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ABSTRACT

Lagrangian data arise from instruments that are carried by the flow in a fluid field. Assimilation of such data into

ocean models presents a challenge due to the potential complexity of Lagrangian trajectories in relatively simple flow

fields. We adopt a Bayesian perspective on this problem and thereby take account of the fully non-linear features of the

underlying model.

In the perfect model scenario, the posterior distribution for the initial state of the system contains all the information

that can be extracted from a given realization of observations and the model dynamics. We work in the smoothing

context in which the posterior on the initial conditions is determined by future observations. This posterior distribution

gives the optimal ensemble to be used in data assimilation. The issue then is sampling this distribution. We develop,

implement, and test sampling methods, based on Markov-chain Monte Carlo (MCMC), which are particularly well

suited to the low-dimensional, but highly non-linear, nature of Lagrangian data. We compare these methods to the

well-established ensemble Kalman filter (EnKF) approach. It is seen that the MCMC based methods correctly sample

the desired posterior distribution whereas the EnKF may fail due to infrequent observations or non-linear structures in

the underlying flow.

1. Introduction

Lagrangian instruments such as drifters and floats that are carried

by the flow provide good measurements of the fluid motion and of

its transport properties. The density of such Lagrangian data has

increased significantly over the past few years and is expected to

increase further. As a consequence, the problem of assimilating

these Lagrangian data into ocean general circulation models for

improving the state estimates of the ocean has rightfully received

a lot of attention in recent years (Carter, 1989; Ide et al., 2002;

Kuznetsov et al., 2003; Molcard et al., 2003; Özgökmen et al.,

2003). These studies have used assimilation methods based on

the Kalman filter or optimal interpolation, which are appropriate

for linear or approximately linear systems with Gaussian errors

in the data and in the prior state estimates. These assumptions

are generally not valid for the problem of Lagrangian data as-

similation, even in relatively simple flow fields, because of the

non-linearities of the Lagrangian particle trajectories. An exam-

ple of the failure of the Kalman filter based methods because of

the violation of these assumptions is provided by the saddle issue

(Kuznetsov et al., 2003), that occurs when an observed trajectory

passes close to a saddle point of the flow.
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The main motivation for this study is to understand the ef-

fects of the highly non-linear nature of the Lagrangian data on

the assimilation procedure. This is accomplished by adopting a

Bayesian viewpoint on the Lagrangian data assimilation prob-

lem. The noisy observations of a system along with the probabil-

ity density function (PDF) of errors contained in them, a dynamic

model of the system, and the prior information about the initial

state, given in terms of a prior PDF, can be combined, via Bayes’

theorem, to give the posterior PDF of the initial state of the sys-

tem (Apte et al., 2007). We emphasize that such a posterior PDF

on the initial state uses ‘future’ observations as well—a smoother

rather than a filter. This Bayes, or exact, posterior, as we will call

it throughout the paper, is in general non-Gaussian even if the

prior is Gaussian and the observational noise is Gaussian. This is

because the transformation from initial data into the state at later

times, where observations are made, is non-linear. Furthermore,

the posterior on the initial state can also be pushed forward,

under the dynamics, to any later time. This transformation can

also introduce non-Gaussian behaviour. We present examples of

such non-Gaussian posterior PDFs in perfect model, identical

twin experiments in the context of Lagrangian data assimilation

for the linearized shallow water model.

We also compare this exact posterior with the posterior im-

plied by the samples from the ensemble Kalman filter (EnKF).

This helps us relate the saddle issue with the non-Gaussianity of

the posterior PDF by showing that the cause of the failure of the
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EnKF is the non-Gaussian posterior distribution arising when the

time interval between the observations is long. It will be demon-

strated that the presence of centres, that is, elliptic fixed points of

the flow, also leads to non-Gaussian posterior distributions and

to failure of the EnKF.

In order to study the posterior distribution, we develop three

sampling methods, based on the Langevin equation and the

Metropolis–Hastings algorithm, that allow us to obtain an en-

semble which faithfully represents this exact posterior. Ensemble

based methods are attractive since averages over the ensemble

allow calculation of any statistical quantity to be obtained from

the PDF. We demonstrate the use of these exact sampling tech-

niques in the linearized shallow water model.

The paper is organized as follows. In the remainder of this

section, we present the application of Bayes theorem to a general

data assimilation problem with a deterministic dynamic model.

The linearized shallow water model that we use in our numerical

experiments is described in Section 2. In Section 3, we discuss the

structure of the posterior distribution and how it is affected by the

choice of the prior, the observational frequency, and the dynamics

of the drifters. In Section 4, we compare this exact posterior

with perhaps the most commonly used, ensemble based, data

assimilation method: the EnKF. The different methods used for

sampling the posterior are presented and compared in Section 5.

A discussion of results and some directions for future work are

contained in Section 6.

In order to discuss the Bayesian framework, we write a general

deterministic model for an n-dimensional state vector x(t) ∈ R
n

as

dx

dt
= f (x), x(0) = x0 ∼ ζ. (1)

Thus, before making any observations, the initial conditions are

supposed to be drawn from a prior with probability density func-

tion pζ (x0). We denote the solution operator for the dynamics by

�:

x(t) = �(x0; t). (2)

We assume that the observations depend only on the state of the

system at a particular time, but are subject to noise. Thus, the

observation yk ∈ R
m at time tk can be written as

yk = h[x(tk)] + ηk = h[�(x0; tk)] + ηk,

where h : R
n → R

m . The second equality in the above equa-

tion emphasizes the fact that we consider the observations

to be functions (often highly non-linear numerical functions,

typically only available through numerical simulation) of the

initial conditions. If we have observations at various times

t1, . . . , tK , we can write the total observational vector yT =
(yT

1, . . . , yT
K) as a function of initial condition subject to

noise:

y = H (x0) + η, (3)

where H(x0)T = ([h(x(t1)]T , . . . , h[x(tK )]T ) and ηT = (ηT
1 , . . . ,

ηT
K ). If the probability density function of the random vector η is

pη : R
mK → R, then the conditional probability of the observa-

tions y given the initial data x0 is p(y | x0) = pη[y − H(x0)]. Given

the prior distribution pζ of initial conditions and a realization of

the observations ŷ, the posterior probability for the state vector

is obtained from Bayes’ theorem:

p(x0|ŷ) = pη[ŷ − H (x0)]pζ (x0)

p(ŷ)
∝ pη[ŷ − H (x0)]pζ (x0),

(4)

where

p(y) = ∫
pη[y − H (x0)]pζ (x0) dx0

is a function of the observations y alone, and hence p(ŷ) is a

constant for a given realization ŷ. In particular, the constant of

proportionality in eq. (4) does not depend upon x0.

We note four key points about the above formulation of the

DA problem.

(1) The posterior in eq. (4) is the conditional distribution of

the state at time t = 0 given observations over the time period

[0, tK ]. This posterior can also be pushed forward to get the

conditional distribution of the state at any time t ∈ [0, tK ]. Thus,

the data assimilation problem is stated as a smoother, that is,

the estimate of the state at some time instant uses observations

over a time interval including the future. In contrast, a sequential

filter only uses observations in the past. A smoother is natural

in many physical contexts, such as the ocean state estimation,

re-analysis, etc. (Cohn et al., 1994; Evensen and van Leeuwen,

2000).

(2) The methods we present for sampling the posterior

p(x0|ŷ) only need a functional form for pη, which could be non-

Gaussian and could also include correlations between observa-

tional errors ηk at different times.

(3) We have stated the problem in the perfect model scenario,

which can occur only in identical twin experiments but not in any

applications. Thus, for the identical twin experiments reported

in Sections 3 and 4, we generated the observations using the

same model, dynamic as well as observational, as the one that

was used in the sampling of the posterior and EnKF. Imperfect

model scenarios have been discussed in the context of various

existing DA methods (Hansen, 2002; Judd and Smith, 2004) and

we are exploring application of the sampling methods we present

in this paper to imperfect model problems.

(4) The above formulation of the data assimilation problem

does not explicitly mention the ‘true’ state of the system, x(t). In

the data assimilation literature (Cohn, 1997), it is customary to

state the observational model in the following form:

y = H [x (t)] + η.

The crucial difference between this statement and the model

eq. (3) is that the observation function H in eq. (3) is not a func-

tion of the ‘true’ state x(t) which is unknown in any application.
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Thus, while comparing different data assimilation schemes, we

do not measure the error with respect to the ‘true’ state. In-

stead, we take the viewpoint that for a given model [the dynamic

model of eq. (1) along with the observational model of eq. (3)],

the posterior distribution p(x0|ŷ) contains all the information

available from the model and the given realization ŷ of the ob-

servations. The success of a DA scheme (either deterministic

or statistical) should be measured by comparing its output with

this posterior distribution, when the posterior is available. We

also note that for comparison with sequential filtering methods,

it will be necessary to push p(x0|ŷ) forward to the final time,

using the Liouville equation associated with eq. (1), to obtain

p(x(tK )|ŷ).

In applications, the usefulness of this posterior distribution

depends on the context. For example, it can be used to generate

state estimates of the past (re-analysis) to be compared with past

observations, for example, those left out of DA for the purpose

of such comparisons; or to perform parameter estimation; or to

generate predictions to be then compared with future observa-

tions. In all these cases, the structure of the posterior distribution

is of interest, since it contains the information from the model

and the observations.

We emphasize that the probabilistic nature of the errors in

the data necessitates a probabilistic estimate of the state of the

system in all the above problems. We cannot a priori ask for a

single best estimate of the state. The structure of the posterior

will determine, a posteriori, the appropriateness of providing a

single best estimate. For instance, if the posterior is unimodal

and locally Gaussian-like, then the mode and the covariance can

be used as a ‘best’ estimate of the state and its uncertainty. If

the posterior is bimodal, and sharply peaked at each mode, then

the location of the two modes, and their relative probabilities,

constitute a useful summary of the likely states of the system,

and the uncertainty in them.

(5) We have presented the posterior distribution for the case

when the model dynamics is deterministic. This is usually termed

as a ‘strong constrained formulation.’ In the case of the so-called

‘weak constrained formulation,’ the posterior distribution func-

tion to be considered is not just on the initial conditions, but rather

on the space of paths of the model dynamics. Such a formula-

tion is presented in (Apte et al., 2007) and its relation to various

data assimilation techniques, such as 4DVAR, is presented in

(Apte et al., 2008). In specific problems of interest, for example,

those in oceanography, the strong constrained formulation might

be too restrictive and the weak constrained formulation might

be preferred.

2. Linearized shallow water model

The idealized ocean model we consider is given by the inviscid

linearized shallow water equations, which have the following

non-dimensional form (page 68 Pedlosky, 1986).

∂u

∂t
= v − ∂h

∂x
,

∂v

∂t
= −u − ∂h

∂ y
,

∂h

∂t
= −∂u

∂x
− ∂v

∂ y
, (5)

where (x, y) ∈ R
2 and t ∈ [0, ∞). The scalar fields u(x, y, t) and

v(x, y, t) are the two components of the velocity field, and h(x,

y, t) the variation of the free surface height measured from the

mean level. For this linear flow model, it is natural to consider the

decomposition of the fields into Fourier modes. In the numerical

experiments, we consider two modes:

u(x, y, t) = −2πl sin(2πkx) cos(2πly)u0 + cos(2πmy)u1(t),

v(x, y, t) = 2πk cos(2πkx) sin(2πly)u0 + cos(2πmy)v1(t),

h(x, y, t) = sin(2πkx) sin(2πly)u0 + sin(2πmy)h1(t), (6)

where the first term is a time-independent geostrophic mode with

amplitude u0 and the latter is a time-periodic inertial-gravity

mode. On substituting eqs. (6) into eqs. (5), we get the following

dynamic equations for the amplitudes.

u̇0 = 0,

u̇1 = v1,

v̇1 = −u1 − 2πmh1,

ḣ1 = 2πmv1,
(7)

with initial conditions [u0(0), u1(0), v1(0), h1(0)]. The

geostrophic mode exhibits a cellular flow field with hyperbolic

fixed points at (x, y) = (i/2k, j/2l), i, j ∈ Z, joined by sepa-

ratrices which prevent mixing between different cells. The time

dependent inertial-gravity mode perturbs this cellular structure

and can lead to mixing. We chose k = l = m = 1 for the numer-

ical experiments. A typical flow field for these modes is shown

in Fig. 1.

The observations are the positions (xi , yi ), i = 1, . . . , M of M
Lagrangian drifters in the above flow. For assimilation of these

observations, we use an approach first proposed in Ide et al.

(2002), Kuznetsov et al. (2003), augmenting the model with the

equations for the drifters.

ẋi (t) = u[xi (t), yi (t), t], ẏi (t) = v[xi (t), yi (t), t],

i = 1, . . . , M, (8)

with initial conditions xi (0), yi (0) and the functions u, v given in

eq. (6). The drifter observations are made at discrete times tk =
kδ for k = 1, . . . , N and contain errors that are assumed to be

Gaussian, uncorrelated in time, and independent of each other.

Then the observational model can be written as

xo
i (tk) = xi (tk) + ηik, yo

i (tk) = yi (tk) + ξik, (9)
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Fig. 1. A typical flow field showing the cellular structure perturbed by

the inertial-gravity mode, along with some of the drifter trajectories

used in the numerical experiments. The shading denotes the height field

and the arrows show the velocity field.

where ηik and ξik areN (0, R) (Gaussian with mean 0 and covari-

ance R) and are independent identically distributed random vari-

ables. We re-emphasize that the sampling methods we present

can be readily generalized to non-Gaussian errors that are cor-

related in time and also dependent on each other, as long as we

know, or assume, the functional form of their probability distri-

bution function.

Following the discussion in Section 1, the above set-up with

a deterministic model and noisy observations naturally reduces

the data assimilation problem to that of sampling the posterior

distribution of initial conditions. The full model, corresponding

to eq. (1), consists of eqs. (7) and (8) for the 4 + 2M dimensional

state vector x ≡ (u0, u1, v1, h1, x1, y1, . . . , xM , yM )T of the flow

and drifters. Also, writing the 2MN dimensional observation and

noise vectors y = [xo
1(t1), yo

1(t1), xo
2(t1), . . . , yo

M(tN )] and η =
(η11, ξ 11, η21, . . . , ξ M N ), the observational model can be written

in the form of eq. (3) with x0 = [u0(0), u1(0), v1(0), h1(0), x1(0),

y1(0), . . . , yM (0)]. Thus we will sample the initial conditions of

drifters as well as the velocity field, given a single realization ŷ
of the drifter observations at later times.

We emphasize that we have chosen periodic boundary con-

ditions and the Fourier decomposition eq. (6) for the velocity

and height fields. Thus, by using the drifter observations over a

certain spatial domain to ‘infer’ the Fourier components, we get

information about the flow over the whole plane R
2. In practical

problems with specific boundary conditions, this certainly might

not be the case and the ‘propagation over space’ of the informa-

tion from drifter observations will raise issues that have not been

addressed here.

We solved the flow and the drifter eqs. (7) and (8) using a

fourth order Runge–Kutta scheme with a time-step of 10−4. Over

the time periods used in our experiments, the error in the flow

equations was seen to be negligible by comparing the numeri-

cal solutions with the exact solutions of these linear equations.

The numerical error in the drifter equations was also seen to be

negligible by comparing the trajectories calculated with a much

smaller time-step of 10−7.

3. Structure of the posterior

We now study the posterior distributions for various identical

twin experiments of the Lagrangian data assimilation problem

discussed above. Specifically, we study three cases: a short length

of the trajectory of the drifter, a longer trajectory that stays within

a cell of the geostrophic flow, and a trajectory that traverses the

cellular boundaries. For these different cases, we present the ex-

act posterior obtained using three sampling methods: Langevin

stochastic differential equation (LSDE), Metropolis adjusted

Langevin algorithm (MALA) and Random walk Metropolis–

Hastings (RWMH). The details of these methods and their com-

parisons are discussed in Section 5.

In Section 4, we compare this posterior with the distribution

from the EnKF. The EnKF is implemented as a sequential filter

which aims to approximate the exact posterior. Thus, it is natural

to compare the exact and the EnKF distributions of the state at

the time of the final observation, when the smoother and an ideal

filter agree (Evensen and van Leeuwen, 2000). To this end, the

posterior samples obtained using the exact sampling methods

are pushed forward from the initial time to the final time using

the solution operator � from eq. (2). This is done using the same

numerical scheme as the one used in creating the samples from

MALA, RWMH and EnKF. Thus, the distributions shown in this

section are those at the final observation time.

We will see in Section 5 that the adaptive version of MALA is

the most efficient of the different sampling methods. For all the

examples presented in this section, the samples were obtained

using this method. In fact, for most of the more complex exam-

ples, the non-adaptive algorithms discussed later were inefficient

to the point of being almost impossible to use.

3.1. A short trajectory

This trajectory is the short arc in the upper left-hand side of

Fig. 1. We observed the position of a drifter at five time instances

over the period t ∈ [0.005, 0.025]. The observational error is

σ obs = 0.005 and the initial true state is (u0, u1, v1, h1, x1, y1) =
(1, 0, 0.5, 0, 0.1, 0.25). We use this trajectory to compare the

different sampling methods and this comparison (see Fig. 10) is

discussed in Section 5.4. Here, we point out that, in the marginals,

the posterior is very close to being Gaussian, even though this is

the posterior of the state at the final observation time.

We also study the effect on the posterior distribution of varying

the prior distribution. Fig. 2 shows the posterior for different

priors described in the figure legend. There are a few points to

note.

Tellus 60A (2008), 2



340 A. APTE ET AL.

Fig. 2. The marginal posteriors for different priors for the experiment discussed in Section 3.1: the ‘flat’ priors have covariance of 1.0I each but

differ in their means. The ‘peaked’ priors have covariance of 0.0025I. The three different peaked priors differ in the prior mean—‘right’ mean

corresponds to a prior mean close to the ‘true’ state, ‘wrong’ mean 1 is far from the ‘true’ state but the prior mean particle position within the same

cell as the initial value, and the ‘wrong’ mean 2 is also far from the ‘true’ state with the prior mean particle position in another cell. For clarity, only

part of the flat posterior of u1 is shown. The error shown in x1 is at the two standard deviations level. In this and other figures showing the marginal

posteriors, different curves for each prior correspond to different realizations of MALA.

(1) The prior mean has significant effect on the posterior

mean while the posterior variance depends on the prior variance.

Of course, when the prior variance is smaller, the effect of the

prior mean is stronger.

(2) The dependence of the posterior mean on the prior mean

in different variables of state space is significantly different. For

example, when the prior is flat, the posterior mean depends no-

tably on the prior mean only in the (u0, v1) directions but not

others.

(3) Even when the prior is peaked around the ‘true’ state

(peaked prior with ‘right’ mean), the posterior mean is not the

same as the true state. But, we see that the posterior mean of

the particle position is within 2σ obs of the observations, even

in the case when the prior is peaked but with a mean which is

far from the truth (peaked prior with ‘wrong’ mean). We will

see later that even this need not be the case since the posterior

contains information not just about this last observation but about

all the previous ones as well.

3.2. A trajectory that stays in a cell

This is the trajectory that circles around in the upper left ‘cell’

shown in Fig. 1. We used three different observational sets for

this trajectory and they are shown in Fig. 3. The observations are

taken over a time period, t ∈ [0, 0.5]. The difference between

the three observational sets is the number of observations, which

is 100, 20 and 6 for the first, second, and third set respectively.

The observational error is σ obs = 0.005 and the initial true state

is (u0, u1, v1, h1, x1, y1) = (1.0, 0.5, 0.5, 0.5, 0.2, 0.35). The

prior distribution is assumed to be very flat with a variance of

1.0. The marginal posterior distributions for the state variables

u0, x1, and y1 at the final time t = 0.5 are shown in Fig. 4. The

marginals for the remaining flow variables show very similar

patterns. The main conclusions to be drawn from this comparison

are the following.

Fig. 3. Three different observational sets for the trajectory discussed in

Section 3.2.

(1) As the frequency of observations increases, the posterior

becomes more peaked.

(2) Even with very different number of observations, the

marginal posteriors remain close to being Gaussian, in spite of

the fact that over this time period, the drifter dynamics is highly

non-linear.

(3) Even with 100 observations, the posterior mean is not

the same as the ‘truth.’

3.3. A trajectory that crosses between cells: saddle
issues

This is the trajectory that crosses between the two right cells in

Fig. 1, crossing close to the saddle point near (x, y) = (0.5, 0.5).
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Fig. 4. The marginal posterior distributions using three different observational sets for the trajectory discussed in Section 3.2. The final observation

along with an error of 2σ obs and the true values are also shown.

Fig. 5. Comparison of the exact marginal posteriors with those from the EnKF, for the trajectory that crosses between the cells (Section 3.3).

The adaptive MALA used for sampling the posterior is not fully converged.

Fig. 6. Scatter plots for the position variables (left-hand panel) and for (h1, u1) variables along with the true values (•) and a 2σ obs ellipse around the

observation (∗) at the final time t = 1.0 for the trajectory that crosses between the cells (Section 3.3).

Ten observations are taken over a time period, t ∈ [0, 1]. The

observational error variance is σ obs = 0.05 and the initial true

state is (u0, u1, v1, h1, x1, y1) = (1.0, 0.2, 1.3, 1.4, 0.51, 0.498).

The prior distribution is taken to be very flat with a variance of

1.0. The marginal posterior distributions are shown in Fig. 5.

The scatter plots for the position variables and for (h1, u1) using

samples from the exact posterior are shown in Fig. 6. The scatter

plots for other variables are qualitatively similar. (For later use

in Section 4, this figure also shows the posterior distributions

from the EnKF, which should be ignored for the time-being.)

This posterior shows a very interesting structure that is clearly

affected by the dynamics as well as the observations.

(1) The posterior is clearly non-Gaussian. The effect of the

dynamics of the drifters is seen as follows. The geostrophic mode

has separatrices at x1 = 1 and y1 = 0. But the true position of
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the drifter and its observation at the final time lie in the ‘cell’

satisfying x1 < 1 and y1 > 0. Correspondingly, there are almost

no samples outside that cell. This gives rise to the interesting

‘boomerang’ shape in the scatter plot for the position (x1, y1) of

the drifter at the final observation time, as shown in Fig. 6. On

the other hand the scatter plot of the posterior distribution for the

initial position (not shown here) shows a similar behaviour but

near the initial position of the drifter.

(2) We also see that the posterior is very much dependent

not just on the final observation but all the earlier ones as well.

In contrast to the previous cases studied, cf. Figs. 2 and 4, the

marginal in the y1 position coordinates lies almost entirely out-

side the 2σ obs circle around the final time observation.

(3) Even though the true final position of the drifter is

‘within’ the marginal posterior, the true final velocity is well

‘outside’ the posterior. Thus, in this case, the drifter observa-

tions fail to give enough information about the flow to estimate

the true flow. We re-emphasize that we do not consider this to

be a failure of the data assimilation scheme—the ‘truth’ is only

available because of the identical twin experiment set-up and in

practice, comparison with ‘truth’ cannot be made. This leaves

open the question of ‘consistent comparison of the posterior’

with the observations.

4. Comparison with the EnKF

We now compare the posterior implied by the samples from the

EnKF, which we will call the ‘EnKF posterior,’ with the ex-

act posterior for the cases presented above. We implemented

the perturbed observation version of the EnKF (described in de-

tail in, for example, Evensen, 2004). Though various different

modifications (covariance inflation, deterministic EnKF, local-

ization) could show qualitative improvements (Evensen, 2004),

our point of view was that such changes do not address the main

shortcoming, which is the assumption of Gaussianity of the prior

distribution at each observation time.

The EnKF posterior for the trajectory that crosses a separa-

trix was shown in Figs. 5 and 6. We see that for this case of a

strongly non-Gaussian posterior, the EnKF fails to approximate

the correct posterior. The EnKF marginal in the position coor-

dinates is centred around the observation. The prior mean and

covariance in the position coordinates before assimilating the

final observation were

(x1, y1)prior
mean = (0.89313, −0.11918),

Pprior
xy =

[
0.0029 −0.0005

−0.0005 0.0094

]
,

and the corresponding posterior values were

(x1, y1)post
mean = (0.90613, −0.13344),

Ppost
xy =

[
0.0013 −0.00005

0.00005 0.0020

]
,

whereas the observation was (0.91684, −0.13655) with a co-

variance of Rxy = diag (0.0025, 0.0025). Thus, we see that the

prior is already ‘close’ to the observation and with a compara-

ble covariance. The same effect persisted even with significant

covariance inflation.

At the other extreme, the EnKF posteriors for the first ex-

ample, of a short trajectory with high observational frequency,

are almost exactly the same as the exact posteriors shown in

Fig. 2. In fact, they are included in that figure. Only for the

‘peaked prior with wrong mean’ (the magenta and cyan lines in

Fig. 2), was the mean of the EnKF posterior different from that of

the exact posterior by less than a tenth of its standard deviation.

In order to further understand how the EnKF approximates

(or fails to approximate) the exact posterior, we now discuss the

EnKF posterior for the second example in the previous section.

Figs 7 and 8 show the exact and the EnKF posteriors for two of the

six variables for the three different observation sets for the longer

trajectory shown in Fig. 3, and also for a fourth observation

set described below. We recall that the length of the trajectory

is the same for the three sets but they differ in the number of

observations, and consequently, in the frequency of observations.

We note a few key aspects of the EnKF approximation:

(1) When the time interval between observations is small

(observation set 1), the EnKF approximates the exact posterior

very well.

(2) Increasing the time between observations increases the

discrepancy between the EnKF and the exact posteriors, that is,

the EnKF approximation becomes worse.

(3) In order to see whether keeping the time period between

the observations the same but increasing the number of observa-

tions can lead to a better performance for the EnKF, we consid-

ered another observational set, called ‘Obs set 4’ in Figs. 7 and 8.

For this set, the observational frequency was δ = 0.075, the same

as that in the third set, but the number of observations was M =
20, the same as in the second set. We see that the EnKF posterior

is still not the same as or close to the posterior from MALA.

Hence, the time interval between the observations is seen to be

the main factor affecting the performance of the EnKF.

(4) The EnKF approximation seems to fail when the obser-

vations are infrequent even though the posterior is close to a

Gaussian. This can be understood using Fig. 9 which shows the

distributions for the position coordinates x1, y1 of the drifter,

before and after assimilating the first and second observation.

We note that the posterior after assimilating the first observation

gives samples that show an approximately Gaussian distribution

near the elliptic fixed point at (x1, y1) = (0.25, 0.25). But, af-

ter evolving these samples up to the next observation time, they

form a ‘ring’ seen in the upper right hand plot. This is a di-

rect consequence of the non-linear evolution equations for the

drifters. Applying the Kalman filter with this prior is well be-

yond the realm of validity of Kalman filter. After assimilating
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Fig. 7. The posterior for x position of the drifter using the MALA and from the EnKF for four observational sets for the trajectory shown in Fig. 3

(Section 3.2).

Fig. 8. Same as Fig. 7 but for u1.

Fig. 9. The scatterplots for the position variables using the EnKF

ensemble before (upper row) and after (lower row) after assimilating

the first (left-hand column) and the second (right-hand column)

observations from the observational set 3 of Fig. 3. The corresponding

observations (black dot) and 2σobs circles are shown as well.

the second observation, the posterior is again approximately

Gaussian.

We also note that the number of samples needed to get con-

verged distributions using the EnKF is in the range of 105–106 for

the examples presented above. This is comparable to the number

of samples needed for convergence of other methods presented

in the next section. The computational effort per sample for the

EnKF is the same as that for RWMH which is much less than

that for MALA. Thus, the computation effort needed to get con-

verged distributions from the adaptive version of RWMH and

the EnKF are comparable and indeed, in some cases, RWMH

converges faster. It would be interesting and practically relevant

to study the differences between the sampling methods (MALA

and RWMH) and the EnKF when only small ensemble sizes are

used.

5. Sampling methods

In this section, we describe, and compare, various methods used

to generate an ensemble of samples from the posterior probability

density function. Throughout this section, we will denote this

density by π (z). Thus, in the notation used in eq. (4), z ≡ x0 and

π (z) ≡ p(x0|ŷ).

5.1. Langevin equation

Given the density π (z), consider the LSDE (Robert and Casella,

1999),

dz

ds
= 
∇ ln π (z) +

√
2


dW

ds
,

where 
 is any positive definite matrix and W is the standard

Brownian motion. The invariant density of this equation is π (z).

If it is ergodic (a conditions on the tails of π Roberts and Tweedie,

1996), then a single long trajectory of the LSDE will have an

empirical density converging to π (z). Thus a solution z(s) of

the Langevin equation could be used to calculate any statistical

quantity that can be calculated using π (z). In particular, aver-

ages of any function f(z) with respect to π (such as the mean or

covariance of π ) can be calculated using time averages over the

solution z(s) of the Langevin equation:∫
f (z)π (z) dz = lim

T →∞
1

T

∫ T

0

f [z(s)] ds. (10)
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For the Lagrangian data assimilation problem of Section 2,

we solved the above equation using the Euler–Maruyama dis-

cretization:

zn+1 = zn + 
∇ ln π (zn)δs +
√

2δs
 ωn, (11)

where ωn are iid N (0, I ). Numerically, the integral in the RHS

of eq. (10) is approximated by a sum:∫
f (z)π (z) dz ≈ 1

N

N∑
n=1

f (zn).

In general, for any finite δs , the distribution implied by the en-

semble {zn}N
n=1 generated using eq. (11) does not approach π (z)

as N → ∞, but rather approaches an approximation π̃ (z; δs)

(Talay, 1995). Thus, it is necessary to trade the finite sample size

error with the approximation error to optimize the algorithm.

The Metropolis–Hastings methods of the next section do not

suffer from this issue since, by construction, they sample the

desired density π in stationarity. Furthermore, we found that

the Metropolis–Hastings methods are more efficient at sampling

the distribution than the Euler-discretized Langevin equation.

5.2. Metropolis–Hastings algorithms

We use two different methods for Metropolis–Hastings sam-

pling. In the MALA (Robert and Casella, 1999; Roberts and

Rosenthal, 2001), the proposal is given by the Euler discretiza-

tion of the LSDE, eq. (11):

z∗ = zn + 
∇ ln π (zn)δs +
√

2δs
 ωn . (12)

In the RWMH (Robert and Casella, 1999), the proposal is

z∗ = zn +
√

2δs
 ωn, (13)

In both cases, z∗ ∼ N (μ(z), �), that is, the joint PDF q(z, z∗) of

the proposed state z∗ and the current state z is

q(z, z∗) ∝ exp

[
−1

2
‖z∗ − μ(z)‖2

�

]
. (14)

Here, ‖z‖2
� = zT �−1 z, � = 2δs 
 and for MALA μ(z) = z + 
∇

ln π (z) δs while for RWMH μ(z) = z. The standard Metropolis–

Hastings criterion (Robert and Casella, 1999) is used for ac-

cepting or rejecting the proposed state: if α = min {[π (z∗)q(z∗,

zn)/π (zn)q(zn , z∗)], 1} > un , then zn+1 = z∗, otherwise zn+1 =
zn , where un ∼ U(0, 1) are iid uniform random variables. We

also implemented the adaptive version of these algorithms in-

troduced in (Atchade and Rosenthal, 2005; Atchade, 2006). In

the adaptive algorithms, the ‘proposal mean and covariance’ μ

and 
 as well as the ‘time step’ δs in eqs. (12)–(13) is adapted

at each step in the following manner.

μn+1 = μn + γn(zn − μn),


n+1 = 
n + γn[(zn − μn)(zn − μn)T − 
n],

δs,n+1 = δs,n + δs,nγn(α − τ ).

Here, γn is a sequence, γn = c0/n with a constant c0 ∼ O(1). This

gives an asymptotic optimal acceptance rate τ for these Markov

chains: the algorithm learns the covariance structure as the chain

progresses. The detailed description can be found in (Atchade,

2006).

5.3. Computational cost of different sampling methods

Note that for z = x0 and π (z) = p(x0|ŷ) given in eq. (4), the

drift, the second term in eqs. (11) and (12), is given by

∇x0
ln p(x0 | ŷ) = −1

pη(x0 | ŷ)

M∑
k=1

∇x0

{
pη[ŷ − h(xk)]

} + ∇ pζ (x0),

(15)

where xk(x0) ≡ x(tk) = �(x0;tk) and the derivative under the sum

requires calculation of∇x0
xk(x0) and of∇xk h(xk). For the dynam-

ics given by eq. (1), we see that L(t) ≡ ∇x0
x(x0) = ∂x(t)/∂x0

satisfies the equation

dL(t)

dt
= ∇ f [x(t)] L(t), L(0) = I. (16)

In our numerical implementation, we solved the above equation

using a fourth order Runge-Kutta scheme with a time-step of

2 × 10−4, giving comparable accuracy as that for eqs. (7)–(8).

Since L(t) is a n × n matrix, each step of the Euler-discretized

Langevin equation and each sample from MALA require inte-

gration of the n + n2 coupled equations (1) and (16) over the

time interval t ∈ [0, tM ]. Since the proposal density π (z) does not

require evaluation of L(t), each sample of the RWMH requires

integrating only the n eq. (1). Similarly for EnKF, each sample

requires integrating these n coupled equations from the initial

time to the final. Thus, we see that the computational effort per

sample for RWMH and EnKF increases linearly with the dimen-

sion n of the state space while it scales quadratically for MALA.

On the other hand, we will see in Section 5.4 that the number of

samples required for convergence is significantly less for MALA

than for RWMH. Hence the actual computational effort required

for convergence of these algorithm depends on the dimension

of state space and the time interval over which observations are

taken.

It would be interesting to implement the various approxima-

tions used for 4D-VAR (Courtier et al., 1994) to compute L(t)
approximately and study the effect of these approximations on

samples generated by MALA.

5.4. Convergence of different sampling methods

Figure 10 shows the comparison between different methods for

sampling from the first of the three numerical experiments de-

scribed in Section 3: a short trajectory containing five observa-

tions of a single drifter position. The figure shows the histograms

for the u0 (left), u1 (centre), and x1 (right) variables using the sam-

ples obtained by different methods. The top row uses samples

from the Euler-discretized LSDE while the second row is from
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Fig. 10. The marginal posterior distributions for u0 (left-hand panels), u1 (centre panels), and x1 (right-hand panels) using samples from various

different methods, explained in detail in the text. The different curves in each plot are two noise realizations for three different starting values. The

third and fifth row show the converged posterior distribution.

MALA, both using 
 = Id. The distribution using MALA with


 = diag {10, 100, 100, 100, 1, 1} is shown in the third row,

while the fourth row uses samples from RWMH using 
 = diag

{20, 20, 20, 20, 1, 1}. The number of samples is 107 and the step

sizes δs (adjusted to give acceptance rates of around 50% for

MALA and 25% for RWMH) are 10−6, 7 × 10−6, 7 × 10−6, and

1.5 × 10−5 respectively for these top four rows. The bottom row

shows the histogram from samples obtained using the adaptive

MALA. The number of samples for the adaptive case is 5 × 105,

twenty time smaller than the non-adaptive cases from the top

four rows.

We note several important conclusions, though these could be

possibly very problem specific.

(1) The Euler-discretized LSDE with 
 = I (top row) is

quite slow at sampling the distribution and it is unclear whether

it is converging to the correct distribution.

(2) The MALA with 
 = I (second row), which requires

almost the same computational effort as the Langevin equation,

is significantly better.

(3) The MALA with a proposal covariance of 
 = diag {10,

100, 100, 100, 1, 1} (third row) shows a significant improvement

in convergence compared to the above two cases. The number of

samples is the same (107) in the first three, and also the fourth,

row. But we see that only MALA with non-identity 
 shows the

converged posterior distributions. With significantly more num-

ber of samples, the other methods, with the possible exception of

Euler-discretized LSDE, also show converged posteriors that are

the same as that shown in this row. Comparison of RWMH with

different proposal covariances 
 also shows that significant im-

provement in convergence is achieved by use of an appropriately

chosen 
.

(4) The fourth row shows the distribution from the RWMH,

with a proposal covariance of 
 = diag {20, 20, 20, 20, 1, 1}.

Comparing these distributions with those in the third row, we see

that RWMH converges more slowly, requiring more samples to

show a converged distribution, than MALA.

(5) The bottom row shows the converged posterior, which is

of course the same as that from the third row, using the adaptive

version of MALA, but using only 5 × 105 samples. This is

the most efficient of all methods for all the different numerical

experiments we performed.

The results for other numerical experiments are similar. In

fact, for most of the other cases, the non-adaptive methods did

not fully converge even with 107 samples and only the adap-

tive method gave a converged distribution. A ‘good’ proposal

covariance always dramatically improved the convergence and

the good guesses turned out to be close to the covariance of the

distribution π to be sampled. Thus, a general conclusion seems

to be that sampling of the posterior distributions in these La-

grangian data assimilation problems requires a good guess of

the structure of the posterior distribution, which is of course not

known a priori.

The main advantage of the adaptive algorithm for our problem

is that we do not have to make any such guesses about π . The
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mean and the covariance of the proposal, and the step size of the

adaptive algorithm, are adjusted at each step. It was observed that

the final proposal mean and covariance of the adaptive algorithm

were very close to the mean and covariance of π while the final

step size was usually larger than the one chosen for the ‘optimal’

non-adaptive version. In a sense, the adaptive algorithm learns

the covariance structure of the density to be sampled.

6. Conclusions and discussion

In this paper, we study the Lagrangian data assimilation prob-

lem from a Bayesian viewpoint. We study the posterior distribu-

tion of the state of the system given its observations, a dynamic

model, and a model for the noise in the observations, in the con-

text of the linearized shallow water velocity field. In a perfect

model scenario, which we discussed in this paper, the ensem-

ble of samples from this posterior is the optimal ensemble to

use in data assimilation. Such an ensemble gives us information

about the variability in our estimation of the initial conditions

of the system, given the specific realization of the observations.

This posterior distribution shows interesting structures that are

affected by the dynamics of the model as well as the observations

assimilated in that distribution.

We compared this posterior to the posterior distribution im-

plied by the ensemble Kalman filter. The main factor affecting

the performance of the EnKF is seen to be the time interval be-

tween the observations—the longer this interval, the worse is

the approximation by the EnKF. In the Lagrangian data assimi-

lation problem, the presence of the centre, that is, an elliptic fixed

point of the flow, is seen to give rise to strongly non-Gaussian

distributions that lead to the failure of the EnKF.

We used three different methods for sampling this posterior

distribution: the LSDE; MALA and RWMH. The comparison

of these methods lead us to conclude that the adaptive versions

of the Metropolis–Hastings algorithms are the most efficient at

sampling, at least in the Lagrangian data assimilation problems

we studied.

The adaption of these sampling techniques to large complex

models presents significant computational challenges. There are

three distinct issues that need further consideration:

(1) The MALA method requires computation of the ma-

trix L(t) which in turn requires the linearized dynamics, cf. eq.

(16). The use of approximations, such as those used in 4DVAR,

would be essential to speed up the sampling and make a practical

method for high-dimensional problems. It would be necessary

to study the effects of these approximations on the sampling

techniques.

(2) We have used a very large ensemble to get the posterior

distributions. The use of smaller ensembles will of course speed

up the computations. A significant challenge is to adapt these

methods to get a faithful representation of the posterior even

with smaller numbers of samples.

(3) The sampling techniques discussed above require a func-

tional form of the prior distribution, cf. eq. (15). It would be use-

ful to adapt these techniques to the cases when only samples from

the prior are given. Then, the posterior samples generated using

data over an earlier time period can be used as prior samples for

assimilating subsequent observations.

Apart from the above computational challenges, there are two

important conceptual issues that need further consideration.

(1) We have discussed the posterior distribution given ob-

servations of the system over a finite time period. A major con-

ceptual challenge is to understand the properties of this posterior

when we take into account observations over longer and longer

periods of time and to study the limiting posterior distribution.

(2) Due to the sensitive dependence on initial conditions in-

herent in problems of this kind, it is likely that imposing the dy-

namics as a strong constraint will make the posterior distribution

hard to sample—its support may be essentially concentrated on

low dimensional structures, highly stretched along certain direc-

tions, for example. Understanding the effect of weak constraints

in the amelioration of such effects is thus of great interest in this

fully Bayesian context. In essence this means understanding the

effect of adding noise models to the dynamic equations in the

probability model, meaning that the posterior is now concen-

trated on time-dependent solutions, not just initial conditions.

The mathematical framework for incorporation of noise in the

model is outlined in Apte et al. (2007). Some preliminary nu-

merical experiments are described in Apte et al. (2008). Furhter

work to understand the relative merits of weak versus strong

constraints is called for.

(3) As we pointed out in the introduction, the identical twin

experiments presented in this paper assume perfect model sce-

nario. The application of this method to a real system, when the

observations are not taken from another model run, will nec-

essarily require studying the imperfect model scenario. The in-

terpretation of the posterior in these scenarios, and especially

in real applications when the ‘true’ state is not available, is a

major conceptual challenge. In the context of Lagrangian data

assimilation, we are exploring the use of the sampling tech-

niques in the case when the observations are taken from the

dynamics of an inertial particle with small mass whereas the

model used in data assimilation is that of a Lagrangian particle.

The use of the above sampling techniques for assimilating data

from a physical system, not from a perfect or imperfect model,

will certainly provide an understanding of the relation between

the information contained in the model dynamics and in the

data.
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