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ABSTRACT

We study the propagating and shaping characteristics of the novel one-dimensional Cartesian Parabolic-Gaussian
beams. The transverse profile is described by the parabolic cylinder functions and are apodized by a Gaussian
envelope. Their physical properties are studied in detail by finding the 2n-order intensity moments of the beam.
Propagation through complex ABCD optical systems, normalization factor, beam width, the quality M2 factor
and its kurtosis parameter are derived. We discuss its behavior for different beam parameters and the relation
between them. The Cartesian Parabolic-Gaussian beams carry finite power and form a biorthogonal set of
solutions of the paraxial wave equation in Cartesian coordinates.

Keywords: Paraxial beams, Beam propagation, Intensity moments, Appell, Hypergeometric functions, Beam
quality factor, M2 factor, Kurtosis parameter

1. INTRODUCTION

Solutions of the paraxial wave equation (PWE) describe electromagnetic fields propagating in uniform and
isotropic media. Since the behavior of laser propagation, resonators, waveguides, etc., can be described with the
PWE, the study of different solutions of the PWE in different system of coordinates is a topic of interest because
of the importance they have in these applications.

The purpose of this work is to fully analyze one novel and special family of solutions of the PWE in Cartesian
coordinates. This family of solutions is a special case of the Cartesian beams and we have named such solutions
the Cartesian Parabolic-Gaussian beams because its transverse intensity is expressed in terms of the parabolic
cylinder functions and is modulated by a Gaussian envelope. The Cartesian Parabolic-Gaussian beams carry
finite power and form a biorthogonal set of solutions of the PWE.

The physical properties are analyzed using the formalism presented in a recent paper by Bandres et. al.1

In that paper, the explicit expression for the higher-order moments and overlap of Cartesian beams is derived.
Relevant beam parameters and invariants can be calculated from the moments of the beam, such as the beam
power, normalization, the beam width, radius of curvature, the Kurtosis parameter and the beam quality factor.2

The kurtosis is a fourth-order parameter and describes the sharpness of flatness of the beam intensity distribution.
The beam quality factor or M2 is a second-order propagation invariant that has been accepted as an useful
quantity for comparing and classifying the behavior of the beam with respect to an ideal Gaussian beam. The
invariants such as the beam power and M2 factor are important because they reflect physical properties that are
inherent to the beam.

The physical realization of these beams can be performed by using experimental methods as the setup used
by Durnin for generating Bessel beams3,4 or Fourier computer-generated holograms as used in the generation of
Helmholtz-Gauss beams.5

We start our analysis giving a brief review of the Cartesian beams in section 2 to establish necessary formulas
and notation. The expression for the overlap of the Cartesian beams and consequently the higher-order moments
is revised in section 3. The shaping characteristics, propagation and properties of the Cartesian Parabolic-
Gaussian beams are discussed in section 4.

Laser Beam Shaping XI, edited by Andrew Forbes, Todd E. Lizotte, Proc. of SPIE Vol. 7789, 
77890Q · © 2010 SPIE · CCC code: 0277-786X/10/$18 · doi: 10.1117/12.859283

Proc. of SPIE Vol. 7789  77890Q-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/28/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



2. CARTESIAN BEAMS

Several closed-form solutions of the PWE in Cartesian coordinates have been studied over the years. The
Cartesian beams were introduced as a new and very general beam solution. The complex amplitude of the
Cartesian beams is described by the parabolic cylinder functions or the confluent hypergeometric functions,
and the beams are characterized by three complex parameters. For special values of the beam parameters, the
Cartesian beams reduce to many of the known solutions such as the standard, elegant, and generalized Hermite-
Gaussian beams,6 the cosine-Gaussian and cosh-Gaussian beams,7 the Lorentz beams,8 the Airy beams9 and the
fractional-order elegant Hermite-Gaussian beams.10

The Cartesian beams are described by the confluent hypergeometric function 1F1(a, b;x) as

tUβ(x; p, q) = tζβ

(
Px2

)(t−1/2)/2
1F1

(
β, t;Px2

)
exp

(
ikx2

2q

)
, (1)

which is characterized by three parameters (p, q, β) that are complex in the most general case and the parity
factor t which takes the value

t =
{

1/2, for even (e) beams,
3/2, for odd (o) beams, (2)

k is the wavenumber and

P = P (p, q) ≡ ik

2

(
1
p
− 1

q

)
, (3)

where the complex parameters (p, q) propagate from input plane z0 to the output plane z through an arbitrary
real or complex ABCD optical system by the following transformation laws:

p =
Ap0 + B

Cp0 + D
, q =

Aq0 + B

Cq0 + D
. (4)

The scaling factor ζt comes from the propagation of the beam and becomes

tζβ =
(A + B/q0)

β−(t+1/2)/2

(A + B/p0)
β−(t−1/2)/2

. (5)

The fulfillment of the conditions Im(1/p0) > 0 and Im(1/q0) > 0 ensures the finiteness of the beam power across
the whole transverse plane. The equation (1) in addition with the equations (3)-(5) characterize the cartesian
beams through any paraxial ABCD system. The free-space propagation can be obtained by setting the values
[A,B;C,D] = [1, z; 0, 1].

We remark that the Cartesian beams presented in Eq. (1) are a general solution of the one-dimensional PWE
(∂2

x + 2ik∂z)U(x, z) = 0, and if we want to construct a two-dimensional beam, it is obtained with the product of
solutions in the x and y directions as U(x, y; z) = tx

Uβx
(x; px, qx)ty

Uβy
(y; py, qy).

The Cartesian beams reduce to families of optical beams with cartesian symmetry for special values of β, p0, q0.
The possibility of choosing arbitrary values for the beam parameters have led to define novel and meaningful
beam structures.1,11

3. OVERLAP EXPRESSION FOR CARTESIAN BEAMS

The complete analysis of the overlap and higher-order intensity moments of Cartesian beams was performed in
a recent paper by Bandres et. al.1 In this section we present that formalism which will be used to calculate
the shaping characteristics of the Cartesian Parabolic-Gaussian beams. The 2ν-overlap of two Cartesian beams
U1(x) = t1Uβ1(x; q1, p1) and U2(x) = t2Uβ2(x; q2, p2) with arbitrary parameters is given by the integral

σ
(2ν)
1,2 =

∫ ∞

−∞
x2νU1(x)U∗

2 (x)dx. (6)
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We are going to restrict to the case where t1 = t2 = t, U1 = U2 = U and 2ν = 2n = 0, 2, 4, . . ., since we are
interested in the higher-order intensity moments. With the conditions proposed, the integral reduces to

σ(2n) =
∫ ∞

−∞
x2n|U |2(x)dx. (7)

The evaluation of the expression (7) is given in the Eqs. (14)-(17) of Bandres et. al.,1 it is:

σ(2n) = b
πΓ(n + t)|ζt|2|P |t−1

Sn+t
F2

(
n + t;β, β∗; t, t;

P

S
,
P ∗

S

)
, (8)

where
b ≡ 1

2π
[1 + (−1)2n]|P0|1/2, (9)

and S ≡ kIm(1/q) is a positive real quantity. Now, it is straightforward to calculate the moments of the Cartesian
beam. The beam power corresponds to the zeroth-order intensity moment. It is calculated by setting 2n = 0
in Eq. (8). The identity (9.182.3) of Gradshteyn12 reduces σ(0) in terms of the Gauss hypergeometric function
F = 2F1(a, b; c;x) as follows:

σ(0) =
∣
∣
∣
∣

Γ(t)a

c2βb
1/2−t

∣
∣
∣
∣F (β, β∗; t;w), (10)

where the quantities

a ≡
∣
∣
∣
∣

1
(A + B/q0)

√
S

∣
∣
∣
∣ =

1√
S0

, (11a)

b ≡
∣
∣
∣
∣
(A + B/p0)
A + B/q0

P

S

∣
∣
∣
∣ =

∣
∣
∣
∣
P0

S0

∣
∣
∣
∣ , (11b)

c ≡
(

1 − P

S

)
A + B/p0

A + B/q0
= 1 − P0

S0
, (11c)

w ≡
∣
∣
∣
∣

P

S − P

∣
∣
∣
∣

2

=
∣
∣
∣
∣

P0

S0 − P0

∣
∣
∣
∣

2

, (11d)

remain invariant under propagation through paraxial systems characterized by unimodular ABCD matrices
(AD − BC = 1) with real elements. The 2n-order moment of the Cartesian beams can be evaluated using the
recursion formula

σ(2n) =
(
− d

dS

)n

σ(0), n = 1, 2, 3, . . . , (12)

which is valid for even and odd parities. Using the recursive relation can be obtained the following expressions
for the second-order intensity moments of the Cartesian beams.

Beams with even parity (t = 1/2)

eσ
(2)
β = eGβeσ

(0)
β + eHβoσ

(0)
β+1, (13)

where eσ
(0)
β and oσ

(0)
β+1 are the powers of the beams eUβ and oUβ+1, respectively, and the factors eGβ and

eHβ depend on the beam parameters on the beam parameters upon

eGβ ≡ Re
[
2β

S

(
P

S − P

)
+

1
2S

]
, (14)

eHβ ≡ Re
[
8|β|2 |P |

S(S − P )

∣
∣
∣
∣
A + B/p0

A + B/q0

∣
∣
∣
∣

]
. (15)
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Beams with odd parity (t = 3/2)

oσ
2
β = oGβoσ

(0)
β + oHβeσ

(0)
β+1 + 0Eβoσ

(0)
β+1, (16)

where oσ
(0)
β , eσ

(0)
β+1 and oσ

(0)
β+1 are the powers of the beams oUβ , eUβ+1, and oUβ+1 respectively, and the

factors oGβ , oHβ and oEβ depend on the beam parameters as

oGβ ≡ Re
[

3
2S

+
2βP

S2c

(
A + B/p0

A + B/q0

)]
, (17)

oHβ ≡ Re

[

−
∣
∣
∣
∣

β

1/2 − β

∣
∣
∣
∣

2 |c2|
S − P

(w − 1)b
2

]

, (18)

oEβ ≡ Re

[

−
∣
∣
∣
∣

β

1/2 − β

∣
∣
∣
∣

2 |c2|
S − P

(1 + 4wReβ)

]

. (19)

3.1 General formulation for second-order moments

The normalized second-order moments 〈ρ̂〉, 〈τ̂〉 and 〈κ̂〉 of the Cartesian beams are

• 〈ρ̂〉 = σ(2)/σ(0) is the normalized second-order intensity moment of the beam.

• 〈τ̂〉 is related to the net momentum flowing in the transverse direction at the observation plane. The
beam waist corresponds to the condition 〈τ̂〉 = 0. Positive (negative) values of 〈τ̂〉 mean that the beam is
diverging (converging) as it propagates in the positive z direction.

• 〈κ̂〉 = σ̂(2)/σ(0) is the normalized second-order moment of the Fourier transform of the beam.

The explicit expressions for the values of〈ρ̂〉0, 〈τ̂〉0 and 〈κ̂〉0 at the input plane in terms of the parameters of the
Cartesian beams are

⎡

⎣
〈ρ̂〉0
〈τ̂〉0
〈κ̂〉0

⎤

⎦ = Re

⎧
⎨

⎩

⎡

⎣
1 1 1

1/q∗0 1/q∗0 (1/q0 + 1/p∗0)/2
|1/q0|2 1/q∗20 1/q0p

∗
0

⎤

⎦

⎡

⎣
J
K
L

⎤

⎦

⎫
⎬

⎭
, (20)

where

J ≡ t

S0
, (21)

K ≡ 2βP0

S0(S0 − P0)
, (22)

L ≡ β

t2
P0K

∗

|P0|
tσ

(0)
β+1

t−1σ
(0)
β

. (23)

The propagation laws of the normalized second-order moments 〈ρ̂〉,〈τ̂〉 and 〈κ̂〉 through an ABCD system is given
by ⎡

⎣
〈ρ̂〉
〈τ̂〉
〈κ̂〉

⎤

⎦ =

⎡

⎣
A2 2AB B2

AC AD + BC BD
C2 2CD D2

⎤

⎦

⎡

⎣
〈ρ̂〉0
〈τ̂〉0
〈κ̂〉0

⎤

⎦ . (24)

Equation (24) permits the evaluation of the propagation of the second-order moments of a Cartesian beam
through a paraxial ABCD system once their initial values are known.
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4. CARTESIAN PARABOLIC-GAUSSIAN BEAMS

The Cartesian beams offers the possibility of finding new and interesting beam structures. A novel family of
solutions is given by setting the parameters of the Cartesian beams at plane z = 0 as

p0 =
zR

h + i
, q0 = −p∗0, β =

t

2
− iα

2
, (25)

where h ∈ R and zR = kw2
0/2 is the Rayleigh distance and w0 is the waist of the Gaussian envelope. Putting

{p0, q0, β} into Eq. (1) we obtain

tΘα (x; z = 0) =
1

2t/2−1/4
exp

(
− x2

w2
0

)

tPα

(
2
√

h

w0
x

)

, (26)

where t is the parity parameter which is t = 1/2 for even beams and t = 3/2 for odd beams, α ∈ R is the
order of the parabolic cylinder function. The parabolic cylinder function is expressed in terms of the confluent
hypergeometric function 1F1(a; b;x) as12

tPα(x) = (eiπ/4x)t−1/2 exp
(
− ix2

4

)

1F1

(
t

2
− iα

2
; t;

ix2

2

)
, (27)

where is evident the influence of the parity factor t in the parabolic cylinder function. The set of solutions
given in Eq. (26) are exact solutions of the PWE in Cartesian coordinates. We have named this new family
the Cartesian Parabolic-Gaussian beams because its transverse intensity is modulated by the parabolic cylinder
function and is modulated by a Gaussian envelope. They were presented by Bandres and Gutiérrez-Vega11 in
Eq. (16) as a special case of the Cartesian beams but its shaping characteristics have not been studied until now.

The free-space propagation is obtained by setting the matrix elements of the ABCD system as [A,B;C,D] =
[1, z; 0, 1] in Eq.(4), we get

tΘα (x, z) = tζα exp
[
ik

4

(
1
p

+
1
q

)
x2

]

tPα

(√

k

(
1
p
− 1

q

)
x

)

, (28)

where {p, q} = {p0 + z, q0 + z} are the propagation parameters controlling the scale of the gaussian envelope and
the scaling factor tζα arises from the propagation of the beam and is given by

tζα = 21/4−t/2 (q/q0)iα/2−1/4

(p/p0)−iα/2+1/4
, (29)

at the initial plane tζα = 21/4−t/2. Equation (28) represents an exact closed-form solution of the one-dimensional
PWE in free space. At any given transverse z plane the Cartesian Parabolic-Gaussian beams are characterized by
two real parameters α, h and the parity factor t. Two-dimensional solutions of the PWE in Cartesian coordinates
can be constructed with the product of one-dimensional solutions, that is U(x, y) = tx

Θαx
(x)ty

Θαy
(y), where

any combination of parameters is possible. The propagation through a real ABCD optical system can be realized
by using Eq. (4).

Figure [1] shows the transverse intensity distribution at z = 0 ant at z = 2zR as well as the propagation plane
of two-dimensional Cartesian Parabolic-Gaussian beams for special values of its parameters α, h and parity t.
The Cartesian Parabolic-Gaussian beams have the property tΘα,h(x) = tΘ∗

−α,−h(x), hence we can analyze only
the first two quadrants of the (α, h) plane.

4.1 Normalization factor

The zeroth-order moment σ(0) is defined as the integral σ(0) =
∫∞
−∞ tΘα(x)tΘ∗

α(x)dx that is equivalent to the
power of the beam. In order to find the power of the Cartesian Parabolic-Gaussian beams, we can substitute
the parameters (p, q) in the equations (10) and (11). The power is conserved through any unimodular ABCD
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Figure 1. Intensity and phase patterns at plane z = 0 and plane z = 2zR and along (0 ≤ z ≤ 2zR), for even (t = 1/2) and
odd (t = 3/2) two-dimensional Cartesian Parabolic-Gaussian beams Θ(x, y) = t1Θα(x; px, qx)t2Θα(y; py, qy). We have
assumed p0x = p0y and q0x = q0y.

optical system with real elements, meaning AD − BC = 1. This property permits us to evaluate Eq. (10) with
p = p0 and q = q0 to obtain

σ(0) =
Γ(t)w0√

2

∣
∣
∣
∣

ht−1/2

(1 − ih)t−iα

∣
∣
∣
∣F
(

t

2
− iα

2
,
t

2
+

iα

2
; t;

h2

1 + h2

)
. (30)

Equation (30) is the first important result of this paper. It provides a simple expression to evaluate the beam
power in terms of the initial beam width w0, the parity factor t, the order α of the parabolic cylinder function
and the parameter h. The normalization constant is written as 1/

√
σ(0).

4.2 Beam width
The beam width is related to the second-order moment by w(z) = 2σ(2). The second-order moment σ(2) =∫∞
−∞ x2

tΘα(x)tΘ∗
α(x)dx for the Cartesian beams is expressed in Eqs. (13) and (16). We can find σ(2) of the

Cartesian Parabolic-Gaussian beams by using the corresponding parameters {p, q} and β. It is well known that
for free-space propagation, the second-order intensity moment σ(2) has a parabolic function of the distance from
the waist plane and it is related to the second-order moment at the far field σ̃(2) through the equation13

σ(2) = σ
(2)
waist +

(
σ̃(2)

k2

)
(z − zwaist)

2
, (31)

where the subindex waist means the plane of the beam waist. Using Eqs. (13) and (16) with [A,B;C,D] =
[1, z; 0, 1] and rearranging terms we get

σ(2)

σ(0)
=

w2
0h

2
u + α

h2 + 1
+

2h

k2w2
0

(u − α)z2, (32)

in which u is given by

u =
|t − iα|2

2t2
tσ

(0)
α+i

t−1σ
(0)
α

+
t

h
, (33)
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where tσ
(0)
α+i and t−1σ

(0)
α correspond to the Eq. (30) but with α → α+ i and t → t−1 respectively. If we compare

Eq. (31) with Eq. (32), we observe the value of σ
(2)
waist and σ̃(2) is given by

σ
(2)
waist =

w2
0h

2
u + α

h2 + 1
, (34)

σ̃(2) =
2h

w2
0

(u − α) , (35)

and the position of the waist is always in the plane z = 0 regardless the values of α and h.

4.3 M2 factor of Cartesian Parabolic-Gaussian beams
Several beam parameters have been defined to measure the beam quality of a laser beam. The M2 factor is a
common parameter that relates the near-field beam size and the far-field beam spread of a laser beam and have
gained such popularity that is currently used in data sheets of lasers. The M2 factor is given in terms of the
normalized second-order moments 〈ρ̂〉, 〈τ̂〉 and 〈κ̂〉 according to

M2 = k
√
〈ρ̂〉〈τ̂〉 − 〈κ̂〉2. (36)

At the plane of the waist, 〈τ̂〉 = 0, and the M2 factor reduces to

M2 = k
√
〈ρ̂〉〈τ̂〉 =

√
σ

(2)
waistσ̃

(2)

σ(0)σ̃(0)
. (37)

where σ
(2)
waist and σ̃(2) are the second-order moment of the intensity and power spectrum of the beam, given in

Eqs. (34) and (35), respectively. Because the plane of the waist for the Cartesian Parabolic-Gaussian beams is
located at z = 0, we can find the analytic expression for the M2 factor by substituting Eqs. (34) and (35) into
Eq. (37) to obtain

M2 =

√
u2 − α2

1 + h−2
, (38)

where u is given by Eq. (33). Figure [2] shows the numeric evaluation of the M2 factor as a function of α and h
for even and odd beams. In both cases we can observe that the M2 factor is an increasing function with respect
to h and α. It is symmetric at the planes h = 0 and α = 0. For even cases, the Cartesian Parabolic-Gaussian
beams reduce to the one-dimensional Gaussian beam at plane h = 0. It can be seen that regardless the value of
α, the M2 remains constant at 1/2, which agrees with the M2 factor of the Gaussian beams. For odd beams,
the minimum value 3/2 is given at plane h = 0.

4.4 Kurtosis Parameter
The kurtosis parameter describes the transverse intensity distribution of the beam. It determines the sharpness
or flatness of the beam at a given longitudinal distant z. It is defined as14

K =
σ(4)/σ(0)

(
σ(2)/σ(0)

)2 =
σ(0)σ(4)

(σ(2))2
, (39)

where σ(4) corresponds to the fourth-order intensity moment, which can be calculated by using the recursive
relation in Eq. (12), meaning σ(4) =

(− d
dS

)2
σ(0). At a given z plane, the beam profile is classified as leptokurtic

(sharper profile), mesokurtic, or platykurtic (flatter profiles) depending on K being larger, equal or less than 3,
which is the kurtosis value of the one-dimensional Gaussian beam.14 Numerical evaluation of Eq. (39) is shown
in Figure [3] for even and odd beams.

5. CONCLUSIONS
We have studied in detailed the physical properties of the novel Cartesian Parabolic-Gaussian beams. Important
propagation factors were obtained through the higher-order intensity moments of the beam. Analytical expres-
sions for the normalization factor, beam width, beam propagation factor M2 and kurtosis parameter K were
obtained and numerical calculations performed for different values of the parameters.
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Figure 2. M2 factor for even and odd Cartesian Parabolic-Gaussian beams. In both cases the M2 factor is an increasing
function of h and α, except for the case h = 0 in which M2 = 1/2 and M2 = 3/2 for even and odd cases, respectively, and
regarding the value of α. For even Cartesian Parabolic-Gaussian beams, the h = 0 case reduces to the one-dimensional
Gaussian beam, which indeed have a M2 = 1/2.
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Figure 3. Kurtosis parameter for even and odd Cartesian Parabolic-Gaussian beams. We evaluate the kurtosis parameter
K for different values of the parameter α with h = 1 and along (0 ≤ z ≤ 2zR).
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