Electronic Supplementary Material for Pubication in Appl. Microbiol. Biotechnol.

Bioinformatic Analysis of Fold Type III PLP-dependent Enzymes Discovers Multimeric Racemases

Anders M. Knight^{1,2}, Alberto Nobili^{1,3}, Tom van den Bergh⁴, Maika Genz¹, Henk-Jan Joosten⁴, Dirk Albrecht⁵, Katharina Riedel⁵, Ioannis V. Pavlidis^{1,6}, and Uwe T. Bornscheuer^{1*}

¹Institute of Biochemistry, Dept. of Biotechnology and Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
²current address: 1200 E. California Blvd., MC 210-41, California Institute of Technology, Pasadena, CA 91125 USA
³current address: Dana-Farber Cancer Institute, Dept. of Cancer Immunology and Virology, Harvard Medical School, 450 Brookline Avenue, 02215, Boston, USA.
⁴Bio-Prodict, Nieuwe Marktstraat 54E, 6511 AA Nijmegen, The Netherlands
⁵Institute for Microbiology, Dept. of Microbial Physiology and Molecular Biology, Greifswald University, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
⁶current address: Dept. of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany

* Corresponding author:
Prof. Dr. Uwe T. Bornscheuer
e-mail: uwe.bornscheuer@uni-greifswald.de
Tel: +49 3834 864367
Fax: +49 3834 86794367

Figure S1.

SDS-PAGE with Coomassie stain of the purified orphan proteins (from left to write: 3CPG, 3SY1*, 3R79 and 1CT5). The sizes of the purified fractions and of the molecular markers are indicated above each band of the ladder (Pierce[™] Unstained Protein MW Marker, Thermo Scientific). For each protein the following samples were compared to follow the protein concentration during purification: CH, cell harvest; PF, post-filtration crude cell extract; HC, His₆-tagged protein fraction after elution from Ni-column; DS, His₆-tagged protein after desalting.

Table S1. Retentior	n times of	f amino	acid	enantiomers	on a	7-47%	gradient
---------------------	------------	---------	------	-------------	------	-------	----------

	Retention			
Amino	time			
acid	[min]			
	L	D		
Asp	7.6	8.5		
Glu	10.8	14.6		
Ser	18.2	20.4		
Thr	24.3	26.5		
Ala	31.2	34.1		
Val	43.5	45.5		

Figure S2. HPLC-chromatogram for the simultaneous analysis of racemization by the orphan protein templates of 6 different L-amino-acids (left) and D-amino-acids (right).

Figure S3. Substrate profile for each of the orphan protein tested in the racemization of L-amino acids to their D-counterpart.

Figure S4. Calibration curve for quinoenimine dye formation as a function of hydrogen peroxide concentration.