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Abstract

The most common positron emission tomography (PET) radio-labeled probe for molecular 

diagnostics in patient care and research is the glucose analog, 2-deoxy-2-[F-18]fluoro-D-glucose 

(18F-FDG). We report on an integrated microfluidics-chip/beta particle imaging system for in vitro 18F-FDG radioassays of glycolysis with single cell resolution. We investigated the kinetic responses of single glioblastoma cancer cells to targeted inhibitors of receptor tyrosine kinase signaling. Further, we find a weak positive correlation between cell size and rate of glycolysis.

INNOVATION

Recent advances in single cell proteomics, genomics, and transcriptomics methods have 

shown promise towards uncovering fundamental biological phenomena that are unresolved 

when bulk cell populations are interrogated1,2. By contrast, single cell metabolic assays have 

remained relatively unexplored, although recent progress in both mass spectrometric3 and 

microchip methods is promising4. The rapid response of cellular metabolic responses to 

many drugs makes metabolic assays a valuable tool for rapid screening assays and 

investigating early biological responses to treatments. Such assays, if carried out at the 

single cell level, have the potential to identify metabolic outliers — i.e. individual cells 

exhibiting responses to drugs that are well above or below the population average. The 

identification of such outliers in a manner that permits further analysis at the genomic or 

transcriptomic level may offer new insights for understanding therapeutic resistance. We 

report on an integrated microfluidic chip/beta-particle imaging camera (the Betabox) that is 

a first step for enabling such questions to be explored.
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NARRATIVE

An accelerated rate of aerobic glycolysis within many tumors (the Warburg effect) provides 

the diagnostic basis for using 18F-FDG as a PET in vivo molecular imaging probe5 of the 

rate of glycolysis within tumors. 18F-FDG PET can also be used to image the metabolic 

responses of those tumors to drugs. In a similar manner, 18F-FDG can serve as a radio-

labeled probe to measure altered states of glycolysis in cancer cells in vitro, including 

alterations in glycolytic rates that are induced by therapeutic interventions. We recently 

reported on a microfluidic platform mated to a beta particle imaging camera of the 

Betabox6–8. The Betabox was used to analyze the short time frame (~hour) influence of 

targeted inhibitors on glycolysis in cell populations. We measured the glycolytic response of 

the model glioblastoma (GBM) cell line, U87EGFRvIII, to inhibition of the epidermal 

growth factor receptor (EGFR) by erlotinib6. As anticipated from PET 18F-FDG in cancer 

patients, erlotinib treatment of the U87E-GFRvIII cells reduced the rate of glycolysis, 

although, surprisingly, that reduction was uneven over the 4 hours following start of 

treatment. This uneven decrease in glycolysis was accompanied by oscillations in the levels 

of various phosphoproteins downstream of EGFR signaling.

In the present study, we report on a redesign of the Betabox that permits a similar kinetic 

study, but at the level of single cells. The modified Betabox is shown to be sufficiently 

sensitive and quantitative that the variance of glycolysis across a statistical number of single 

cells is resolved for the first time. The assay is non-destructive to the cells, and the results 

may be integrated with optical microscopy measurements that permit the rates of glycolysis 

to be compared against cell size.

The Betabox is composed of two chips; a position-sensitive silicon avalanche photodiode 

detector to image and measure beta-particle emission from probes radio-labeled with 

positron emitting isotopes, 14C, 18F, etc., and a polydimethylsiloxane (PDMS) microfluidic 

chip for capturing cells in culture media. The microfluidic chip is placed on the Si camera. 

The layout of the Betabox with representative examples of microfluidic chip designs 

containing cell traps is illustrated in Fig. 1. The Si camera can image and measure beta 

particle emission simultaneously from each of the cell traps. The Si camera of the Betabox 

has been previously validated and described elsewhere7,8.

The microfluidic chip is a 2-layer device fabricated with standard photolithography and 

rapid prototyping methods (see Supplementary Information)9. The chips used for this 

study have either 4 or 5 cell capture microchambers in each of 5 or 6 separate channels, 

respectively. Thus, each microfluidic chip has either 20 or 30 chambers as an array format of 

4 by 5 or 5 by 6. All the chambers can be used for a single test condition by sharing a 

common inlet (Fig. 1b). A modified design with separate inlets and outlets for each channel 

permits 5 or 6 independent assays per chip, such as those required to perform a kinetic study 

(Supplementary Fig. 1d in the Supplementary Information). Several features in the chip 

design promote high signal sensitivity and single cell spatial resolution. The first feature is a 

thin bottom membrane of the chip that separates the cells from the camera, and is designed 

to minimize signal attenuation of the beta particles emitted by radio-labeled probe in the 

microfluidic chip. We tested several membrane thicknesses by utilizing various spin coating 
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speeds during the PDMS bottom layer fabrication step (Supplementary Fig. 2). A 13 μm-

thick membrane was found to offer an optimized combination of signal sensitivity and 

mechanical strength, and yielded 20% increase in the sensitivity for detecting the beta 

particle emission from the radio-labeled probes relative to our previous design 

(Supplementary Fig. 2)6. A second design feature is the cell traps that are drawn from 

previous literature10,11. The cell traps, coupled with the transparent microfluidic chip, permit 

direct observation and recording of which traps contain single cells. The optical image can 

be registered with the Si camera image to assign rates of glycolysis to the individual cells. A 

third feature is the inlet filters, that are designed to prevent particles and clumped cells from 

clogging the active areas of the microfluidic chip. Design details are shown in 

Supplementary Fig. 1.

The Betabox performance was evaluated by using phantoms that were printed using an 

inkjet on glossy photographic paper. The printed pattern replicated the microfluidic chip 

design, with each location containing 18F-FDG (Fig. 1b,2a)7,12. The Si camera recording of 

beta particle emission from each location of the phantom showed a 5% of coefficient of 

variation (CV) (Supplementary Table 2). This variation is likely attributable to small 

variations in the PDMS membrane thickness, but, whatever the source is, the low CV value 

indicates that the intrinsic error of the Betabox is low. A related, previously reported 

evaluation that was designed to account for the inkjet printer error revealed a CV of below 

2%7. A time course measurement of the 18F decay curve from the phantom was also 

recorded over a 12-hour period at 15-minute intervals (Fig. 2b). The measured time-

dependence of the activities follows the known 18F half-life of 109.8 minutes. This result 

provides calibration data for combining results from multiple independent Betabox 

measurements, thus significantly increasing the statistical sampling of the single cell 

measurements.

The Betabox design, with its 5 independent microchannels, each designed with a selected 

number of cell traps, permits kinetic assays of glycolysis under drug treatments at the single 

cell level (Supplementary Fig. 1d). As a demonstration, we measured the alteration in 

glycolysis of a patient-derived, EGFR over-expressing glioblastoma neurosphere tumor 

model (GBM39) to EGFR inhibition with erlotinib13. We determined glycolysis at 1, 4, 12, 

and 24 hours following start of treatment versus the untreated control (Fig. 3a–d). To 

validate the single cell platform, 2 experimental assays were compared. The first was a 

Betabox design with 5 independent channels, each containing 4 chambers with 40-cell traps 

(Supplementary Fig. 1d). The ~40–50% reduction in glycolysis following 24 hours 

erlotinib treatment (Fig. 3a,b) is in reasonable agreement with both in vivo measurements 

(using 18F-FDG PET) of a GBM39 mouse xenograft tumor model4. The Betabox platform, 

applied to cell populations, has also been previously validated against bulk in vitro 

radioassays using standard methods6. These results indicate that the 40-cell trap design (Fig. 
1c) yields a reliable population-based analysis.

The second assay was with a Betabox designed for single cell resolution: 5 microchannels, 

each containing 4 chambers with a single cell trap (Fig. 1c,bottom). GBM39 cells have been 

shown previously to exhibit decreased glycolysis with 18F-FDG upon erlotinib treatment13. 

The 40-trap device captured a slightly increased signal with 1-hour treatment, followed by a 

Shin et al. Page 3

Technology (Singap World Sci). Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significant decrease at 12 and 24 hours (Fig. 3b). Averaged signal intensities of single cells 

showed a similar response, although the single cell measurements provided additional 

information that demonstrated the heterogeneity of glycolytic alterations within individual 

cells (Fig. 3d). For a more in-depth analysis of the heterogeneity, we chose two conditions 

(control vs. 24 hours erlotinib treatment) and tested them with a set of five microfluidic 

chips per condition. These independent measurements were corrected for the decay of 18F 

activity based on the calibration data and then, for each separate condition, combined. Out of 

100 cell traps, 43 and 46 traps captured single cells for the control and the drug-treated 

condition, respectively. Erlotinib treatment decreased glycolysis by approximately 40%, 

with a standard deviation that was decreased by ~55%, relative to control. This measured 

variance in glycolysis of GBM39 cells is an important aspect of the Betabox technology as 

the metabolic outliers may have value for understanding therapeutic resistance14.

The transparency of the PDMS microfluidic chip, coupled with knowledge of the cell-trap 

locations, permits simultaneous measurements of cell morphology and size. GBM39 cells, 

by their nature, are characterized by a broad distribution of cell sizes. In these Betabox 

studies, it is straightforward to determine whether the heterogeneity in cell size is associated 

with a corresponding heterogeneity in glycolysis. We investigated this relationship for 58 

single cells. Images of cells for the two extreme cases are shown in Fig. 4a. Even though the 

two extreme cases point to a correlation between cell size and glycolysis, only a weak 

positive correlation (Spearman correlation of 0.36 with p-value of 0.006) was detected when 

the whole population was analyzed (Fig. 4b). Using a single cell barcode chip (SCBC) 

platform, we recently reported on a combined analysis of metabolites and phosphoprotein 

signaling pathways from statistical numbers of single cells separated from a GBM39 tumor 

model. In that study, we found two metabolic phenotypes dominate the measured cellular 

heterogeneity: 80% of the cells exhibit high glucose uptake and low cAMP and cGMP, 

while 20% of the cells exhibit high cAMP and cGMP, but low glucose uptake4. Unlike the 

betabox, the SCBC analysis is destructive to the cells, and so the gene regulatory networks 

that underlie this metabolic heterogeneity could not be identified. However, the single cell 

Betabox platform should permit the metabolic outliers to be further analyzed via exome or 

transcriptomic analysis. This is a major power of the Betabox platform.

We have demonstrated a Betabox design that has sufficient sensitivity and spatial resolution 

to provide images and robust/quantitative measurements of glycolysis with 18F-FDG in 

single cells. We applied this technology for quantitative assays of glycolysis in single GBM 

cells over a time period of a few hours following erlotinib treatment. The variance in 

glycolysis across a statistical number of single cells was resolved. For both control and drug 

treated cells, the variation in glycolysis across single cells was broad, with standard 

deviation values of approximately 92% and 66% of the average, respectively. Furthermore, 

this variation exhibited only a weak correlation with the broad distribution of cell sizes that 

is characteristic of the GBM39 cells. The Betabox assay is non-destructive to the cells, and 

so further molecular analysis of the radioassayed cells should permit deeper insights into this 

heterogeneity15. In addition, there is a wide range of available PET probes for various 

metabolic, signal transduction, synthetic processes associated with disease states16. The 

Betabox can thus serve as a valuable tool for quantitating the heterogeneity of various 
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biological functions in single cells and for helping explore the implications of that 

heterogeneity in disease and disease treatments.

METHODS

Betabox assay platform

The Betabox assay platform consists of a silicon-based β-particle imaging camera (Betabox 

camera) and a polydimethylsiloxane (PDMS)-based microfluidic chip (Betabox device). The 

Betabox camera was validated and operated as previously described6–8. The design in this 

paper is developed based on the general considerations of previous work6. The current 

version of the Betabox device, however, has improved the measurement sensitivity about 

20% by implementing a thinner bottom PDMS film (13 μm, instead of 50 μm used in 

previous report) between position-sensitive avalanche photodiode (PSAPD, Radiation 

Monitoring Devices) and the cells. This improvement in measurement sensitivity enables 

single cell-based metabolic measurements. To make the fabrication process simpler, all the 

features including the dust filter and cell traps are moved to the top layer.

The Betabox microchip device has 3 key features: 1) a cell trap array, 2) inlet filters, and 3) 

a perfusion channel (Fig. 1 and Supplementary Fig. 1). Different designs permit different 

numbers of cell traps (1-, 7-, or 40-cell traps) depending on the purpose of the study. Each 

individual cell trap consists of 2 micro hurdles with 5 μm gap. The shape of the cell trap was 

optimized to minimize the chance of trapping more than one cell per chamber 

(Supplementary Fig. 1c). We utilized two different configurations of solution inlets. By 

sharing a single inlet for all the channels, we can test a single condition per device (Fig. 1b). 

Testing multiple conditions, such as in a kinetic study, is enabled by placing independent 

inlets/outlets for each channel (Supplementary Fig. 1d). The inlet filters are essential for 

preventing dust, cell debris or clumped cells from blocking the active region of cell traps. 

Detailed shape, layout and dimensions of the filter region are shown in Supplementary Fig. 
1b. Two sets of inlets and filters are placed upstream to minimize the failure rate of the 

device due to unexpected clogging.

Analysis on single cells can be achieved by measuring multiple devices for a single 

condition. As described in the main text (Fig. 2), the Betabox signals can be adjusted to a 

single time point (usually the first or the last time point) based on calibrations against the 

decay of 18F-FDG radioactivity. Cell loading efficiency for cell traps is around 90%. 

However, a single trap can capture two or more cells and trapped single cells can be lost 

during the handling. The final loading efficiency for single cells is 50–80%. Currently up to 

20 Betabox devices can be measured in a single day and the yield of single cell 

measurement will be improved through the further optimization of the test protocol.

Betabox device fabrication

The Betabox device consists of 2 PDMS layers fabricated by standard soft lithography 

methods. The top layer is ~5 mm thick, and contains all the described key features of the 

Betabox device in microchannels with ~30 μm height. The top layer is molded with a master 

fabricated by standard photolithography with SU-8 2025 photoresist (Microchem) on a 
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silicon wafer. The master is treated with chlorotrimethylsilane (TMCS, Sigma-aldrich) for 

10 minutes before each use; 10 : 1 mixture (w/w) of PDMS prepolymer and curing agent 

(Sylgard 184®1, Corning) was poured onto the master, degassed in a vacuum chamber, and 

baked at 80 °C for 2 hours. The cured PDMS slab was peeled off from the master, and holes 

for inlets and outlets were punched. The bottom layer used in this study is ~13 μm thick, and 

it does not contain any features. 25 mm × 75 mm sized, 1 mm thick, pre-cleaned glass slides 

(Gold Seal® Microslides) were cleaned with piranha solution (3 sulfuric acid : 1 hydrogen 

peroxide, v/v) at 120 °C for 20 minutes followed by thorough rinsing with distilled water 

and drying at 80 °C for 20 minutes. Dried glass slides were treated with TMCS for 30 

minutes. The degassed 10 : 1 mixture (w/w) of PDMS prepolymer and curing agent was 

poured onto the treated glass slide and was spun at 4000 rpm for 1 minute followed by 

baking at 80 °C for 1 hour. The top and bottom PDMS layers were irreversibly bonded by 

plasma treatment (PDC-32G, Harrick Plasma) for 1 minute.

System evaluation with radioactive phantoms

Radioactive phantoms were prepared based on the Betabox device layout by printing a 

mixture of ink and 18F-FDG solution on Epson Ultra Premium photo paper GLOSSY with 

an inkjet printer (Canon iP4700 printer). The ink cartridge was emptied prior to printing the 

radioactive phantoms; 1 mL of ink mixture containing 3.7 × 107 Bq/mL 18F-FDG was 

prepared and injected into the ink cartridge. The level of radioactivity was adjusted with a 

radiometer (ATOMLABTM 500 BIO-DEX). β-particles, generated from the disintegration of 

printed 18F-FDG pattern, were captured by the Betabox with 5 minutes of acquisition time. 

The results were used to check the measurement error of the Betabox by location and to 

calibrate the decay of 18F-FDG radioactivity (Fig. 2 and Supplementary Table 2).

Cell culture and drug treatment

GBM39 primary neurospheres were cultured in Dulbecco’s Modified Eagle Media Nutrient 

Mix F-12 (DMEM/F12, Invitrogen) supplemented with B27 (Invitrogen), Glutamax 

(Invitrogen), Heparin (1 μg/mL), Epidermal Growth Factor (EGF, 20 ng/mL, Sigma), 

Fibroblast Growth Factor (FGF, 20 ng/mL, Sigma) and 100 U/mL of penicillin and 

streptomycin (Gibco) in a humidified 5% CO2 (v/v) incubator, at 37 °C. For the drug 

treatment, 1 million cells were suspended in 10 mL of media containing 1 μM erlotinib 

(ChemieTek). The cells were then treated for designated periods of time and processed for 

tests.

The Betabox assay procedures
18F-FDG treatment—Single cell suspension was prepared from the GBM39 neurospheres 

or the Erlotinib treated, pre-dissociated cells; 1 × 106 cells/mL were treated with 3.7 × 107 

Bq/mL 18F-FDG in the glucose free medium (Supplementary Table 1) in a 5% CO2 (v/v) 

humidified incubator at 37 °C for 1 hour. After treatment, cells were washed with the full 

medium three times to remove residual unbound 18F-FDG.

Betabox measurement—The device was first filled with glucose free medium before the 

assay was executed; 5–10 μL of 18F-FDG treated GBM39 cells, prepared at a concentration 

of 2 × 106 cells/mL in the glucose free medium, were loaded by applying negative pressure 
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with a 1 mL syringe from the outlet. After cell trapping, about 80 μL of glucose free media 

was flown to remove untrapped cells. For the measurement, the Betabox device was aligned 

with the Betabox camera and image was acquired for 5 minutes. A custom-coded Matlab 

(Natick, MA) program was used to control the Betabox, collect and analyze the data. After 

radioactivity measurement, optical images of the captured cells were recorded with a 

microscope (Nikon Eclipse Ti-S) for cell count and size measurement.

Data analysis—Depending on the Betabox device design, 20 or 30 rectangular regions of 

interest (ROIs) were set on the radio-image, and the total measured β-particle count in each 

ROI was quantified by the custom-coded Matlab program. The average of the total β-particle 

count from all the empty chambers was used as the background level. This background level 

was subtracted from the total β-particle count for each chamber with cells. Counts per 

minute (CPM) refers to the actual total β-particle counts from a chamber divided by the 

acquisition time (5 minutes for this study). CPM/cell values were calculated, dividing CPM 

by the number of captured cells in a chamber. CPM/cell data, from multiple Betabox assays 

in a day, were adjusted considering the time interval between the assays based on the 

calibration data. Since the detected decay of the 18F-FDG radioactivity exactly follows the 

theoretical prediction, all the data obtained at different time points could be adjusted to the 

ones at a single time point for direct comparison. Cell size was measured from the optical 

image with ImageJ (NIH). Equivalent diameter of each cell was calculated based on the 2D 

area of captured cells. Cell volume calculated with the equivalent diameter (with the 

assumption that a cell has a spherical shape) was used for the correlation analysis.

Statistical analysis

The levels of glycolysis were measured as CPM/cell and mean values plus and minus the 

standard deviation were also presented along with the single cell measurement values. To 

compare control and erlotinib-treated groups with various treatment times unpaired, two-

tailed student t-tests were performed to determine whether the conditions produced 

significantly different results. p values less than or equal to 0.05 were considered statistically 

significant. For the correlation analysis between cells size and glycolysis level, Spearman 

correlation value was calculated between cell volume and CPM and the correlation value 

was 0.36 (p value = 0.006).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Functional layout of the Betabox. (a) The silicon chip camera and electronics of the Betabox 

showing the active imaging area. (b) A schematic drawing of the PDMS microfluidic chip, 

illustrating the region that is viewed by the active area of the Si camera. (c) Optical image of 

a single cell trap with a captured cell (bottom) and examples of cell trap array designs in 

which the numbers of trapped single cells can be varied (top). Scale bars: 100 μm.
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Figure 2. 
Betabox evaluation with a phantom that had 20 spots printed with 18F-FDG. (a) Image of 

the phantom layout used for evaluating the Betabox performance (top) and the actual 

acquired image of the printed pattern with the Betabox (bottom). The beta particle emission 

is recorded from the each of the 20 locations for 5 minutes by the Si camera to form the 

image. (b) 18F beta particle emission was recorded over a 12-hour period to determine if the 

dynamic range of the Betabox would be sufficient to yield the correct half-life of 18F. 

Activity of each time point is the averaged total counts of all 20 locations. The 18F decay 

curve measured with the Betabox (blue dots) accurately matches the known half-life of 18F 

of 109.8 min (red line).
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Figure 3. 
Betabox measurements of GBM39 cells with erlotinib treatment. (a) Image of the 18F 

activity from 30–60 GBM39 cells/chamber treated with erlotinib for various treatment times 

(0, 1, 4, 12, and 24 hours). Rectangular regions of interest (ROI) are shown as white boxes 

from which the total signal activities from the corresponding chambers were collected. For 

each ROI, the number of trapped cells is given in yellow font. (b) The average measured 18F 

activity per cell from (a). (c) Image of the 18F activity from GBM39 single cells treated with 

erlotinib for various treatment times (0, 1, 4, 12, and 24 hours). (d) Measured 18F activity 

per cell from (c). (e) 18F activity from GBM39 single cells with/without erlotinib treatment 

measured with five sets of microfluidic chips per condition. Statistical analysis was 

performed using the two-tailed t-test. * p < 0.05; ** p < 0.005; *** p < 0.0005; **** p < 

0.0001 compared with the control group. CPM: count per minute.
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Figure 4. 
Cell size vs. glycolysis level of GBM39 cells. (a) Glycolysis as assayed with 18F-FDG of 

single GBM39 cells. Representative images of actual cells in two extreme cases are shown 

as well. (b) Scatter plot of glycolysis vs. cell size shows a weak correlation between the two 

parameters for 58 single cells. Scale bars: 20 μm.
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