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ABSTRACT

Large (>1m) deformable mirrors with hundreds or thousands of actuators are attractive for extremely large
telescopes. Use of force actuators coupled to the mirror via suction cups, and electret microphones for position
sensing, has the potential of substantially reducing costs. However, a mirror controlled with force actuators
will have many structural resonances within the desired system bandwidth, shifting the emphasis somewhat
of the control aspects. Local velocity and position loop for each actuator can add significant damping, but
gives poor performance at high spatial frequencies. We therefore introduce a novel control strategy with many
parallel “actuator families”, each controlled by single-input-single-output controllers. This family approach
provides performance close to that of global control, but without the accompanying robustness challenges. Using
a complete simulation model of a representative large deformable mirror, we demonstrate feasibility of the
approach.

This paper describes the challenges of non-ideal actuators and sensors. The results presented give an under-
standing of the required actuator bandwidth and the effects of the sensors dynamics. The conclusion is that the
introduction of actuator and sensor dynamics does not limit the control system of the deformable mirror.

1. INTRODUCTION

Today’s optical ground-based telescopes often have adaptive optics (AO) for compensation of atmospheric blur-
ring and telescope aberrations. AO encompasses one or more deformable mirrors (DMs), controlled by numerous
actuators, to compensate for the distortions in the wavefront of the light. Existing DMs typically have a diameter
of tens of centimeters or less, but much larger DMs with sizes of 1-4m are highly attractive for future Extremely
Large Telescopes. Large DMs enable integration of the DMs into the optical telescope, avoiding use of post-focus
relay optics.

Deformable mirrors up to about 0.9m exist today. DMs based upon piezo-electric, electrostrictive or magne-
tostrictive actuators largely operate in a quasi-static mode. The DM is effectively constrained at each actuator
location and the actuators are stiff “position actuators”. In contrast, in a DM with soft force actuators the
dynamics of the mirror structure enter directly into the control loops, thus making it more difficult to control.
The reason is, the reaction mass is attached to the structure by a spring, thus the actuator has no authority over
the structural modes.

The benefit of using soft actuators is that the mechanical tolerances can be more relaxed compared to the
stiff actuators, potentially highly reducing the construction costs of large DMs. This paper advances the work
presented in.1–3 In the latter, a control strategy was developed for perfect actuators and sensors. The effects of
limited actuator and sensor bandwidth are presented in this paper.

The next section describes the control approach, including the rate and the position feedback loops, and the
predicted performance is presented. The effects of limited actuator bandwidth are discussed in Section 3 and
the effects of limited sensor bandwidth are discussed in Section 4.
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Figure 1. (a): Sensor scheme for the local and global controllers (b): Graphical illustration of a mathematical model of an
actuator. Here δr is the displacement of the rod, m the mass of the rod, k the stiffness of the rod, c the viscous damping
coefficient of the rod, L the inductance of the coil, R the resistance in the coil and V the voltage over the coil.

2. BACKGROUND

2.1 Problem description

The objective is to develop a low-cost concept for a large DM with force actuators attached to the back of the
mirror through suction cups. Use of this actuator type in combination with a thin mirror leads to a poorly
damped system with structural resonances within the desired control bandwidth. The wavefront sensor loop of
the external adaptive optics system is insufficient to confront the problem with resonance frequencies. Thus, an
additional feedback loop is constructed, using sensors attached to the back of the mirror, see Fig. 1a. The plan
is to use electret microphones in bellows, non-collocated with the actuators, at the back of the mirror to sense
mirror deflection.

2.2 Mathematical model

A mathematical model of the DM has been set up to develop and test a control strategy for the global control
of the mirror. Hence, a finite element model of the mirror was established, using the software package Comsol
Multiphysics, by approximating the mirror with a plane shell. The mesh includes about 5000 nodes, and each
node has six degrees of freedom (DoF), i.e. translation along three mutually perpendicular axes and rotation
around the same axes. The dynamic behavior of the structure is described by the differential equation

M
dδ2

d2t
+Λ

dδ

dt
+Kδ = f (1)

where M, Λ, K are respectively the mass, damping and stiffness matrices, f is a force vector and δ a vector
holding angular and translation displacements. The example used throughout this study is a 2mm thick, 1m
in diameter faceplate fixed in its center and made of the material Borosilicate. The actuators, in total 372,
are placed in a square topology with an actuator pitch of 42mm. The sensors, in total 702, are each located
between two adjacent actuators, i.e. in the general case each actuator has four neighbouring sensors. The use of
a non-collocated sensor and actuator scheme gives rise to a phase lag, which is tolerable as long as the distance
between the actuators and sensors is no more than 22mm.3 For actuator feedback loops, the average position
signals from the four nearest sensors are used.

The full model of the DM is computationally impractical. Hence, model reduction has been performed as
following:
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• Guyan reduction is used to reduce the number of DoFs to three for each node, retaining the out-of-plane
translation and the two in-plane rotations.

• Modes with eigenfrequencies above 500Hz are removed by modal truncation. Mode acceleration is applied
to include the static contribution from the modes omitted by the truncation.

2.3 Control system

The frequency response from force to position for the poorly damped structure is shown in Fig. 2a. The poorly
damped resonances are obstacles for designing the position loop directly, thus a control system which divides
the feedback into rate and position loops has been designed as shown in Fig. 3.3 The rate feedback servo is
a proportional controller, KV, and the position feedback servo is a integral controller, KI, with a cross-over
frequency of 250Hz.

The task of the rate feedback is to add damping to the faceplate, which is guaranteed if the matrix KV is
positive definite. If the gain for the loop is tuned correctly, waves propagating away from an actuator can be
dissipated before reaching the boundary and returning. The frequency response for the system with all rate
loops closed is shown in Fig 2b. The matrix KV is diagonal which means that the controllers are local because
every actuator interacts only with its nearest sensors using a single-input-single-output proportional controller.
A diagonal matrix with only positive elements is positive definite, thus energy is dissipated at every actuator
location.

The task of the position feedback is to provide a good command response for the outer wavefront sensor loop.
This cannot be done satisfactorily in a single-input-single-output manner due to substantial coupling between
adjacent actuators. A force from one actuator only will give tip/tilt to the whole mirror. This can be understood
by studying the condition number of the static plant, F, which is of the order of 105, i.e. there is much higher
loop gain for low spatial frequencies compared to the high spatial frequencies. To reduce the effect of crosstalk
between the actuators we apply a local feedback scheme, using a set of actuator families centered around any
give actuator. All actuators in a family, Ω, are controlled simultaneously with forces that are proportional to a
command signal, and the distribution of forces among actuators is selected to minimise the cost function

J = ‖K−1f − δ‖2 (2)

where f is the force vector and δ is the displacement vector. The elements of δ and f , when the j-th actuator is
controlled, are chosen accordingly:

δi = 0 for i �= j

δi = 1 for i = j

fi = 0 for i /∈ Ω

fi ∈ R for i ∈ Ω

The force pattern for each family is stored as rows in the family matrix Q. The performance prediction for the
DM, when Ω includes 21 actuators, with all rate and position loops closed, is shown in Fig. 2c. The condition
number for the family matrix multiplied by the static plant

Q× F (3)

is around 2, i.e. a remarkable improvement compared to the static plant alone.

3. NON-IDEAL ACTUATORS

Actuators limit performance in many active structures, thus it is important to study the effects of non-ideal
actuators. The actuator type foreseen here is a steerable-mass actuator as shown in Fig. 1a, which encompasses
a voice coil, a movable rod and a linear variable differential transformer (LVDT). The LVDT senses the position
of the rod, thus indirectly the force exerted on the faceplate due to the presence of a flexible suction cup. The
state-space model of the actuators is explained in the Section 3.1, and how actuators with a limited bandwidth
influences system performance is analysed in Section 3.2.
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Figure 2. Frequency response for an actuator (a): open loop from force to position, (b): open loop from force to position
with all rate feedback loops closed, (c): from command to position with all rate and position feedback loops closed and
use of a family matrix controller.

3.1 Mathematical model of the actuators

The mathematical model of the actuator is illustrated in Fig. 1b, including symbol definitions. The spring
connecting the actuator rod and the faceplate, k, represents the suction cup. The equation of motion, in the
Laplace domain, is given by

f = (ms2 + ds+ k)δr (4)

where the electromagnetic force developed by the voice coil is the product of the force constant and the current,
f = Ci. The current in the voice coil can be related to the voltage by

cRi+ L
di

dt
= V − Ceδ̇r

i =
V − sCeδr
R+ sL

(5)

where Ceδ̇r is the back electromotive force due to the motion.4 The constant Ce is the voice coil constant,
describing how the current is related to the torque.

This is valid for a voltage input to the voice coil. If the inductance, L, of the voice coil winding is small, it can
be neglected. If it is large enough to play a role, a local current loop can be added to suppress the influence of the
inductance. Hence, for our simulations we can ignore the influence of the inductance. The previous expression
then becomes

i ≈ V − sCeδr
R

(6)

The transfer function from voltage to rod displacement, by inserting Eq.6 into Eq. 4, is given by:

δr
V

=
C

R
(
ms2 +

(
CCe

G + d
)
s+ k

) (7)

The second order system in Eq. 7, indicates that the back electromotive force can be interpreted as additional
damping. This can be guaranteed, up to a sufficiently high frequency, if a current controller is added to the
amplifier. Further, Eq. 7 shows that the corner frequency of the actuator is set by the spring constant k and the
mass m of the moving actuator rod, which is about a few Hertz. A local servo loop, with proportional gain g,
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Figure 3. The block diagram includes the state-space model of the structure, the state-space model of the actuators and
the rate and position feedback loops.

with feedback from the LVDT is added to increase the bandwidth of the actuator. The transfer function from
voltage to rod displacement is changed according to

δr
V

=
C

R
(
ms2 +

(
CCe

G + d
)
s+ gC + k

) (8)

i.e. additional stiffness is added. The natural frequency, ωa, and the damping, ζa, of the second-order system in
Eq. 8 is given by:

ωa =
√

gC+k
m

ζa = CCe+Rd

2G
√

m(gC+k)

The dynamic features of the actuators described by Eq. 8 is integrated in the full mirror model through a
state-space realisation, given by:

Aa =

[ −2ζaωa −ω2
a

1 0

]
Ba =

[
ω2
a

0

]
Ca =

[
0 1

]
Da = 0 x =

[
δ̇
δ

]

The block diagram over the full system, including the state-space model for the actuators, is shown in Fig. 3.

3.2 Influence of finite actuator bandwidth on system performance

Use of an actuator with a limited bandwidth is more of a concern for the velocity loop than for the position loop.
The velocity loop has a bandwidth at least equal to the lowest frequency at which the structural resonances
flow together, which for a 1m borosilicate mirror with a thickness of 2mm is around 1 kHz as can be seen from
Fig. 2a. The position loop needs to have a bandwidth larger than 100Hz as shown in Fig. 2c to satisfy a phase
lag criterion for operation of adaptive optics.

The damping of the mirror structure has a major effect on the necessary bandwidth of the actuators. This
can be understood by studying Fig. 2a. At a sufficiently high frequency, the response is no longer dominated by
individual modes, instead there are enough modes participating at every frequency, to smooth out the peaks and
anti-peaks in the frequency response. The starting point of this range of acoustic behavior can mathematically
be explained for a plate, without boundary conditions, by the following steps. The modal density for a thin plate
can be written as5

N =
ωA

2πcgc
(9)

where ω is the natural frequency, A the plate area, cg the group velocity, and c is the phase velocity. For bending
vibrations in a thin plate, the phase velocity is5

c =
√
ω

(
D

ρh

)1/4

(10)
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Figure 4. Frequency response from force to position for the structure. (a): with a modal damping of 0.01, (b): with a
modal damping of 0.03. The arrows indicate approximately where the acoustic limit starts.

where D is the flexural rigidity of the plate, h is thickness and ρ the density. The group velocity is twice the
phase velocity, so cg = 2c. Inserting Eq. 10 into Eq. 9 results in

N =
A

4π

√
ρh

D
(11)

Further, the average modal spacing is described by Δω = 1/N , and the half-power bandwidth of each mode is
2ζfa, where fa is the undamped frequency and ζ is the modal damping.6 The starting point of the acoustic
behavior is then given by

fa =
2nf

Aζ

√
D

ρh
(12)

where nf is the factor by which the half-power bandwidth needs to exceed the average modal spacing. Eq. 12
shows that fa is inversely proportional to the damping of the structure. Conclusively, if the damping of the
structure for all the modes is doubled, the requirement for the bandwidth of the actuators is halved. This is
illustrated in Fig. 4, where the two frequency responses from force to position with two different modal damping
coefficients are plotted. The arrows indicate approximately where the acoustic behavior starts. The gain, KV,
of the rate feedback loop is the second important factor, which affects the requirement of the bandwidth of the
actuators. The frequency response when KV is tuned to its maximum value is shown in Fig. 2b. However, the
Bode plot does not necessarily need to look like that of Fig. 2b as long as a position loop controller can be. Thus,
the optimum KV is actually found for the minimum velocity loop gain at which a useful position loop can be
designed.. The open loop system, which the position loops needs to control, is given by

Q× FV(s)

where FV(s) is the transfer function matrix of the plant with the Laplace operator s, including the closed rate
feedback loop and Q is the family matrix found by applying Eq. 2. The frequency response of Q×FV(s) for two
different values of KV is shown in Fig. 5. As illustrated, the gain of the rate feedback loop can be decreased with
a factor of 1/5, from its maximum value, without any significant effect below 250Hz (the cross-over frequency
of the integral controller in the position feedback servo).

Conclusively, when the system shown in Fig. 3 is evaluated with a structural damping of 0.01 for each
eigenmode, then KV can be set to 1/5 of its maximum value with an actuator damping of ζa = 0.5. The the
actuator bandwidth should be chosen such that the stability of the feedback loops is not effected. This is achieved
when the actuator bandwidth exceeds 2150Hz.

4. NON-IDEAL SENSORS

The non-collocated sensors placed on the back of the mirror, give feedback signal to the rate and the position
loops. The electret microphones are placed within bellows, providing a closed environment and increased sensi-
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Figure 5. Frequency response from family force command to position without the position loop closed. (a): with the
maximised KV, (b): with a KV decreased by 80% of the maximum value.

tivity as shown in Fig. 1a. A slight preload is used to ensure contact between the bellows and the back of the
mirror. A state-space model of the sensors is introduced in the Section 4.1 and the impact of the dynamics of
the on the control system is presented in Section 4.2.

4.1 Mathematical model of the sensors

The electret microphones encompass two capacitors: a foil of a dielectric material and a metallic backplate. A
cavity between the two capacitors forms a thin air gap. As the pressure over the dielectric material fluctuates,
the air gap distance, d, varies because the foil has only little stiffness. Thus, the voltage, Vs developed between
the capacitors is described by

Vs =
Qd

Amiceo
(13)

where e0 is the electric permittivity of free space, Amic is the surface area and Q is the charge around in dielectric
material.

The pressure changes within the bellows are believed to be adiabatic, i.e. there is no heat transfer between
the air and the bellows, and the ratio of the specific heat capacities is γ = 1.4. The following equation is valid
for an adiabatic gas

pvγ = constant

where p is the pressure and v is the volume. The differential change of pressure due to differential volumetric
change of the volume inside the bellows is

Δρ =
ρ′γ
v′

Δv (14)

using a linearisation of the variables around the equilibrium values p′ and v′. Eq. 14 is also valid for the pressure
changes in the cavity between the electret foil and the backplate. Thus, a voltage change is proportional to
the distance between the two capacitors, which is proportional to the pressure change at the electret foil, which
is in turn proportional to the displacement of the mirror. This results in a static relationship between mirror
displacement, δm and voltage change:

Vs

δm
= k (15)

Eq. 15 is only valid for a limited frequency range. The electret microphones have zero response at DC, first
because that is not required for use as microphones, and secondly because such a system is difficult to implement
(it would effectively be a pressure transducer). There is also a roll off at high frequencies, normally around a few
tens of kHz. Conclusively, the electret microphone can be modeled as a combined high-pass filter with a corner
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Figure 6. The block diagram includes the state-space model of the structure, the state-space model of the actuators, the
state-space model of the electret microphones, and the rate and position feedback loops.

frequency, ωhp, at 20Hz and a low-pass filter with a corner frequency, ωlp, at 20 kHz., and with a flat response
between the cut-off frequencies. The state-space model is given by:

As =

[
0 −ωhpωlp

1 −ωhp − ωlp

]
Bs =

[
0
ωlp

]
Cs =

[
0 1

]
Ds = 0 x =

[
δ̇
δ

]

The block diagram of the system, including the dynamics of the electret microphones, is shown in Fig. 6.

4.2 Influence of limited sensor bandwidth on system performance

The effects of using the non-ideal sensors relate to the low-pass and the the high-pass filter parts. The corner
frequency of the former must match the required bandwidth of the actuator, thus a flat frequency response up to
about 2500-3000Hz is needed. The limit is not set by the electret microphones themselves, but by the dynamics
in the rubber bellows enclosing the electret microphones. This needs to be investigated further.

The low sensor response below 20 Hz is a problem, foremost in the rate feedback loop because there are
structural resonance and anti-resonance peaks below 20Hz, as shown in Fig. 2a. No electronical damping will
be added to these. However, it turns out that use of the local family approach already introduced is beneficial
in this respect because structural resonances are not excited by the control system, so that stability issues do
not become a concern. The frequency response from force to position in Fig. 7, is the open-loop system for the
state-space model of the structure multiplied with the family matrix. The large effect of the family matrix at low
frequencies is illustrated when comparing Fig. 7 and Fig. 2a. Besides decoupling adjacent actuators from each
other, the family matrix also ensures that the resonance and anti-resonance peaks below 30Hz are not excited
by actuator commands.

The frequency response from force to true position of the system in Fig. 6 is shown in Fig. 7. The output of
the system differs significantly from that shown in Fig. 2c below 20Hz, because of the decreasing response of the
electret microphones. Use of an integral controller of the position loop affects the system performance at low
frequencies. This is not a problem in a complete AO-system, since the feedback signal from the wavefront sensor
covers this frequency region.

5. CONCLUSIONS

We have evaluated the bandwidth requirements for non-ideal actuators and sensors based upon stability consid-
erations. The control system has position and rate feedback, and it is the rate feedback which determines the
requirements for the actuator and sensor dynamics.

The actuator bandwidth needs to exceed the lower limit frequency for acoustic behavior, described by Eq. 12
for an unconstrained plate. The lower limit frequency for acoustic behavior is inversely proportional to structural
damping, which makes it difficult to accurately predict the actuator bandwidth required. As can be seen from
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Figure 7. Open-loop frequency response from force to position for the family matrix multiplied with the plant.
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Figure 8. Frequency response from force to position for the full system, including actuator and sensor dynamics. The
region bellow 20Hz is where the electret microphones have started to roll off.

Eq. 12, there is an inverse relationship between the starting point of the acoustic behavior and the area of the
plate, i.e. the requirements to the actuator bandwidth are less severe for a large DM.

The response of the electret microphones drops off at low and high frequencies, modeled as first-order high-
pass and low-pass filters. The corner frequency of the low-pass filter must exceed the actuator bandwidth to
ensure stability. Most electret microphones have a flat response up to 10-20 kHz but it should be ensured that
structural effects in the bellows do not limit the bandwidth excessively. The influence of mirror eigenmodes
below 20Hz, where the response of the electret microphones drops off, is efficiently suppressed by use of the
family matrix in the position loop. Then, the feedback signal from the wavefront sensor is sufficient to close to
position loop.
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