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ABSTRACT   

The 25-m aperture Cornell Caltech Atacama Telescope (CCAT) will have a primary mirror that is divided into 162 
individual segments, each of which is equipped with 3 positioning actuators. This paper presents a mathematical 
description of the telescope, its actuators and sensors, and uses it to derive control laws for figure maintenance. A 
Kalman Filter-based Optical State Estimator is used to continuously estimate the aberrations of the telescope; these are 
used in a state-feedback controller to maintain image quality. This approach provides the means to correct for the optical 
effects of errors that occur in un-actuated degrees of freedom, such as lateral translations of the segments. The control 
laws are exercised in Monte Carlo and simulation analysis, to bound the closed-loop performance of the telescope and to 
conduct control design trades.  
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1. INTRODUCTION  
The 25-m aperture Cornell Caltech Atacama Telescope (CCAT) will be sited at an altitude of 5600 m in the Atacama 
Desert, operating at wavelengths between 200 um and 2 mm [1]. Its primary mirror will be assembled from 162 
“keystone” segments, each of which is equipped with 3 rigid-body actuators. These will be used to move the segments, 
so as to counter deformations from temperature changes and the varying gravity effects that come with pointing changes. 
The baseline design will utilize a steel structure, with active figure controls to establish and maintain good optical 
performance. The telescope figure will be initialized using submillimeter-wave shearing interferometry [2] to determine 
the best positioning of the segments. 

This paper examines the problem of active controls to maintain good optical figure once it has been initially established. 
It describes a Wavefront Compensation controller that uses innovative, inexpensive optical edge sensors to measure 
segment-to-segment displacements and determine actuator commands that maintain good optical quality. The controller 
uses a Kalman filter to estimate the full optical state of the telescope, including 6 degrees of freedom (DOF) of change 
for each segment, and to predict the Wavefront Error (WFE) that results from these changes. Actuator controls are 
computed to minimize this WFE at each time step, using only the 3 DOF provided by the actuators. This approach is 
able to partly compensate the WFE due to motions in the uncontrolled DOFs, resulting in better performance than 
approaches that simply seek to null the sensor signals. 

The estimator and controller are based on a detailed mathematical model of the telescope, currently based on structural 
and optical computer models, but which will ultimately be determined by direct calibration. These models are 
summarized in Section 3, following a summary of nomenclature in Section 2. The estimator and controller are derived in 
Sections 4-6, and example results are presented in Section 7. 

2. NOMENCLATURE 
xR, rigid-body state of each optic or optical assembly, [xR] = (6*nopt,1) 
xD, segment deformation state, [xD] = (ndef*nseg, 1) 
uR, segment rigid body control command, [uR] = (6*nseg, 1) 
uSM, SM rigid body control command, [uSM] = (5, 1) 
uc, pointing control command, [uc] = (2, 1) 
δT, temperature change, [δT] = (nT*nseg, 1) 
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 ci =
∂c
∂x

xi + cAtm + c0  (4) 

That is, the WF w is equal to the nominal WF w0 plus the optical effects of the perturbations x, plus the effects of 
atmospheric turbulence wAtm (small in the submillimeter); similarly for the pointing c. Here MACOS is used to generate 
the optical sensitivities ∂w/∂x  and ∂c / ∂x , following the theory of [5]. This provides linear optical models that predict 
the WFE and pointing error using matrix operations rather than a full ray-trace; such models are highly accurate for the 
small state excursions typical of a controlled telescope. The optical sensitivities are also important in the derivations of 
the controller – see below. The RMS Wavefront Error (WFE) is computed as the RMS of wi. 

Changes in the state x also impact the outputs of the measurements that are used for control. In this paper we consider 3 
types of measurement. The first is a direct measurement of the WFE, which can be obtained by WF sensing, or using the 
shearing interferometry technique discussed in [2]. The WF measurement equation takes the form (assuming fully 
unwrapped phase): 

 wmi = wi + δwi =
∂w
∂ x

xi + wAtm + w0 + δw  (5) 

The second type of measurement is made using optical edge sensors. The CCAT edge sensors have 2 parts: a collimated 
light source located on one segment; and a CCD camera located on the adjacent segment – see Figure 3. Translational or 
rotational motions of one segment relative to the other cause lateral displacement of the light beam, which is measured 
by the CCD in 2 axes: in the “z” or local surface normal direction; and “y,” parallel to the mirror surface, as described in 
[6] and [7]. Optical edge sensors are placed as shown in Figure 3, with approximately 2 sensors per segment-to-segment 
edge, and a total of 624 sensors, each sensing in 2 axes for a total of 1248 measurements. Design parameters governing 
edge sensor performance include the mounting position below the surface and the radial position of each sensor.  

The edge sensor measurement equation takes the form: 

 
li =

∂l
∂ x

xi + l0 + δ li
 (6) 

Here the ∂l / ∂x  sensitivities capture the kinematics of the sensors. The l0 vector represents the static offset of the edge 
sensors, which can be calibrated. Optical edge sensor measurements will be made at a frequency of 0.1 to 1 Hz. 

The third type of measurement is the telescope pointing measurement, made using an off-axis guide star and a separate 
pointing camera. For this analysis, we assume that the pointing camera provides a measurement to be directly compared 
to an image at the center of the CCAT field. Unlike the optical edge sensor measurement, which is local to the PM and 
insensitive to global motions of the optics, c captures effects of all the optics as they affect pointing. The pointing 
measurement equation is: 

 ci =
∂c
∂x

xi + cAtm + c0 + δci  (7) 

 Pointing measurements will be conducted at a lower rate than optical edge sensor measurements, at 0.001 to 0.01 Hz. 

4. SIMULATION AND COVARIANCE ANALYSIS 
The performance of the 25-m CCAT can be bounded from the model equations outlined above, using simulation 
techniques and covariance analysis. Covariance analysis forms the basis of the CCAT Optical State Estimator discussed 
in the next Section.  

In simulation, telescope performance is computed for a for a particular case, by initializing the state x = x0 with random 
values consistent with the expected alignment and figure quality of the telescope, and then integrating the state forward 
in time using the transition equation (Eq. 2). At each time step, new state noise values ξ are added, and values for w, l 
and c are computed. New controls (with sensing and actuation errors) can be fed back into the state via actuations u. The 
simulation is run until a steady-state performance is reached. The error in the final performance is a function of the 
particular errors and noise values that drive it.  
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determined from component-level specifications. If ϕi is the standard deviation or “1-sigma” error expected for the initial 
xj state vector element, then the corresponding entry in X0 is: 

 X0 (i, i) = 1 / σ i
2  (12) 

The state covariance matrix Xi+1 is diagonal only at the initial condition: a single iteration of the control derived below 
cause the states to become correlated. The optical edge sensor measurement errors have a calibrateable static offset l0 
and uncorrelated measurement noise δl, with standard deviation σL, so that the covariance L is: 

 L0 = (1 / σ L
2 )I  (13) 

Here σL is the (scalar) standard deviation of the error expected for optical edge sensor measurements, and I is the identity 
matrix of dimension nray by nray. Similar expressions govern the other measurement covariances.  

5. OPTICAL STATE ESTIMATOR 
The optical edge sensor measurements l (and c and w when available), can be used to estimate the optical state x of the 
telescope at any particular time; and that estimate can be used to compute new controls uR and uSM. This is the function 
of the Optical State Estimator (OSE): to take in all of the available data, and to process it to determine the underlying 
optical state x of the telescope. The data that is continuously available includes the measurements l and their covariance 
L; pointing measurements c with covariance C; actuations uR and uSM and their error covariances UR and USM; and the 
covariance of the process noise, Ξ.  

The OSE combines this data with a prediction of the state based on the previous state estimate to carry over information 
from earlier measurements. The formally optimal way to do this is by Kalman Filter techniques: weighted least-squares, 
where the estimate weights the measurements and the prior knowledge using the covariance matrices associated with 
each term to find the most likely state estimate [8], [9]. 

The Kalman Filter (KF) is a Maximum-Likelihood linear system estimator in recursive form, which allows it to produce 
estimates that are optimal at the time each new measurement is taken, while preserving the value of all previous 
measurements. The KF is a predictor-corrector estimator, where at each measurement we make a prediction of the 
measurement, based on the information we had at the last measurement, and compare that to the actual current 
measurement. The difference of the predicted and actual measurements, termed the innovation, is multiplied by a gain 
matrix and fed back to update the estimate. The gains are weighted by the covariances of the measurement and prior-
estimate errors, so as to achieve an optimal blending of prior and current information. 

The prediction is made by taking the estimate computed at the preceding time step and simply projecting it forward in 
time using Eq. 2. We know the value of the control we commanded, so that goes into the prediction as well. The 
predicted measurement is then calculated by projecting the predicted state to the WF space using Eq. 3. Denoting the 
predicted state at time i with an over-bar as , and the estimated state with a hat, as , the predicted state is: 

 xi+1 = x̂i +
∂x
∂u

ui  (14) 

The predicted measurement is thus: 

 
l i =

∂l
∂x

x i
  (15) 

The new state estimate is simply the prediction plus the innovation weighted by a gain matrix Ki: 

 x̂i = xi + Ki li − li( ) (16) 

The gain balances the contribution of the innovation to the current estimate as the ratio of the error in the predicted state, 
as captured in the predicted-state covariance Pi, to the error in the measurement projected back to the state space via the 
transpose of the measurement matrix. We treat the actuator commands as known signals with a measurement error equal 
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to the actuation noise projected to the WF space. The error in the measurement is the covariance matrix Ri, which 
includes the WF measurement error and the actuation error . The gain is: 

 Ki = Pi
∂l
∂x

⎛
⎝⎜

⎞
⎠⎟

T

Ri
−1  (17) 

Note that the gain matrix Kli changes with every time step, which can impose a large computational burden on the OSE.  
In practice, however, K will quickly approach a nearly static steady state, so that it is possible to precompute a set of Ki 
matrices for the various different control conditions, and use them while those conditions obtain. The factors that cause 
Ki to vary include variations in the noise covariances L and C. 

The measurement error covariance, which captures the uncertainty in both the actuation and the measurement, is: 

 Ri =
∂l
∂x

∂x
∂u

Ui
∂l
∂x

∂x
∂u

⎛
⎝⎜

⎞
⎠⎟

T

+ Li  (18) 

The error in the estimate is captured by its covariance Pi, which combines the measurement and predicted-state error 
covariances Ri and Mi in the state space, as: 

 

 

Pi =
∂l
∂x

⎛
⎝⎜

⎞
⎠⎟

T

Ri
∂l
∂x

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

= cov( %xi )  (19) 

The covariance of the predicted state is computed based on the covariances of the error in the previous estimate, 
projected forward to the current time: 

 Mi+1 = Pi +
∂x
∂u

Ui
∂x
∂u

⎛
⎝⎜

⎞
⎠⎟

T

+ Ξi  (20) 

Implementation of the Kalman update (Eq. 16), after substitutions,  typically takes the form: 

 x̂i = I − Ki
∂ l
∂ x

⎛
⎝⎜

⎞
⎠⎟

x̂i −1 + I − Ki
∂ l
∂ x

⎛
⎝⎜

⎞
⎠⎟

∂ x
∂u

ui −1 + Kili
 (21)

 

For gaussian normal random processes, the KF estimator of Eqs. 16 or 21 produces optimal estimates, in the sense that 
they make the best possible use of the available information, producing estimates with minimal error. In fact, the KF 
defines the Cramer-Rao bound for such processes [8]. In practical problems the KF assumptions are not always precisely 
met. The statistics of the processes may not be normal or stationary, the plant may not be truly linear. Many extensions 
to the KF have been developed to deal with specific situations of this type. However, for small deviations from the 
assumptions underlying the KF, the KF provides an excellent, though not precisely optimal, tool. 

Equations 14-21 define the KF updates provided by the optical edge sensors, which occur at every cycle of the OSE. 
Other measurements, namely the pointing measurements c and the WF measurements w are incorporated in the same 
way, but at different times: the pointing measurements will be made every 10-1,000 cycles of the OSE; the WF 
measurements perhaps once a week. When such measurements are available, they are used to update the state x in 
exactly the same way. For example, when a pointing measurement is available, the updated state estimate is: 

  x̂i = xi + K ci ci − ci( ) (22) 

The gain and updated state estimate error covariance are: 

 
Kci = Pci

∂c
∂x

⎛
⎝⎜

⎞
⎠⎟

T

Cci
−1

 (23) 
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Pci =
∂c
∂x

⎛
⎝⎜

⎞
⎠⎟

T

Rci
∂c
∂x

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

= cov(%xi )
 (24) 

Similar results obtain for WF updates through measurements of w. 

To illustrate the effect of the gain matrix K in balancing prior estimates versus current measurements, it is useful to 
consider 2 extreme cases. The first case occurs when the error in the prior estimate is very small, and very much smaller 
than the measurement noise, so that Pi approaches 0. Then Ki approaches 0, and the estimate is simply the prediction: 

 x̂i → xi  (25) 

The other extreme case occurs when the combined measurement noise is very much less than the error in the prior 
estimate. The gain (Eq. 17) can be rewritten using the inversion lemma as: 

 Ki = Pi
∂l
∂x

⎛
⎝⎜

⎞
⎠⎟

T

Ri +
∂l
∂x

Pi
∂l
∂x

⎛
⎝⎜

⎞
⎠⎟

T⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

 (26) 

Now when Ri approaches 0, 

 Ki →
∂l
∂x

⎛
⎝⎜

⎞
⎠⎟

T ∂l
∂x

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1
∂l
∂x

⎛
⎝⎜

⎞
⎠⎟

T

 (27) 

which is the familiar pseudo-inverse solution of the measurement equation (Eq. 6).  

The best performance for any real case, where prior knowledge error and measurement noise are in more nearly the 
same, is obtained when the covariances X0, Ξ, L, and C accurately represent the real errore, as they determine the balance 
between measurement and prior knowledge for the OSE. If the measurement noise covariance reflects an assumed small 
measurement error, but the actual measurement error is large, for instance, the Ki matrix will couple too much of the 
measurement error into the state estimate, and performance of the OSE will be degraded – see example in Figure 5.  

6. WAVEFRONT CONTROLLER 
The best way to control the WFE is to directly measure w and use those measurements to compute new control values. 
The cost function for this form of control is: 

 min
u

J = wT w + cuu
T u

 (28)
 

There are 2 terms here, balanced by a scalar coefficient cu. The first term is the square of the WF; the second is the 
square of the control effort between the ith and the i-1th iteration. The coefficient can be tuned to balance the control 
effort against the WFE, a useful knob to turn in modulating the control response. The control law that satisfies this cost 
function is: 

 ui = − cuI +
∂w
∂x

∂x
∂u

⎛
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T
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 (29)

 

Continuous direct measurement of w is not provided under the current CCAT baseline. Instead, the state estimate 
produced by the OSE can be used to estimate w: 

 wi =
∂w
∂x

x̂i   (30) 
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8. CONCLUSION 
The CCAT “Wavefront Compensation” maintenance controller provides continuous wavefront maintenance control 
through full state feedback. It incorporates an Optical State Estimator to estimate the optical state and wavefront error 
based on optical edge sensor measurements, and then uses this estimate in a controller explicitly designed to minimize 
wavefront error. This design permits effective control, not only of errors in the directly-controlled degrees of freedom, 
but also of the optical effects of errors in uncontrolled degrees of freedom. Control performance can be tuned by 
selection of noise parameters in the state estimator gain computation, and by use of control damping terms in the control 
gain computation. Preliminary results indicate that control performance will be good, meeting CCAT requirements, for a 
representative set of errors. It remains to fully explore the range of CCAT operating conditions. Further work will refine 
and update the models of CCAT to add dynamics, to incorporate design changes, to provide a thorough performance 
assessment, and to support more detailed design trade studies. 

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with 
the National Aeronautics and Space Administration. 
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