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ABSTRACT

The Bicep2 and Keck Array experiments are designed to measure the polarization of the cosmic microwave
background (CMB) on angular scales of 2-4 degrees (ℓ = 50–100). This is the region in which the B-mode signal,
a signature prediction of cosmic inflation, is expected to peak. Bicep2 was deployed to the South Pole at the end
of 2009 and is in the middle of its third year of observing with 500 polarization-sensitive detectors at 150 GHz.
The Keck Array was deployed to the South Pole at the end of 2010, initially with three receivers—each similar
to Bicep2. An additional two receivers have been added during the 2011-12 summer. We give an overview of
the two experiments, report on substantial gains in the sensitivity of the two experiments after post-deployment
optimization, and show preliminary maps of CMB polarization from Bicep2.
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Figure 1. Keck Array telescope in February 2012, with five receivers installed in the mount originally built for DASI at
the South Pole.

1. INTRODUCTION

Over the past 15 years, the ΛCDM theory has emerged as the “standard model” of cosmology. It describes
a universe in which cold dark matter drives the formation of structure, and dark energy (or a cosmological
constant) causes accelerating expansion of space. This concordance model explains the observed universe well,
but leaves several important questions unanswered, such as the nature of the dark energy and dark matter. It
accommodates, but does not predict, the observed flatness, homogeneity, and isotropy of the universe. These
three properties can be explained by the addition to the model of cosmic inflation. If the universe went through
an inflationary phase in the first instant after the Big Bang, this rapid, exponential expansion from a single
microscopic volume would have smoothed out spatial curvature. The observed homogeneity and isotropy arise
from the fact that the entire observable universe would have been in causal contact before inflation. Quantum
fluctuations in the inflaton field give rise to scale-invariant density fluctuations that would seed structure for-
mation and the primary temperature anisotropy of the cosmic microwave background (CMB). Current CMB
observations are in good agreement with inflationary predictions.1,2

In addition to these scalar density perturbations, inflation also generates primordial gravitational waves, i.e.
tensor metric perturbations. Both types of perturbation give rise to temperature variations at the time when
CMB photons last scattered, but with different spatial structure; they accordingly lead to different signatures
in the CMB. They can be distinguished by decomposing the patterns of CMB polarization into two classes: the
E-modes, which have even parity and arise from scalar and tensor perturbations; and the B-modes, which have
odd parity and arise from tensor perturbations only. The detection of B-modes would confirm a key prediction
of inflation, and a measurement of (or upper limit on) the amplitude of B-modes would provide information
about the energy scale of inflation, which determines the tensor-to-scalar ratio r.3

The DASI experiment measured degree-scale E-modes in 2002, the first detection of CMB polarization.4 The
amplitude of B-modes is expected to be lower, and their detection remains an open challenge. The Bicep2, and
Keck Array experiments have been designed to meet this challenge. The two experiments adopt elements from
the successful Bicep telescope, which observed from 2006–08. Bicep has set the most sensitive limits on B-mode
polarization of the CMB in the range ℓ = 21− 335, and constrained r < 0.72 at 95% confidence level.5,6 Bicep2
and the Keck Array use a new detector technology, the Caltech-JPL antenna-coupled TES arrays.7,8 These
detectors are read out using NIST SQUID amplifiers with the University of British Columbia MCE control and
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Figure 2. (a) Bicep2 focal plane with four detector tiles, at the South Pole before installation in November 2009. (b)
Measured far-field beam maps for a single Keck Array receiver (rx1). This image was made from data taken at the South
Pole in February 2012 using a thermal source raised on a mast. Hollow squares represent the location of dark detectors
for which the antenna networks were deliberately left disconnected from the TES islands.

readout electronics.9 The monolithic fabrication and multiplexed readout allow Bicep2 and the Keck Array to
field larger numbers of detectors, for improved sensitivity over their predecessors. Bicep2 was deployed to the
South Pole in late 200910–12 and has observed through 2010 and 2011, with a third year of observations now in
progress.

With its compact size and low cost, the Bicep-style refracting telescope can be scaled up by building an array
of multiple receivers. This is the idea behind the Keck Array which uses the same detector technology as Bicep2
and a similar telescope design, with a few additional improvements.13 Instead of consumable liquid helium, the
Keck Array uses Cryomech pulse-tube coolers to provide cooling at 4 K and above. It uses the larger mount
originally built for the DASI experiment and attached to the Martin A. Pomerantz Observatory (MAPO). This
mount can accommodate up to five Bicep2-style receivers. The Keck Array was deployed and commissioned in
December 2010–January 2011, with three cryostats housing three full focal planes of detectors. It observed with
three receivers through 2011, and was upgraded to five receivers for the 2012 season (Fig. 1).

Both experiments observe the CMB in the same primary field as Bicep1, dubbed the ”Southern Hole,” with
secondary observations of a bright region of the Galactic plane.

In this paper we present an overview of the Bicep2 and Keck Array experimental design; a number of
improvements to the sensitivity of each experiment that have been made since deployment; and a look at E- and
B-mode maps from two seasons of Bicep2 observation. Several companion papers in this volume present the
sensitivity of the Keck Array (Kernasovskiy et al.14), studies of beam shape and differential pointing (Vieregg et
al.15), and further developments in the detector fabrication for the Keck Array and other experiments (O’Brient
et al.16).

2. EXPERIMENTAL OVERVIEW

Bicep2 is a small-aperture refracting telescope that observes the CMB at 150 GHz from the South Pole. In
many respects it follows the pattern of Bicep, which was designed to achieve high sensitivity with very low
systematics on degree angular scales. The telescope contains relatively simple optics: two, on-axis lenses made
from high-density polyethylene, with an aperture of 26.4 cm and beams of 0.5◦ FHWM. This arrangement allows
cooling of the optical components to 4 K for stability and low loading; efficient transportation and loading; and
far-field (> 50 m) beam characterization using microwave sources raised on masts. The Keck Array expands this
design in a modular way, by placing several Bicep2-style telescopes in a single mount. Each telescope observes in
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Figure 3. Keck Array cryostat design. Major changes relative to Bicep2 are the addition of the extension piece; the
removal of the liquid helium reservoir and vapor cooled shield, with correspondingly narrower 300 K vacuum jacket; and
addition of the PT410 pulse tube enclosure, with vibration isolation and heat straps.

a single frequency band, with optics optimized for this frequency. Bicep2 and the current Keck Array receivers
all observe at 150 GHz, but future Keck Array receivers may observe at 100 and 220 GHz.

Bicep2 and the Keck Array observe the same primary CMB field as Bicep, an 800 deg2 patch of sky in the
so-called Southern Hole. This area has unusually low dust and synchrotron emission, and is expected to have
Galactic foreground confusion equivalent to r <

∼ 0.03.

Bicep2 has pioneered a new detector technology in order to increase detector count and instrument sensitivity.
The Caltech/JPL focal planes in Bicep2 and the Keck Array combine the beam-defining slot-antenna networks,
band-defining filters, absorber, and transition-edge sensor (TES) detectors on the same silicon detector tiles.
The actual Bicep2 focal plane and the far-field beam pattern of a single Keck Array receiver are shown in Fig. 2.
This detector technology allows scaling to higher detector count by replacing hand-assembly of components
in preceding experiments with monolithic fabrication. The Ti and Al TES elements are suspended on a SiN
membrane along with a gold resistive absorber. The Ti transition temperature Tc is in the range 470-530 mK.
In order to facilitate beam characterization under higher loading, the Ti sensors are in series with an Al TES
with Tc of 1.2 K. Each telescope contains four detector tiles, each with 64 dual-polarization elements in an 8× 8
array. Two of the detector pairs on each tile are dark sensors with no coupling to antennas, for a total of 496
optically coupled, 150 GHz detectors and 16 dark TES detectors per receiver.∗ The detectors are designed to
be read out with NIST three-stage SQUID hardware and the University of British Columbia Multi-Channel
Electronics (MCE) system, with time-domain multiplexing. The technology of antenna-coupled TES detectors
with multiplexed readout has allowed Bicep2 to increase the detector count of Bicep by a factor of five. The
Keck Array, with five telescopes, increases this detector count by a further factor of five.

Each telescope is housed within a cryostat that provides cooling to 4 K. The Bicep2 and Keck Array designs
have progressively eliminated consumable cryogens, for which the Amundsen-Scott South Pole Station has limited

∗The detector counts for future 100 and 220 GHz receivers will be different. Bicep2 has two fewer dark pairs, for a
total of 12 dark and 500 optically coupled TESs.
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storage and transportation capacity. Bicep2 sits inside a liquid helium cryostat from Redstone Aerospace†,
which is similar to the Bicep dewar but replaces a liquid nitrogen jacket with a vapor-cooled shield. The helium
reservoir has a capacity of 100 L, and consumes about 22 L/day during routine observing. The Keck Array
cryostats (Fig. 3), manufactured by Atlas UHV‡, have several major changes relative to Bicep2. They add a
removable extension piece for a half-wave plate, eliminate the liquid helium reservoirs, and add a housing for a
Cryomech PT410 two-stage pulse tube cooler mounted on vibration-isolating bellows. The pulse tube coolers are
rated to maintain T < 50 K on the first stage, with loading up to 45 W, and T < 3.5 K on the second stage, with
loading of 0.5 W. The thermal linkage from the pulse tube cold head to the 4 K plate of the telescope is made
from a stack of high-purity Al foil, which provides excellent thermal conduction while isolating the telescope
from vibration of the pulse tube. The Keck Array cryocoolers and thermal linkage have demonstrated excellent
performance after deployment. During standard observing, the cooler achieves temperatures ≤ 3.0 K at the
pulse tube second stage and ≤ 3.6 K on the telescope side of the Al strap. The first stage of the cryocooler
maintains ∼ 40 K.

Cooling below 4 K is provided by a Duband three-stage 4He/3He/3He sorption refrigerator operating in a
closed cycle. Bicep2 has made several improvements in the thermal architecture in order to improve stability and
reduce microphonic pickup. These have also been adopted by the Keck Array. The focal plane is cooled to base
temperature through copper-foil heat straps and a passive thermal filter and copper heat straps that link it to the
lowest-temperature stage of the fridge. The passive thermal filter is a stainless steel block, 5.5 cm×2.5 cm×2.5 cm.
The focal plane is supported by a truss structure of carbon-fiber rods, providing good thermal isolation from the
4 K stage.17 Temperature control is achieved using resistive heaters and thermometers on the focal plane and at
the fridge side of the passive thermal filter, servoed to suppress thermal fluctuations and to keep the focal plane
at a temperature near 280 mK. The thermal architecture of Bicep2 has performed well. Estimates of the level
at which thermal fluctuations on the focal plane enter CMB maps are lower than the corresponding estimates
for Bicep, and the overall thermal stability while scanning has met our design goals.

The Bicep2 refrigerator can be recycled in slightly under 4 hours, after which it remains at a stable base
temperature for at least 80 hours. The recycling operation and liquid helium fill are performed every three
sidereal days, during a cryogenic service block of six hours. Several times per month, during clear weather,
the cryogenic service block is also used for star observations, which are analyzed to characterize the telescope
pointing and particularly to detect any shifts in the pointing. Star observations are performed several times per
month, during In the Keck Array performance varies by receiver, and the observing schedule must accommodate
the receiver with the longest service time and shortest hold time. The fridge recycling requires up to six hours,
generally completing by the end of the six-hour service block. For the Keck Array this cryogenic service block
occurs every two sidereal days.

3. SENSITIVITY IMPROVEMENTS

Several upgrades since the initial deployment of Bicep2 and the Keck Array have substantially increased their
sensitivities. Although some details differ between the two experiments, these improvements have proceeded
along parallel paths. We have reduced aliased noise by increasing the multiplexing rate, and optimized the
detector biases for sensitivity and to minimize the number of unresponsive detectors.

Bicep2 has continued to run since deployment in a single cooldown without warming up or breaking vacuum.
The Keck Array underwent major upgrades during the 2011-12 austral summer. This included the addition of
two new receivers, the replacement of the focal plane and detectors in one receiver, and the removal of cold
half-wave plates from two of the receivers.

3.1 Detector bias improvements

In both experiments, the TES detector bias voltages were chosen conservatively at initial deployment. These
were revisited after several months of observation, with the goals of improving overall sensitivity and eliminating

†http://www.redstoneaerospace.com/
‡http://www.atlasuhv.com/
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instabilities in some detectors. The new, optimized biases were chosen after study of the detector responsivity
and stability in situ under good, winter observing conditions.

The detector bias is provided by the Multi-Channel Electronics (MCE) system. The TESs are biased with
a common current bias for the 32 detectors§ in each multiplexing column. This current bias is converted into a
voltage bias by a shunt resistor in parallel with the TES. This scheme allows some optimization of the biases for
variation between detectors, since each multiplexing column can have a different bias voltage. The bias settings
for each column must be chosen to give good responsivity and stability for all the detectors sharing that bias
current. The responsivity is highest when the detector is within the middle portion of the superconducting-
normal transition, i.e. the fractional resistance R/Rnormal is not too close to zero or one. When the resistance is
too low, the detector may also enter a state of unstable electrothermal feedback, which renders it unusable and
can cause crosstalk signals on nearby channels. The optimal bias value depends on detector parameters such
as thermal conductance and superconducting transition temperature. These are relatively consistent among the
detectors in a single multiplexing column, which are always located on the same physical detector tile. The
optimal bias values also depend on atmospheric loading. Under low-loading (winter) conditions, the highest
responsivity is attained at relatively high bias voltage. Under high-loading (summer) conditions, on the other
hand, lower bias voltages are required to keep R/Rnormal well below one.

At deployment of Bicep2, the TES biases were chosen conservatively, during the austral summer. They
were deliberately somewhat lower than the optimal per-column values, in order to avoid regions of decreasing
responsivity.12 During mid-2010, additional test data were taken at a variety of biases under winter conditions of
low atmospheric loading. These studies led to improved bias selections, with an expected improvement of 10-20%
in mapping speed. The new biases are the result of a careful balance between achieving the best sensitivity for as
many detectors as possible, while minimizing the number of detectors that are either unresponsive or unstable.
This optimization is done in the total NET of each column, rather than in a per-detector mean. Therefore, it has
sometimes been acceptable to allow detectors with unusual bias requirements to fall off the transition entirely,
in exchange for achieving better sensitivity in the others. The SQUID feedback is switched off for some unstable
detectors, so that their noisy feedback signal does not affect neighboring channels through the known crosstalk
mechanisms of the readout system.18

The new detector biases were adopted on September 14, 2010, and have been used through the remainder of
the 2010 season, continuing through the full 2011 season and the 2012 season now in progress. The Keck Array
has followed a similar procedure, with conservative bias settings at deployment replaced by more nearly optimal
values after study under winter loading.14

3.2 Faster multiplexing

The multiplexing configuration used by Bicep2 in 2010 has been described in detail in a previous SPIE confer-
ence.10 The row visit rate was 15 kHz, so any noise above 7.5 kHz that was not adequately suppressed before
digitization could be aliased and impact the low-frequency region containing the CMB signal. Accordingly, the
readout includes 1.35 µH bandwidth-limiting inductors on the Nyquist chips. The resulting LR circuit is a
single-pole filter with cutoff at 5–6kHz.¶ Because the pole of this slow-rolloff filter is not far below the Nyquist
filter of the multiplexing system in 15-kHz configuration, some amount of noise aliasing will occur.

A detailed noise model and comparison with observed noise levels were presented in an earlier SPIE confer-
ence.12 It was found that, under 4–6 pW loading, the total noise-equivalent power (NEP) at low frequency was
50–60 aW/

√
Hz. Photon noise was the largest contribution, with phonon noise (thermal fluctuation noise) at a

comparable but lower level. Excess noise was also seen, and became dominant above 100 Hz. When multiplexing
at 15 kHz, this excess noise was partly aliased into the low-frequency (< 5 Hz) science band, raising the total
NEP to 70–80 aW/

√
Hz.

Although this noise aliasing was understood at the time of deployment, it was not possible to shift the
Nyquist filter because higher-inductance Nyquist chips were not available. Instead, it was anticipated that the

§Each column also contains one open-input SQUID, for 33 total channels.
¶The R of the LR circuit is the resistance of the TES itself, so the exact Nyquist frequency depends on the detector

bias.

Proc. of SPIE Vol. 8452  84521A-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/25/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



Table 1. Multiplexing parameters used by Bicep2 and the Keck Array

15 kHz 25 kHz

Raw ADC sample rate 50 MHz 50 MHz

Row dwell 98 samples 60 samples

Row switching rate 510 kHz 833 kHz

Number of rows 33 33

Row revisit rate 15.46 kHz 25.25 kHz

Internal downsample 150 140

Output data rate per channel 103 Hz 180 Hz

Software downsample 5 9

Archived data rate 20.6 Hz 20.0 Hz

noise aliasing could be ameliorated by shifting to a faster multiplexing rate. This requires a shorter dwell time on
each row. The dwell time must be long enough that all transients associated with row switching have fully settled
before moving on to the next row. These transients are a form of crosstalk between detectors in neighboring
multiplexing rows.18 Bicep2 continued to operate at 15-kHz readout until it could be demonstrated that a faster
multiplexing rate would not increase row-switching crosstalk to unacceptable levels.

These studies of crosstalk and multiplexing rate were performed in late 2010, and it was found that (after
making other adjustments to the SQUID bias settings) the readout rate could be increased without significant
increase in crosstalk. As part of the 2010–11 summer upgrades, Bicep2 began to run with 25 kHz row switching.
The new multiplexing parameters are shown in Table 1. We expected the reduction in aliased noise to yield a
sensitivity gain of about 20% in the Bicep2 2011 and 2012 data.12 The actual gains in sensitivity are discussed
in Sec. 4.2.

The Keck Array was able to obtain Nyquist chips with 2.0 µH inductors for four of its five receivers (all
except rx0). This reduced the noise aliasing, but there remains a further benefit from faster readout. The initial
deployment continued to use the well-tested 15-kHz multiplexing configuration, pending successful outcome of
the 25-kHz change in Bicep2 and study of crosstalk in the slightly different Keck Array readout hardware.
Since the faster readout was found also to work well in Keck Array with acceptable levels of crosstalk, the
Keck Array row-switching rate was increased to 25 kHz during the 2011-12 summer. Although the Keck Array
uses newer versions of the MCE hardware and firmware, allowing greater freedom in the choice of multiplexing
parameters, we have adopted the same values used in Bicep2 for consistency and because they have already been
demonstrated to work well. As a result, the Bicep2 2010 and Keck Array 2011 data sets use the same 15-kHz
readout settings, and the Bicep2 2011-12 and Keck Array 2012 data sets use the same 25-kHz readout settings.

3.3 Temperature control

The Bicep2 and Keck Array focal planes are cooled to 250 mK by Duband three-stage 4He/3He/3He sorption
refrigerators operating in a closed cycle. The thermal path between the refrigerator and the focal plane has been
designed to isolate the focal plane assembly from microphonic noise and from short-period thermal fluctuations.
The 4-K, 350-mK, and base temperature stages of the refrigerator are connected to the truss assembly behind
the focal plane by flexible, straps of layered copper foil. The 250-mK strap is attached to a stainless steel passive
thermal filter that effectively isolates the focal plane from thermal fluctuations faster than about 1300 s.10

The temperatures of the thermal straps, focal plane, and detector tile are monitored with neutron-transmutation
doped (NTD) germanium thermistors. These are paired with heaters that provide for active thermal control in
several possible configurations. In standard observing, the primary thermal control is on the fridge side (“dirty”
side) of the passive thermal filter. This control loop is tuned to have <

∼ 1-Hz bandwidth in order to remove
temperature variations produced in the refrigerator as the telescope scans. The remaining small fluctuations are
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strongly attenuated by the stainless steel filter. The heater on the focal plane copper plate is also servoed. This
“slow” control loop has a time constant of ∼ 30 s and is intended to keep the detector tiles at the designated
operating temperature, rather than to suppress thermal fluctuations.

The effectiveness of this thermal architecture is assessed using NTD germanium thermometers mounted on
the detector tiles themselves. In the first year of Bicep2 observing, the thermometry suffered from elevated
noise due to microphonic pickup in the high-impedance wiring and excess noise in the room-temperature readout
electronics. This additional noise had minimal effect on the thermal stability of the detector tiles, as it was
well above the bandwidth of the thermal control loop on the focal plane. However, it did impede efforts to
characterize the thermal performance of the system.

For the second and third seasons of Bicep2, the alternating current thermistor bias signals have been increased
in frequency from 50 Hz to 100 Hz in order to better avoid microphonic noise. An upgrade to the readout firmware
allowed the use of nulling resistors and increased bias amplitudes (typical values 15 mV in 2010 to 40 mV in
2011–12) for higher signal-to-noise. The Keck Array uses a later hardware version of the digital electronics,
which eliminates much of the excess noise seen by Bicep2.

3.4 Additional Keck Array receivers

The Keck Array initially deployed three receivers for the 2011 season, known as rx0, rx1, and rx2. Two new
receivers were added during the 2011–12 summer, rx3 and rx4. In addition, the detectors in one receiver (rx1)
were found to have degraded performance relative to the other recievers. Its focal plane unit was replaced as
part of the year-two upgrades. Although the 2011 and 2012 receivers have all contained detectors at 150 GHz,
the modular Keck Array design also allows the possibility of swapping in receivers at 100 GHz and 220 GHz in
the future.

3.5 Half-wave plates

The Keck Array cryostat design included a removable extension to allow for additional thermal filters or for a
stepped half-wave plate. During the 2011 season, two of the receivers, (rx1 and rx2) were actually equipped with
sapphire half-wave plates cooled to 6 K, and wave-plate rotations were incorporated into an observing strategy
based on the Bicep2 pattern.10 Before each sidereal day’s observations, the telescope was rotated about the
boresight axis, so that each day covered one of the four boresight orientations 68◦, 113◦, 248◦, 293◦. (These are
identical to the boresight angles used by Bicep2, and allow separation of the Q and U Stokes parameters as well
as providing a 180◦ jackknife for characterization and control of systematics). After four days of data-taking,
covering all four boresight angles, the half-wave plates were stepped by 45◦. This procedure is repeated to cover
the four half-wave-plate orientations 0, 45◦, 90◦, 135◦.

This observing pattern was intended to address the known differential pointing common to the antenna-
coupled detectors (0.1 ± 0.04◦ in Bicep2,11 typically 0.05◦ or smaller in the Keck Array15). The wave-plate
rotation periodically exchanges the roles of the two detectors in each pair, while the boresight orientation and all
other aspects of the observation remain fixed. Jackknife combinations of maps made at different half-wave plate
orientations could be used to better characterize the differential pointing, and coadding maps over half-wave
plate orientations would suppress the temperature-to-polarization leakage caused by differential pointing.

In the 2011 data set, the two receivers with half-wave plates were found to suffer from degraded optical
responsivity and additional beam systematics that were difficult to understand. These issues disappeared when
the half-wave plates were removed for 2012 observing.

4. PERFORMANCE AND RESULTS

Bicep2 has now completed two years of observing and is at the midpoint of its third year. We present measures
of the observing efficiency and sensitivity, particularly showing the significant gain in sensitivity resulting from
the upgrades described above. We also present preliminary maps from Bicep2, including maps of the Stokes Q
and U parameters and E and B polarization.

The Keck Array has completed one year of observing and is now in the middle of its second year, with greatly
improved sensitivity thanks to the additional receivers and other upgrades. A detailed discussion of the Keck
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Figure 4. Time spent by Bicep2 in CMB scans, regular calibrations, and refrigerator cycling since January 1, 2010. During
austral summers (November-February), observing schedules have been interspersed with beam mapping and other tests
and calibrations. During the austral winter, on-source efficiency has been high, never falling far below the ideal 79.2%
in the late 2011 and early 2012 observing periods. The remaining time not categorized in this figure includes scheduled
pauses for detector biasing, thermal settling, and telescope slewing; spare time in the 6-hour cryogenic block; and time
spent in summer calibration and testing tasks.

Array 2012 sensitivity, along with preliminary maps, may be found in a companion paper (Kernasovskiy et al.,
this volume14).

4.1 Observing efficiency

Bicep2 has a three-day cryogenic hold time and an ideal on-source fraction of 79.2%. This is the fraction of the
time that the telescope would spend on the field if it continuously executed the standard three-day observing
schedule, without interruption. (Because the Keck Array has a two-day observing cycle, its maximum observing
efficiency is slightly lower, 70.0%.) Observing during the austral winter has generally been very close to this
ideal value, as shown in Fig. 4. In particular, the on-source fraction since mid-2011 has never fallen far below
the ideal value except during summer beam-mapping and other calibrations. The on-source fraction includes
observations of a galactic field, which is allotted seven hours out of each three-day Bicep2 observing schedule.
In all, Bicep2 has integrated on the primary CMB field for 4395 hours in 2010‖, 4891 hours in 2011∗∗, and 2034
hours so far in 2012††. These on-source figures are before the application of weather and data-quality cuts, and
include the scan turn-arounds, which are not used for mapmaking and account for 22.3% of on-source time.

4.2 Sensitivity

The sensitivity of Bicep2 has been calculated for three time periods: early 2010, late 2010, and 2011-12. The
early 2010 period is as deployed, with 15-kHz multiplexing and conservative TES biases. The late 2010 period
still has 15-kHz readout, but uses the improved TES biases for higher signal-to-noise ratio. The 2011-12 period
uses the faster 25-kHz readout with lower noise, and the improved detector biases.

Sensitivity has been expressed as a noise-equivalent temperature (NET) as determined in two ways: from
time-stream noise in the 0.1–1 Hz signal band; and from the variance of pixel values in maps differenced between
left-going and right-going scans (a scan-direction jackknife map). The methodology for calculating the NETs is
as in Kernasovskiy et al.14 in these proceedings. The results are broadly consistent. The per-detector NETs are
given in Table 2, and the overall instrument NETs in Table 3, after Brevik et al.19,20 Note that the NET in the
late-2010 period has been calculated only from timestream noise spectra, and not from maps.

‖from February 1
∗∗from January 1
††January 1-May 31
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Table 2. Per-detector Bicep2 NET

Period Time stream NET, µK
√
s Map NET, µK

√
s

Early 2010 433 422

Late 2010 379 -

2011-12 316 313

Table 3. Bicep2 instrument NET

Period Time stream NET, µK
√
s Map NET, µK

√
s

Early 2010 22.1 21.5

Late 2010 19.1 -

2011-12 15.9 15.8

4.3 Polarization maps

In Fig. 5(a) and 5(b) we show Bicep2 polarization maps made with the full-season 2010 and 2011 data sets. The
data analysis is similar to that used in Bicep.5 These maps do not include analysis techniques being developed21

to remove the leaked polarization signal caused by differential pointing of the two detectors in a polarization-
pair. The E-mode signal around ℓ = 400 is readily apparent as a set of horizontal and vertical structures in the
Stokes-Q map and diagonal structures in the Stokes-U map. The prevalence of E-mode power at this angular
scale results from the intrinsic shape of the E-mode CMB spectrum (which increases with ℓ below ell = 1000)
and the Bicep2 beams, which are not sensitive to power at higher ℓ. We have estimated the map noise level by
making separate maps from the left-going and right-going scans, differencing them, and dividing by two. This
scan-direction jackknife map should contain noise at the same level as the fully coadded map, but no signal.
From the pixel variance in the well-covered central region, we calculate noise levels in the Stokes Q and U maps
of 0.139 and 0.138 µK in square-degree pixels (8.3 µK · arcmin).

Fig. 6 and 7 shows the E-mode and B-mode patterns respectively reconstructed from two seasons of Bicep
data5 and from the two-season Stokes Q and U maps shown in Fig. 5(a) and 5(b). These have been apodized
using the variance per map pixel, and filtered to the angular scale 50 ≤ ℓ ≤ 120. The E-mode maps are similar,
and the lower level of power in the B-mode map shows the improved sensitivity of Bicep2 relative to Bicep.

5. CONCLUSION

Bicep2 has completed two years of observation at the South Pole, and is currently in the middle of its third
season. The Keck Array has completed its first season, with three receivers, and is now in the middle of its second
season, with five receivers. Both have made substantial improvements to their sensitivity, through optimization
of the detector biases and readout rate, and through the addition of new Keck Array receivers and replacement
of detectors. Bicep2 has accumulated a total of 11320 hours on the primary CMB field. We have presented for
the first time preliminary Bicep2 maps of the primary CMB field in polarization, showing the improvement in
sensitivity over the original Bicep experiment.
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Figure 5. Bicep2 polarization maps of the Stokes Q parameter (a) and Stokes U parameter (b) from full-season 2010
and 2011 data. Map pixels are 0.25◦ in declination and 0.47◦ in right ascension. The maps have not been apodized
or smoothed in ℓ. The structure of the CMB polarization is immediately apparent by eye: power is predominantly
vertical and horizontal in Q, and diagonal in U. This pattern corresponds to E-mode polarization with very little power
in B-modes.
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Figure 6. Maps in E-mode polarization made from two full seasons of (a) Bicep data (2006–07) and (b) Bicep2 data
(2010–11). These maps are apodized by the pixel variance map and include modes in the range 50 ≤ ℓ ≤ 120. The
E-mode maps from both Bicep and Bicep2 are dominated by true CMB polarization, and hence show common features.

Proc. of SPIE Vol. 8452  84521A-12

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/25/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



RA / deg

D
E

 / 
de

g

Two−season BICEP1 B

 

 

−50−40−30−20−1001020304050
−70

−65

−60

−55

−50

−45
µK

−5

0

5

(a)

RA / deg

D
E

 / 
de

g

Two−season BICEP2 B

 

 

−50−40−30−20−1001020304050
−70

−65

−60

−55

−50

−45
µK

−5

0

5

(b)

Figure 7. Maps in B-mode polarization made from two full seasons of (a) Bicep data (2006–07) and (b) Bicep2 data
(2010–11). These maps are apodized by the pixel variance map and include modes in the range 50 ≤ ℓ ≤ 120. The Bicep
B-mode map is dominated by noise. The greater sensitivity and mapping speed of Bicep2 result in a B-mode map with
much smaller amplitude.
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