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Supplementary	Methods	

Sections:	
1. Barcode	distance	matrix	computation
2. Analysis	of	sources	of	error	in	MEMOIR	operation,	and	their	impact	on	reconstruction

accuracy
3. Simulation	of	MEMOIR	operation	for	missing	cells	and	sparse	trees
4. Inference	of	the	switching	rates	between	the	two	Esrrb	gene	expression	states

1. Barcode	distance	matrix	computation

In	 this	 section	we	describe	how	we	computed	the	matrix	of	pairwise	barcode	distances	between	cells

(Figure	 3e).	 These	 distances	 are	 based	 on	 the	 complete	 barcoded	 scratchpad	 profile	 of	 each	 cell,

including	both	the	total	number	of	transcripts,	denoted	as	𝑁,	and	the	fraction	of	those	transcripts	that

colocalized	with	scratchpad,	denoted	as	𝑝.

First,	to	account	for	statistical	fluctuations	and	errors	in	the	detected	fraction	of	colocalized	transcripts,	

we	converted	the	measured	value	of	𝑝	to	a	distribution	of	possible	values	for	the	colocalization	fraction.	

To	account	for	measurement	errors,	we	imposed	a	lower	bound	of	0.04	and	an	upper	bound	of	0.96	on	

the	 measured	 value	 of	 𝑝.	 To	 determine	 the	 distribution	 of	 possible	 values	 of	 𝑝,	 we	 assumed	 that	

fluctuations	 follow	 a	 binomial	 distribution	 with	 mean	𝑁𝑝	 and	 variance	𝑁𝑝(1 − 𝑝).	 This	 assumption	

follows	 from	 the	 physical	 reasoning	 that	 the	 probability	 of	 colocalization	 of	 one	 transcript	 is	

independent	from	that	of	other	transcripts	in	the	cell.	

	The	distribution	of	possible	values	of	the	colocalization	fraction,	𝑥,	takes	the	form,	

𝐹(𝑥𝑁) = 	
𝑁
𝑥

𝑝*+ 1 − 𝑝 -.* +	

To	keep	numerical	 computations	 tractable,	we	approximated	 the	 factorials	 in	 the	binomial	 coefficient	

using	gamma	functions,	i.e.	𝑁! 	≈ 𝛤(𝑁 + 1).	

To	compute	the	cell-to-cell	distance	for	a	single	barcode,	we	quantified	how	the	colocalization	fraction	

distribution	differs	for	a	given	barcode	between	two	cells.	We	denote	the	distribution	of	colocalization	
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fraction	of	barcode	𝑖	in	cell	𝑎	as	𝐹56(𝑥)	and	the	comparable	distribution	in	cell	𝑏	as	𝐹86(𝑦).	We	define	the	

barcode	𝑑6(𝑎, 𝑏)	distance	between	the	two	cells	as,	

𝑑6 𝑎, 𝑏 = 	 𝐹56 𝑥 𝐹86 𝑦 |𝑥 − 𝑦|𝑑𝑥𝑑𝑦
-

=

-

=
	

Finally,	the	overall	cell-to-cell	distance	based	on	all	barcode	information	was	calculated	as	the	average	

over	 the	 distances	 derived	 for	 each	 barcode	 weighted	 for	 each	 barcode	 by	 the	 smaller	 number	 of	

barcode	 transcripts	 in	either	of	 the	 two	cells.	 This	ensures	 that	barcodes	 that	are	highly	expressed	 in	

both	cells	are	weighted	more	heavily	 than	barcodes	 that	are	weakly	expressed	 in	either	or	both	cells.	

Denoting	the	number	of	transcripts	of	barcode	𝑖	 in	cell	𝑎	as	𝑁56 ,	and	similarly	for	cell	𝑏,	the	cell-to-cell	

distance	matrix,	shown	in	Fig.	3e,	then	takes	the	form,	

𝑑 𝑎, 𝑏 = min 𝑁56 , 𝑁86 𝑑6(𝑎, 𝑏)
6

	

2. Analysis	of	sources	of	error	in	MEMOIR	operation,	and	their	impact	on	reconstruction	accuracy

2a.	Incorporating	noise	into	MEMOIR	simulations

To	 understand	 what	 factors	 impact	 the	 overall	 reconstruction	 errors	 in	 MEMOIR,	 we	 simulated	 the

recording,	 readout,	 and	 reconstruction	 processes,	 incorporating	 relevant	 sources	 of	 stochastic

fluctuations	(noise).	Sources	of	error	can	be	divided	into	three	categories:	(1)	noise	inherent	to	the	basic

mechanism	of	stochastic	scratchpad	collapse,	(2)	recording	noise,	and	(3)	readout	noise	(see	Extended

Data	Fig.	6a).

Noise	 inherent	 to	 the	 system.	 	 The	 first	 noise	 category	 captures	 fluctuations	 due	 to	 the	 general	

approach	of	recording	 lineage	 information	 in	discrete	stochastic	mutagenic	(collapse)	events,	but	does	

not	 include	 noise	 arising	 from	 the	 specific	 experimental	 implementation	 of	 the	 system	 (those	 noise	

sources	are	described	below).	Reconstruction	errors	in	this	category	result	from	collapse	events	that	by	

chance	 occur	 too	 frequently	 or	 too	 infrequently	 to	 provide	 lineage	 information,	 as	 well	 as	 identical	

collapse	 events	 occurring	 in	 different	 cells	 (coincidences).	 For	 example,	 if	 the	 exact	 same	 scratchpad	

collapse	event(s)	occur	 independently	 in	 two	sister	cells,	 the	 resulting	clades	will	be	 indistinguishable.	

The	 simulations	 shown	 in	 Figure	 3g	 and	 Extended	 Data	 Figure	 8	 assume	 irreversible	 collapse	 of	 an	

idealized	 set	 of	 binary	 scratchpads,	 occurring	 at	 a	 constant	 rate	 and	 therefore	 incorporate	 only	 this	
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source	 of	 error.	 Analysis	 of	 these	 simulations	 thus	 shows	 how	 the	 stochasticity	 of	 collapse	 events	

impacts	reconstruction	accuracy	in	the	absence	of	additional	sources	of	noise.	

Recording	 noise.	 	 Recording	 noise	 accounts	 for	 fluctuations	 in	 the	 collapse	 rate	 due	 to	 stochastic	

fluctuations	in	the	expression	levels	of	gRNA	and	Cas9.	To	accurately	represent	the	magnitude	of	these	

effects,	we	first	measured	these	fluctuations	experimentally,	and	then	incorporated	empirical	values	for	

these	fluctuations	into	the	simulations.		

First,	we	quantified	gRNA	expression	variability	both	within	colonies	(intra-colony)	and	between	colonies	

(inter-colony)	using	 the	 co-expressed	 fluorescent	 reporter	 in	 individual	 cells	 in	all	 of	 the	108	MEM-01	

colonies.	We	denote	 the	 gRNA	expression	 in	 cell	 𝑖	 in	 colony	𝑚	 as	𝑔6C.	 (Extended	Data	 Fig.	 6b,c).	 The	

intra-colony	 noise	 was	 computed	 by	 first	 determining	 the	 variance	 of	 the	 single-cell	 measurements	

amongst	cells	in	each	individual	colony	and	then	averaging	that	variance	across	all	colonies.	Namely,	

𝜎EF =
1
𝑁

1
𝑛C

𝑔6C −
1
𝑛C

𝑔6C
HI

6J-

FHI

6J-

+

CJ-

Here,	𝑁	is	the	total	number	of	colonies,	and		𝑛Cis	the	number	of	cells	in	colony	𝑚.	

Similarly,	the	 inter-colony	noise	was	computed	by	taking	the	mean	of	𝑔6C	amongst	the	cells	 in	a	given	

colony	and	then	computing	the	variance	of	the	colony	means	across	all	colonies.		

𝜏EF =
1
𝑁

1
𝑛C

𝑔6C
HI

6J-

− 𝑔

F+

CJ-

where	𝑔	is	the	mean	gRNA	expression	across	all	cells	in	all	colonies,	

𝑔 =
1
𝑁

1
𝑛C

𝑔6C
HI

6J-

+

CJ-
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Second,	we	quantified	variability	in	Cas9	expression	using	the	same	analysis,	performed	on	the	number	

of	Cas9	 transcripts,	𝑐,	 read	out	using	smFISH	 in	 the	 final	 round	of	hybridization.	We	denote	 the	 intra-

colony	 and	 inter-colony	 variation	 in	 Cas9	 expression	 as	 	𝜎M 	 and	 𝜏M,	 respectively,	 and	 the	mean	 Cas9	

expression	level	across	all	cell	in	all	colonies	as	𝑐.	

We	 next	 incorporated	 the	 empirically	 determined	 noise	 measurements	 for	 Cas9	 and	 gRNA	 into	 the	

simulations.	We	set	the	effective	collapse	rate	in	each	cell,	𝜆,	proportional	to	the	product	of	the	number	

of	Cas9	 transcripts,	𝑐,	 and	 the	 gRNA	activity,	𝑔:	𝜆 = 𝑔𝑐.	 To	 incorporate	 recording	noise,	we	assumed	

each	 colony	 had	 its	 own	 values	 for	 𝑐	 and	𝑔,	 drawn	 from	 the	 observed	 intercolony	 distributions	with	

means	𝑐	and	𝑔	and	standard	deviations	𝜏M 	and	𝜏E	respectively.	Next,	we	incorporated	the	intra-colony	

noise,	by	adding	fluctuations	to	values	of	𝑐	and	𝑔	 in	each	cell	 in	a	given	colony,	with	the	magnitude	of	

fluctuations	set	by	the	empirical	intra-colony	variations,	𝜎M 	and	𝜎E.	The	probability	of	collapse	for	each	

scratchpad	per	generation,	𝑝,	was	calculated	from	𝜆	assuming	a	Poisson	process,	namely,	𝑝 = 1 − 𝑒.PQ.	

The	 normalization	 constant,	 𝜂,	 was	 selected	 to	 ensure	 an	 average	 collapse	 probability	 of	 0.1	 per	

scratchpad	per	generation,	consistent	with	the	empirically	estimated	average	collapse	rate	in	the	MEM-

01	 colonies	 (see	Fig.	 2c	 and	Methods).	We	verified	 that	 the	 resulting	 fluctuations	 in	 the	 collapse	 rate	

(from	 roughly	 0.05	 to	 0.2	 per	 scratchpad	 per	 generation)	 were	 consistent	 with	 the	 experimentally	

observed	fluctuations	in	the	loss	of	colocalization	fraction	between	individual	cells	across	the	108	MEM-

01	colonies	used	in	the	analysis	shown	in	Figure	3.	Overall,	as	shown	in	Fig.	3i	and	Extended	Data	Fig.	6d,	

this	 recording	 noise	 produced	 only	 a	 relatively	 small	 decrease	 in	 the	 reconstruction	 accuracy	 of	 the	

simulated	colonies.		

Readout	noise.		This	category	includes	(a)	stochastic	expression	of	individual	barcoded	scratchpads,	(b)	

the	 effects	 of	 multiple	 integrations	 of	 the	 same	 barcoded	 scratchpad	 type,	 and	 (c)	 errors	 in	 smFISH	

imaging	readout.	To	simulate	the	impact	of	readout	noise	on	reconstruction	accuracy,	we	first	obtained	

the	empirical	distribution	of	single-cell	transcript	counts	of	each	of	the	13	scratchpads	in	the	cells	in	all	

108	analyzed	MEM-01	colonies	(see	Figure	below).	The	transcript	count	distributions	for	the	barcoded	

scratchpads	were	well-approximated	as	gamma	distributions	(with	an	average	mean	of	5.4).	The	gamma	

distribution	is	expected	when	there	is	a	constant	probability	per	unit	time	of	initiating	a	transcriptional	

burst,	and	the	number	of	mRNAs	produced	per	burst	follows	an	exponential	distribution,	and	has	been	

observed	empirically	to	describe	diverse	stochastic	gene	expression	processes43,44.		
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Distribution	of	the	number	of	transcripts	of	each	barcode	in	individual	cells	in	the	108	MEM-01	colonies	analyzed	in	Figure	3.	
All	13	detected	barcodes	are	shown.	Black	lines	are	fits	to	Gamma	distributions.

We	 quantified	 the	 intra-colony	 and	 inter-colony	 variability	 in	 the	 expression	 levels	 of	 the	 barcoded	

scratchpads	using	 the	same	procedure	described	above	 for	gRNA	and	Cas9.	 In	 this	 case,	variance	was	

calculated	for	each	barcode	and	then	summed	over	13	barcodes	per	cell	to	estimate	each	cell’s	overall	

expression	 variance.	 These	 empirical	 parameterizations	 for	 the	 transcript	 count	 distributions	 were	

incorporated	in	the	simulations.			

For	 readout,	 we	 first	 associated	with	 each	 barcode	 a	 random	 number	 of	 transcripts	 drawn	 from	 the	

gamma	 distribution	 associated	 with	 that	 barcode.	 Second,	 we	 incorporated	 additional	 noise	 from	

smFISH	 imaging,	 based	 on	 experimental	 quantification	 of	 the	 accuracy	 of	 smFISH	 colocalization	

detection	rates	(Fig.	2c).	If	a	scratchpad	was	intact,	then	the	probability	of	colocalization,	𝑝M,	was	set	to	

0.87;	 if	 a	 scratchpad	 was	 collapsed,	 the	 probability	 of	 erroneous	 colocalization,	 𝑝S,	 was	 set	 to	 0.05.	

These	estimates	were	obtained	from	our	measurements	of	colocalization	fractions	before	activation	of	

the	MEM-01	cells	(Fig.	2c),	and	are	consistent	with	previous	reports	on	smFISH	fidelity16,17.		The	number	

of	scratchpads	that	colocalized	for	each	barcode	was	drawn	from	binomial	distributions	based	on	these	

colocalization	detection	probabilities.	Namely,	the	number	of	colocalized	transcripts	𝑞	from	a	total	of	𝑇	

transcripts,	for	an	intact	integration	of	a	barcode,	was	drawn	from	the	distribution,	
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𝑝6HV5MV 𝑞; 𝑇 =
𝑇
𝑞
𝑝M
X 1 − 𝑝M Y.X

Similarly,	the	number	of	colocalized	transcripts	for	a	collapsed	integration	of	a	barcode	was	drawn	from	

the	distribution,	

𝑝MZ[[5\]S^ 𝑞; 𝑡 =
𝑇
𝑞
𝑝S
X 1 − 𝑝S Y.X

Finally,	we	accounted	for	multiple	 integrations	of	the	same	barcode	as	follows:	 If	a	barcode	had	more	

than	one	integration,	the	total	number	of	transcripts	and	the	number	of	colocalized	transcripts	for	that	

barcode	 were	 determined	 by	 summing	 the	 relevant	 transcripts	 from	 each	 individual	 integration.	

Importantly,	the	distribution	of	the	expression	level	of	each	individual	integration	was	selected	such	that	

the	 distribution	 of	 the	 total	 number	 of	 transcripts	 (obtained	 by	 taking	 the	 convolution	 of	 the	 single-

integration	 distributions)	 matched	 the	 experimentally	 observed	 distribution	 for	 that	 barcode.	 For	

example,	if	a	barcode	had	two	integrations	and	an	expression	distribution	characterized	by	a	mean	of	10	

transcripts	and	shape	parameter	2	(from	the	gamma	fit),	then	each	integration	was	assumed	to	have	an	

expression	distribution	characterized	by	a	mean	of	5	transcripts	and	shape	parameter	1.	

This	 procedure	 produced	 an	 ensemble	 of	 simulated	 colonies,	 where	 every	 cell	 was	 assigned	 a	 total	

number	 of	 transcripts	 and	 a	 number	 of	 colocalized	 transcripts	 for	 each	 barcode	 (same	 as	 the	

experimental	data).	The	resulting	simulated	colonies	were	then	reconstructed	with	the	same	neighbor-

joining	algorithm	used	on	the	experimental	data	(see	Methods).		

Impact	of	 readout	noise	on	overall	 reconstruction	accuracy.	 	Figure	3i	and	Extended	Data	Figure	6e,f	

show	that	noise	in	scratchpad	expression	and	multiple	incorporations	of	the	same	barcoded	scratchpad	

account	 for	most	of	 the	 reconstruction	error.	By	contrast,	other	components	 such	as	 recording	noise,	

noise	intrinsic	to	the	MEMOIR	design,	and	noise	from	smFISH	imaging	fidelity	contributed	minimally	to	

the	overall	reconstruction	error.		
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Finally,	 to	 determine	 if	 the	 addition	 of	 fluctuations	 to	 the	 simulations	 matched	 the	 experimentally	

observed	decrease	 in	 reconstruction	accuracy,	we	simulated	 trees	with	all	 three	components	of	noise	

for	 various	 numbers	 of	 integrations	 per	 barcode	 and	 compared	 the	 distribution	 of	 reconstruction	

accuracy	to	that	observed	for	the	108	experimental	colonies.	As	shown	in	Extended	Data	Figure	6f,	the	

distribution	 of	 reconstruction	 accuracy	 obtained	 from	 simulations	 is	 generally	 consistent	 with	 the	

experimentally	 observed	 distribution,	 with	 an	 effective	 value	 of	 2	 integration	 sites	 for	 each	 barcode.	

Note	 that	 no	 fitting	 parameters	 were	 used	 besides	 the	 empirically	 measured	 fluctuations	 in	 the	

recording	 and	 readout	 components.	 Together,	 these	 results	 indicate	 that	 this	 implementation	 of	

MEMOIR	behaved	as	expected	of	a	system	with	13	scratchpads	and	realistic	sources	of	noise.		The	main	

sources	 of	 error,	 the	 stochastic	 expression	 of	 scratchpad	 transcripts	 and	 variable	 expression	 from	

multiple	 integrations	 of	 the	 same	 barcoded	 scratchpad	 types,	 can	 be	 improved	 in	 future	

implementations.		

2b.	Potential	solutions	to	address	sources	of	noise	and	reduce	errors	

Here	we	describe	ways	to	mitigate	the	key	sources	of	noise	currently	affecting	MEMOIR	reconstruction	

accuracy:	

● Noise	inherent	to	the	system.		Because	collapse	events	are	stochastic,	similar	collapse	patterns

can	arise	by	chance	independently,	creating	ambiguities.	The	likelihood	of	such	errors	decreases

rapidly	 as	 the	 number	 and	 diversity	 of	 barcoded	 scratchpads	 is	 increased.	 Further,	 tunable

control	 of	 Cas9	 and	 gRNA	 expression	 or	 scratchpad	 affinity	 (e.g.,	 by	 varying	 gRNA	 target

complementarity)	allows	average	collapse	rate	to	be	optimized	for	different	regimes,	 including

accessing	more	 generations	 (Extended	Data	 Fig.	 8b)	 or	 low	 collapse	 rates	 for	 studying	 sparse

trees	(Extended	Data	Fig.	9).

● Readout	 noise:	 Multiple	 incorporations	 of	 barcoded	 scratchpad	 types.	 This	 is	 currently	 a

significant	 source	 of	 noise,	 as	 shown	 in	 Extended	 Data	 Fig.	 6,	 and	 it	 is	 readily	 addressed	 as

above,	e.g.,	by	starting	from	a	larger	and	more	diverse	pool	of	barcodes.

● Readout	 noise:	 Stochastic	 scratchpad	 expression.	 Individual	 scratchpads	 are	 read	 out	 at	 the

RNA	level,	and	therefore	subject	to	fluctuations	in	transcription.	This	source	of	noise	that	can	be

addressed	 by	 using	 1)	 stronger	 promoters,	 2)	 site-specific	 integration	 in	 well-expressed	 loci,

and/or	 3)	 stabilized	 RNA	 transcripts	 (in	 order	 to	 build	 up	 signal	 over	 longer	 periods).

Alternatively,	barcode	expression	noise	can	be	circumvented	by	employing	other	in	situ	labeling

methods,	like	single-molecule	DNA	FISH.
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3. Simulation	of	MEMOIR	operation	for	missing	cells	and	sparse	trees

3a.	Missing	cells

To	 simulate	 reconstruction	 for	 trees	with	missing	 cells	 (Extended	Data	Fig.	 8c),	 the	 forward	algorithm

described	 in	Methods	 was	 used	 to	 generate	 a	 full	 binary	 tree	 of	 three	 generations,	 which	 was	 then

pruned	 by	 removing	 a	 given	 number	 of	 randomly	 chosen	 endpoint	 cells.	 To	 reconstruct	 the	 lineage

relationships	of	the	remaining	cells,	we	assigned	each	of	the	possible	315	reconstructions	a	score	given

by	 𝐻6a − 𝑇6ab6,ac
F
,	where	𝐻6a 	 is	 the	Hamming	distance	between	 the	barcoded	scratchpad	collapse

patterns	 of	 cells	 𝑖	 and	 𝑗,	 𝑇6a 	 is	 the	 lineage	 distance	 between	 cells	 𝑖	 and	 𝑗	 from	 that	 particular	

reconstruction	(1	for	sisters,	2	for	first	cousins,	and	3	for	second	cousins),	and	the	summation	runs	over	

all	 pairs	 of	 cells.	 Matrices	 𝐻	 and	 𝑇	 were	 normalized	 so	 that	 their	 elements	 summed	 to	 one.	 This	

reconstruction	 score	 format	 was	 useful	 not	 only	 in	 scoring	 the	 topology	 of	 possible	 lineage	

arrangements,	but	also	in	estimating	branch	lengths	(e.g.,	whether	two	cells	were	likely	closely	related	

sisters	or	more	distantly	related	cousins).	The	reconstruction	with	the	lowest	score	was	selected	as	the	

reconstructed	tree	and	used	to	compute	the	fraction	of	relationships	that	were	correctly	identified	(i.e.,	

fraction	 of	 correct	 relationships)	 shown	 in	 the	 heat-maps.	 If	 multiple	 reconstructions	 had	 the	 same	

lowest	score,	the	fraction	of	correct	relationships	was	averaged	over	all	of	them.	

3b.	Simulation	of	MEMOIR	operation	for	sparse	trees	

To	simulate	sparse	 trees,	we	assumed	collapse	events	 in	a	given	 lineage	occur	at	a	 specified	constant	

collapse	 rate	 λ	 (per	 cell	 per	 generation).	 The	 sparse	 regime	 occurs	 when	 λ	 <	 1.	 Because	 generating	

hundreds	 of	 collapse	 events	 requires	 large	 trees	 of	 many	 generations,	 we	 did	 not	 simulate	 the	

underlying	 proliferating	 binary	 tree.	 Instead,	 we	 directly	 generated	 a	 tree	 of	 collapse	 events	 with	

variable	 branch	 lengths	 corresponding	 to	 the	 stochastic	 time	 intervals	 between	 collapse	 events.	

Assuming	 a	 constant	 rate	 of	 collapse	 (a	 Poisson	 process),	we	 randomly	 drew	branch	 lengths	 from	an	

exponential	distribution	with	the	time	scale	set	by	the	collapse	rate,	i.e.	mean	branch	length	∼	1/λ	.	At	

any	given	level	of	the	tree,	if	the	tree	had	𝑁	branches,	the	time	interval	to	the	next	branching	event	was	

selected	from	an	exponential	distribution	with	rate	𝑁𝜆,	and	the	branching	event	was	randomly	assigned	

to	one	of	the	𝑁	branches.	The	branching	process	was	continued	until	the	desired	number	of	leaves	was	

generated.	 Extended	Data	 Figure	 9c,d	 shows	examples	of	 sparse	 trees	with	 various	number	of	 leaves	

and	 tree	 depths	 (defined	 as	 the	 cumulative	 number	 of	 collapse	 events	 since	 the	 common	 ancestor	

experienced	 by	 each	 leaf	 averaged	 over	 all	 the	 leaves	 of	 the	 tree).	 For	 clarity,	 the	 approximate	
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correspondence	 between	 these	 sparse	 trees	 (characterized	 by	 number	 of	 leaves	 and	 tree	 depth)	 and	

underlying	full	binary	trees	(characterized	by	collapse	rate	and	number	of	generations)	was	determined	

by	simulating	full	binary	trees	in	the	sparse	regime	and	then	finding	parameters	that	generated	effective	

sparse	 trees	with	 the	desired	number	of	 leaves	and	depth	 (see	the	cartoon	 in	Extended	Data	Fig.	9a).	

The	 collapse	 rate	 and	 number	 of	 generations	 of	 the	 full	 binary	 trees	 corresponding	 to	 the	 example	

sparse	 trees	 are	 reported	 in	 Extended	 Data	 Figure	 9c,d.	 To	 reconstruct	 sparse	 trees,	 we	 used	 the	

generated	collapse	pattern	at	the	leaves	and	a	Sankoff	maximum	parsimony	algorithm45.	The	fraction	of	

correct	 partitions	 identified	 by	 the	 reconstructed	 trees	 was	 calculated	 using	 the	 Robinson-Foulds	

distance	metric40.	Simulations	were	implemented	in	Matlab,	and	Python	using	the	Biopython	package46	

and	ETE3	toolkit47.		

4. Inference	of	the	switching	rates	between	the	two	Esrrb	gene	expression	states

In	this	section,	we	describe	how	we	inferred	the	transition	rates	between	the	low	and	high	expression

states	 of	 Esrrb.	 In	 4a,	 we	 compute	 the	 occurrence	 frequencies	 of	 pairs	 of	 cells	 in	 the	 same	 gene

expression	state.	In	4b,	we	present	a	straightforward	inference	of	the	transition	rates	from	the	decay	in

the	observed	frequency	of	pairs	of	cells	in	the	same	expression	state.	Finally,	in	4c,	we	present	a	more

involved	but	more	accurate	inference	algorithm.

4a.	Occurrence	frequency	of	related	pairs	of	cells	in	the	same	Esrrb	gene	expression	state	on	MEMOIR	

trees	

In	this	subsection,	we	describe	how	the	co-occurrence	frequencies	of	pairs	of	related	cells	in	the	same	

Esrrb	 expression	 state	 can	 be	 extracted	 from	 the	MEMOIR	 reconstructed	 lineage	 trees	 and	 endpoint	

gene	expression	measurements.	

To	compute	the	frequencies,	we	first	assign	each	cell	a	probability	of	being	in	one	of	the	two	Esrrb	gene	

expression	states	based	on	its	Esrrb	mRNA	count.	To	do	so,	we	fit	the	bimodal	distribution	of	single-cell	

Esrrb	 transcript	 counts	 (Figure	 4b)	with	 a	weighted	 sum	 of	 two	 negative	 binomial	 distributions,	 each	

corresponding	to	one	gene	expression	state.	We	denote	the	distribution	corresponding	to	the	Esrrb	low	

expression	 state	 as	𝑃.(𝑚),	 and	 the	 distribution	 corresponding	 to	 the	 Esrrb	 high	 expression	 state	 as	

𝑃h(𝑚),	 where	𝑚	 is	 the	 number	 of	 transcripts	 in	 an	 individual	 cell.	 The	 bimodal	 distribution	 is	 fit	 to	

𝑓𝑃. 𝑚 + 1 − 𝑓 𝑃h(𝑚),	where	𝑓	is	an	additional	fitting	parameter	that	corresponds	to	the	population	

fraction	of	cells	in	the	low	expression	state.		
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With	the	fit	parameters	determined,	the	probability	that	an	individual	cell	with	𝑛	Esrrb	mRNA	molecules	

is	in	the	low	expression	state	(E-)	is	

𝑝j.(𝑛) =
𝑓𝑃. 𝑛

𝑓𝑃. 𝑛 + (1 − 𝑓)𝑃h 𝑛
		

Similarly,	the	probability	that	the	cell	is	in	the	high	gene	expression	state	(E+)	is	simply		𝑝jh 𝑛 = 	1 −

𝑝j.(𝑛).	

Next,	we	generalize	 this	approach	 to	 jointly	observing	 the	states	of	a	pair	of	cells.	 If	 cell	1	 is	 in	 the	E-	

state	with	probability	𝑝j.- 	and	cell	2	is	in	the	E-	state	with	probability	𝑝j.F 	then	the	probability	that	both	

cells	 are	 simultaneously	 in	 E-	 states	 is	𝑝j.- 𝑝j.F .	 Similarly,	 the	 probability	 of	 observing	 cell	 1	 in	 the	 E+	

state	and	cell	2	in	the	E-	state	is	𝑝jh- 𝑝j.F .	We	can	denote	the	probability	of	observing	the	two	cells	in	any	

of	the	four	possible	pairs	of	states	by	a	2×2	matrix,	

	
𝑝j.- 𝑝j.F 𝑝jh- 𝑝j.F

𝑝j.- 𝑝jhF 𝑝jh- 𝑝jhF

The	 entries	 in	 this	matrix	must	 sum	 to	1.	 Finally,	 to	 compute	 the	 occurrence	 frequency	 of	 a	 pair	 of	

sisters	 cells	 in	each	of	 the	 four	possible	pairs	of	 states,	we	average	 the	above	matrix	over	all	pairs	of	

sisters	cells.	

𝑪 1 =
1

𝑁]6]VSm]
𝑝j.6 𝑝j.

a 𝑝jh6 𝑝j.
a

𝑝j.6 𝑝jh
a 𝑝jh6 𝑝jh

a
6,a

where	the	summation	runs	over	all	𝑁]6]VSm]	pairs	of	sisters	cells	in	the	30	colonies	used	in	the	analysis.	

We	note	that	since	the	ordering	of	the	sister	pair	is	arbitrary,	we	turn	the	resulting	matrix	symmetric	by	

averaging	the	off-diagonal	terms.	

𝑪 1 	 is	a	2x2	matrix	 for	sisters.	The	argument	 ‘1’	denotes	the	fact	 that	sisters	are	1	generation	apart.	

Similarly,	 we	 define	𝑪 2 	 as	 the	 frequency	 of	 observing	 a	 pair	 of	 first-cousin	 cells	 in	 a	 given	 pair	 of	
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states. 𝑪(2),	 is	 determined	by	 taking	 the	 average	 over	 all	 the	 observed	pairs	 of	 first-cousin	 cells.	 The	

occurrence	 frequency	of	 sisters,	 first	 cousins,	and	second	cousins	 (𝑪(3))	 in	 the	same	Esrrb	expression	

state	(either	both	E-,	or	both	E+)	is	plotted	in	Figure	4d.	

Finally,	we	estimated	the	statistical	error	on	the	observed	frequencies	in	two	ways	(error	bars	in	Figure	

4d).	First,	from	the	total	number	of	observed	pairs	of	cells	and	the	computed	frequencies,	we	estimated	

the	counting	error	assuming	a	multinomial	distribution.	That	is,	for	an	observed	frequency	𝑓	computed	

using	𝑁	pairs	of	cells,	the	statistical	error	was	estimated	as	 𝑓 1 − 𝑓 𝑁.	To	understand	how	much	of	

the	 similarity	 observed	 between	 states	 of	 closely	 related	 cells	 was	 just	 due	 to	 chance,	 we	 randomly	

permuted	the	lineage	relationships	within	each	colony	and	recomputed	the	frequencies.	The	statistical	

error	was	estimated	as	the	variance	of	the	frequencies	computed	over	1000	iterations	of	such	random	

permutations.	 The	 first	 error	 estimate	 only	 accounts	 for	 the	 finite	 size	 of	 the	 total	 number	 of	

observations.	The	second	estimate	accounts	for	correlations	between	the	states	of	closely	related	cells	

due	to	chance	with	the	number	of	different	gene	expression	states	 in	each	colony	held	fixed.	The	two	

methods	 produced	 similar	 estimates	 reflecting	 the	 level	 intra-colony	 heterogeneity.	 Because	 the	 two	

approaches	 do	 not	 capture	 independent	 statistical	 fluctuations,	 we	 combined	 them	 by	 taking	 the	

maximum	of	the	two	estimates.	

4b.	 Inference	of	switching	dynamics	 from	reconstructed	 lineage	trees	and	endpoint	gene	expression	

measurements	

Here,	we	describe	the	inference	of	transition	rates	from	the	frequencies	derived	in	the	previous	section.	

To	 do	 so,	 we	 first	 derive	 the	 relationship	 between	 transitions	 rates	 and	 the	 expected	 probability	 of	

observing	a	pair	of	related	cells	in	the	same	gene	expression	state.	

We	 define	 a	 minimal	 model	 of	 stochastic	 and	 memoryless	 transitions	 between	 the	 two	 expression	

states.	We	assume	that	the	probability	of	transitioning	from	the	E-	state	to	the	E+	state	per	generation	is	

constant	and	denote	it	as	𝑇(𝐸h|𝐸.).	The	probability	that	a	cell	in	the	E-	state	will	retain	its	state	from	

one	 generation	 to	 the	 next	 is	 give	 by	 𝑇 𝐸.|𝐸. = 1 − 𝑇(𝐸h|𝐸.).	 Similarly,	 the	 probability	 of	

transitioning	out	of	the	E+	state	per	generation	is	denoted	as	𝑇(𝐸.|𝐸h).	The	transition	probabilities	can	

be	combined	together	into	a	transition	rate	matrix,	
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𝑻 =
𝑇(𝐸.|𝐸.) 𝑇(𝐸.|𝐸h)
𝑇(𝐸h|𝐸.) 𝑇(𝐸h|𝐸h)

First,	 we	 present	 a	 simple	 approach	 for	 inferring	 the	 transition	 rate	 matrix	 from	 the	 decay	 in	 the	

observed	 frequencies	 of	 pairs	 of	 cells	 in	 the	 same	 gene	 expression	 state	 going	 from	 first-cousins	 to	

second-cousins.	Next,	we	present	a	more	 involved	derivation	that	also	takes	 into	account	the	value	of	

the	 observed	 frequencies	 in	 addition	 to	 how	 they	 decay	 from	 closely	 related	 cells	 to	 more	 distant	

relatives.	

We	can	relate	the	frequency	of	observing	second-cousins	in	the	same	state	(either	both	in	E-	or	both	E+)	

to	 the	 frequency	of	 observing	 the	 first-cousins	 in	 a	 particular	 pair	 of	 states	by	 taking	 into	 account	 all	

possible	state	transitions	going	from	one	generation	to	the	next.	It	follows,	

𝑪-- 3 = 1 − 𝑇-F 1 − 𝑇-F 𝑪-- 2 + 2𝑇F- 1 − 𝑇-F 𝑪-F 2 + 𝑇F-𝑇F-𝑪FF(2)	

𝑪FF 3 = 1 − 𝑇F- 1 − 𝑇F- 𝑪FF 2 + 2𝑇-F 1 − 𝑇F- 𝑪F- 2 + 𝑇-F𝑇-F𝑪--(2)	

We	numerically	solved	the	above	two	non-linear	equations	for	𝑇-F	and	𝑇F-	 for	the	observed	values	of	

𝑪(2)	 and	𝑪(3)	 (the	observed	 frequencies	were	 first	 corrected	 for	misclassifications	of	 the	 two	 states	

caused	 by	 measurement	 uncertainties,	 see	 below).	 To	 estimate	 the	 statistical	 error	 on	 the	 inferred	

transitions	rates,	we	produced	simulated	frequency	matrices	based	on	the	estimated	statistical	error	of	

the	 frequencies	 (see	 previous	 section).	We	 solved	 for	 the	 transition	 rates	 for	 10000	 iterations	 of	 the	

simulated	data	and	computed	the	standard	deviation	over	the	rates.	We	found	𝑇-F = 0.10 ± 0.07	and	

𝑇F- = 0.04 ± 0.03.	

4c.	A	more	accurate	inference	of	the	transition	rates	

Next,	 to	 get	 a	 more	 accurate	 set	 of	 inferred	 transition	 rates,	 we	 incorporated	 the	 values	 of	 the	

frequencies	 in	 addition	 to	 their	 decay	 over	 the	 generations	 in	 our	 calculations.	 To	 do	 so,	 we	 first	

calculated	the	joint-probability	of	finding	a	pair	of	sister	cells	 in	states	𝑖	and	𝑗	using	the	transition	rate	

matrix.	

𝑪6a 1 = 	 𝑻 𝑖 𝑠 𝑻 𝑗 𝑠 𝑝(𝑠)
]Jjv,jw
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The	summation	 in	above	equation	runs	over	 the	two	possible	states	of	 the	parent	cell.	Assuming	that	

the	population	fractions	of	the	E-	and	E+	cells	do	not	change	significantly	during	the	three	generations	

spanned	 by	 the	 experiment,	 𝑝(𝐸.)	 and	 𝑝 𝐸h 	 can	 be	 set	 approximately	 equal	 to	 the	 population	

fractions	 derived	 from	 fitting	 the	 bimodal	 Esrrb	 transcript-count	 distribution	 (see	 previous	 section).	

Namely,	𝑝 𝐸. = 𝑓		 and	𝑝 𝐸h = 1 − 𝑓.	We	 experimentally	 validated	 the	 assumption	 that	 the	Esrrb	

transcript-count	distribution	does	not	change	significantly	in	our	experimental	conditions	over	a	period	

of	48	hours	or	approximately	four	generations	(see	Extended	Data	Fig.	10).	

To	keep	the	population	fractions	constant,	the	number	of	cells	transitioning	from	the	E-	state	to	the	E+	

state	must	 be	 equal	 to	 the	 number	 transitioning	 in	 the	 reverse	 direction.	 Hence,	𝑇 𝐸h 𝐸. 𝑝 𝐸. =

𝑇 𝐸. 𝐸h 𝑝(𝐸h).	With	this	simplification,	

𝑪6a 1 = 	 𝑻 𝑖 𝑠 𝑻 𝑠 𝑗 𝑝 𝑗 = 𝑝 𝑗 𝑻F(𝑖|𝑗)
]Jjv,jw

	

where	𝑻F(𝑖|𝑗)	 	 	 denotes	 the	 𝑖, 𝑗th	element	of	 the	 square	of	 the	 transition	matrix.	 Similarly,	 the	 joint-

probability	of	observing	a	pair	of	cousins,	and	second-cousins	 in	states	 𝑖	and	𝑗	 is	 respectively	equal	 to	

𝑪6a 2 = 𝑝 𝑗 𝑻x(𝑖|𝑗)	and	𝑪6a 3 = 𝑝(𝑗)𝑻y(𝑖|𝑗).	

To	 infer	 the	 state	 transition	 rates,	 we	 used	 the	 measured	 frequencies	 and	 population	 fractions	 and	

solved	the	above	equations	for	𝑻.		

However,	 we	 first	 need	 to	 introduce	 a	 correction	 to	 the	 measured	 frequencies	 to	 account	 for	

misclassification	of	expression	states	when	they	are	probabilistically	assigned.	Namely,	 it	 is	more	likely	

to	 misclassify	 a	 cell	 in	 the	 E-	 state	 as	 E+	 than	 vice	 versa	 because	 of	 the	 asymmetrical	 shape	 of	 the	

distributions	𝑃±(𝑚)	 (see	the	 fits	 in	Figure	4b).	To	correct	 for	misclassifications,	we	first	computed	the	

probability	of	assigning	a	cell	in	state	𝑗	mistakenly	to	state	𝑖	by	simply	integrating	the	probability	that	a	

a	 cell	 with	 𝑛	 Esrrb	 transcripts	 is	 assigned	 to	 state	 𝑖	 (computed	 in	 the	 previous	 section)	 over	 the	

probability	distribution	of	observing	𝑛	transcripts	in	a	cell	in	state	𝑗.	

𝑸6a = 	
𝑓𝑃6 𝑛

𝑓𝑃. 𝑛 + 1 − 𝑓 𝑃h 𝑛
𝑃a(𝑛)𝑑𝑛	
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For	our	analysis,	E-	cells	are	mistakenly	assigned	to	E+	cells	with	probability	0.12,	whereas	E+	cells	are	

mistakenly	assigned	to	the	E-	state	with	probability	0.04.	

Matrix	𝑸	effectively	introduces	apparent	transitions	between	the	two	states	at	the	measurement	stage.	

These	additional	transitions	can	be	explicitly	included	in	the	calculation	of	the	joint-probability	of	finding	

a	pair	of	sister	cells	in	states	𝑖	and	𝑗,	

𝑪6a 1 = 	 𝑸𝒊𝒌𝑻 𝑘 𝑠 𝑸𝒋𝒍𝑻 𝑙 𝑠 𝑝 𝑠 =
𝒍𝒌]Jjv,jw

𝑸𝒊𝒌𝑻 𝑘 𝑠 𝑻 𝑠 𝑙 𝑸𝒍𝒋𝑻 𝑝 𝑙
𝒍𝒌]Jjv,jw

= 𝑸𝒊𝒌𝑻𝟐 𝑘 𝑙 𝑝(𝑙)𝑸𝒍𝒋𝑻

𝒍𝒌

	

However,	 the	apparent	 transitions	 represented	by	𝑸	do	not	correspond	to	actual	 transitions	between	

the	Esrrb	expression	 states.	Rather,	 they	 represent	misclassifications	due	 to	uncertainties	 in	 the	 state	

assignment.	To	correct	the	estimate,	we	removed	the	contributions	of	these	apparent	transitions	to	the	

measured	 frequencies,	 by	 applying	 the	 inverse	 of	 matrix	 𝑸	 to	 the	 frequency	 matrices,	 𝑪 =

𝑸.-𝑪 𝑸Y .-.	

Finally,	to	infer	the	transition	rates	shown	in	Figure	4d,	we	solved	for	the	transition	rate	matrix	𝑻	using	

the	 corrected	 frequency	matrix	 for	 second-cousins	 , 𝑪(3).	𝑪(3)	 exhibits	 a	 lower	 statistical	 error	 than	

𝑪(2)	and	𝑪(1)	because	the	number	of	pairs	of	second	cousins	is	larger	than	the	number	of	pairs	of	first-

cousins	 and	 sisters.	 To	 validate	 the	 inferred	 rates,	 we	 checked	 that	 inferring	 𝑻	 using	 the	 corrected	

frequency	matrices	for	first-cousins	𝑪(2)	and	sisters	𝑪(1)			produced	consistent	transition	rates.	Finally,	

to	 estimate	 the	 statistical	 error	 of	 the	 inferred	 rates	 we	 used	 the	 estimated	 statistical	 error	 in	 the	

measured	frequencies	(see	previous	section)	and	produced	simulated	frequency	matrices.	The	error	on	

the	inferred	rates	was	estimated	as	the	standard	deviation	of	the	rates	inferred	over	10000	iterations	of	

simulated	data.	Results	are	shown	in	Figure	4d.		
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