, m = 10, m = 25 and

m = 50 layers, respectively. The range of possible inner radii improves as additional layers are

stacked, and accordingly the performance of the actuator can be enhanced. Examination of the

predicted inner radius according to the Gent model after the snap-through instability point (Fig.

(6b)) reveals that larger inner radii can be achieved in cylindrical actuators with more layers.

Figs. (7a), (7b) and (7c) depict the relative wall thickness h as a function of V for cylindrical

actuators composed of m = 10, m = 25 and m = 50 layers, respectively. Note that Fig.

(2d) is the corresponding plot for m = 1. As before, the continuous and the dashed curves

correspond to the neo-Hookean and the Gent models, respectively. The relative wall thickness

is similar for the four examined stacked tubes. However, recall that the real wall thickness h =

mH h and therefore, while the values of h are roughly equal, the actual wall thicknesses vary

significantly. For example, the wall thickness of a stacked cylindrical tube withm = 50 layers is

approximately five times that of a similar tube with m = 10 layers. From a practical viewpoint,

while the addition of EAP layers conduces to the range of actuation radii, the expansion of the

outer radius poses a design constraint that should be taken into account.

The response of a stacked cylindrical actuator with a fixed outer radius is studied next.

Following Figs. (3a) and (3d) for a single-layer thin tube, Figs. (8a-c) and (8d-f) depict the

predicted relative inner radius and the relative wall thickness as a function of the normalized

applied voltage, respectively, for a stacked cylindrical actuator composed of m = 10, m = 25

and m = 50 layers. As before, the continuous and the dashed curves correspond to the neo-

Hookean and the Gent models, respectively. Note that the ri scales in Figs. (8a-c) are different.

As expected, the feasible range of actuated radii increases as additional layers are mounted on

the tube. It is again found that beyond a critical voltage no solutions exist according to the

neo-Hookean model. Interestingly, while the response predicted by the Gent model of stacked

cylindrical actuators with m = 1 and m = 10 layers is stable, Figs. (8b) and (8c) show that the

addition of layers may induce an unstable behavior. Specifically, a snap through from ri ≈ 2 to

ri ≈ 3.2 at a voltage V c ≈ 0.71 is predicted in a stacked cylindrical actuator with m = 25. This
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Figure 8: The relative inner radius ri (a-c) and the relative wall thickness h (d-f) as a function
of the normalized applied voltage V subjected to a fixed outer radius. The continuous and
the dashed curves correspond to the neo-Hookean (Eq. (19)) and the Gent (Eq. (21)) models,
respectively. Figs. (a,d), (b,e) and (c,f) correspond to a cylindrical actuator with m = 10,
m = 25 and m = 50, respectively.

effect becomes more pronounced as the number of layers increases. Practically, the instability

stems from the continuity constraints and the electrical and the mechanical forces due to the

induced non-homogenous electric field. Note that the electric field acting on the outer layers

is weaker and, as a consequence, the reduction in wall thickness of these layers is smaller.

However, the continuity constraint along the axis of the cylinder enforces a constant elongation

of all layers which, in turn, intensifies the pressure term of the inner layers in order to satisfy

Eq. (40). This may result in a snap-through instability which is amplified as additional layers

are mounted on the stacked cylindrical actuator.

To conclude, we find that a wider range of inner radii is available in stacked cylindrical

actuators with more layers. Nevertheless, the enhanced performance comes at a cost. Subjected

to traction free boundary conditions, the expansion of the outer surface of a stacked cylindrical

actuator is commensurate with the number of layers. This effect may pose design constraints

and cannot be dismissed. Under a fixed outer radius, adding layers to the actuator may lead

to instabilities. It is again emphasized that in order to attain a relative inner radius ri, lower

voltages are required in the traction free tube.

5 Concluding remarks

This work examines the capabilities of a stacked cylindrical actuator with the applicative aim

of electrically controlling the inner radius. From a practical point of view, such a device can be
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used in a variety of applications requiring soft tubes with flexible openings.

This work begins with the examination of the electromechanical response of three single-

layer tubes with the same inner radius and different wall thicknesses under two boundary con-

ditions - traction free boundaries and a fixed outer radius. It is found that, subjected to traction

free boundaries, the inner and the outer radii increase. Additionally, it is demonstrated the range

of available actuation radii increases with the thickness of the layer, as one might expect. Fur-

thermore, the well-established models employed in this paper predict an instability in a traction

free tube. This effect can be avoided by fixing the outer radius. It is highlighted that in a single

layer tube a compressive stress is required in order to do so.

Next, the electromechanical response of a stacked cylinder actuator is studied. This actuator

is comprised of polymer tubes with equal initial wall thicknesses that are mechanically con-

nected in series and electrically connected in parallel. This configuration provides the ability to

induce high electric fields across each layer and overcomes the main limitation of EAPs. Me-

chanically, the accumulated displacement of the stacked layers allows to attain a wider range of

available inner radii and, practically, enhances the capabilities of the actuator.

Two boundary conditions are again considered. Subjected to traction free boundaries, in-

creasing the number of layers in the cylindrical actuator enables a wider range of applicative

inner radii. Interestingly, the critical voltage that induces instability is independent of the num-

ber of layers within the discussed range. When the outer surface is fixed, it is shown that a wider

range of applicative inner radii is available in tubes comprised of more layers. Surprisingly, the

study reveals that while instabilities can be avoided in stacked cylindrical actuators with a few

layers, this effect may arise in actuators comprised of many cylindrical films.

This study discusses the feasibility of EAPs in a stacked cylindrical setting and examines

the possible limitations of design that may arise in its implementation.
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