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Abstract: We analyze the classical and quantum vacua of 2d N = (8, 8) supersymmetric

Yang-Mills theory with SU(N) and U(N) gauge group, describing the worldvolume inter-

actions of N parallel D1-branes with flat transverse directions R8. We claim that the IR

limit of the SU(N) theory in the superselection sector labeled M (mod N) — identified

with the internal dynamics of (M,N)-string bound states of the Type IIB string theory

— is described by the symmetric orbifold N = (8, 8) sigma model into (R8)D−1/SD when

D = gcd(M,N) > 1, and by a single massive vacuum when D = 1, generalizing the conjec-

tures of E. Witten and others. The full worldvolume theory of the D1-branes is the U(N)

theory with an additional U(1) 2-form gauge field B coming from the string theory Kalb-

Ramond field. This U(N) + B theory has generalized field configurations, labeled by the

Z-valued generalized electric flux and an independent ZN -valued ’t Hooft flux. We argue

that in the quantum mechanical theory, the (M,N)-string sector with M units of electric

flux has a ZN -valued discrete θ angle specified by M (mod N) dual to the ’t Hooft flux.

Adding the brane center-of-mass degrees of freedom to the SU(N) theory, we claim that

the IR limit of the U(N) +B theory in the sector with M bound F-strings is described by

the N = (8, 8) sigma model into SymD(R8). We provide strong evidence for these claims

by computing an N = (8, 8) analog of the elliptic genus of the UV gauge theories and

of their conjectured IR limit sigma models, and showing they agree. Agreement is estab-

lished by noting that the elliptic genera are modular-invariant Abelian (multi-periodic and

meromorphic) functions, which turns out to be very restrictive.
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1 Introduction and summary

Supersymmetric Yang-Mills theories (SYM) have been of central interest in string theory,

especially since the advent of D-branes. In Type II string theories, the worldvolume in-

teractions of BPS Dp-branes at low energies are described by maximally supersymmetric

Yang-Mills theories in (p + 1)-dimensions (MSYMp+1). These theories have 16 supersym-

metries, inherited from the target-space supersymmetries left unbroken by the half-BPS

D-branes. For a stack of N D-branes, the gauge group of the MSYM is U(N). The gauge

field arises from the open strings that stretch between pairs of branes, which carry U(N)

Chan-Paton factors when the branes are coincident. The gauge theory is enhanced by the
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higher-form gauge fields and fluxes present in the string theory target place, which gener-

alize the topological sectors of the theory. Properties of these gauge theories are intimately

related to the interactions of D-branes. For example, topological sectors of the gauge

theory are interpreted as the bound states of the branes with other objects in the string

theory, including other D-branes of various dimensions and the fundamental string [1]. In

fact, an entire non-perturbative formulation of M-theory was conjectured to arise from the

N → ∞ limit of the N = 16 quantum mechanics MSYM1 describing the interactions of

D0-branes [2].

In this article, we will focus on the two-dimensional (2d) MSYM theories with gauge

group U(N) or SU(N). In two dimensions, the weakly coupled gauge theory defined by

the SYM Lagrangian is inherently the ultraviolet (UV) description, and such theories are

asymptotically free. In the infrared (IR), the theory becomes strongly coupled. It is a

difficult and interesting question to understand the infrared dynamics of MSYM2. Both

of the closely related theories with U(N) and SU(N) gauge group have been extensively

analyzed, and much has been conjectured about their infrared description and quantum

vacua [1, 3–6]. For example, in [3, 4], U(N) MSYM2 theory was developed into matrix

string theory, describing matrix theory compactified on a circle. It was proposed that the

N → ∞ limit of this theory should provide a non-perturbative formulation of Type IIA

string theory. Using M-theory and string duality considerations, the authors of [3] related

the IR limit of MSYM2 with gauge group U(N) to the supersymmetric sigma model into

the symmetric orbifold SymN R8, identified as the sector of second quantized free Type IIA

strings with light-cone momentum p+ = N . However, exact computations or quantitative

evidence have been elusive — a situation we seek to remedy.

The Lagrangian of MSYM2 can be obtained by dimensional reduction from 10d N = 1

SYM, and for U(N) or SU(N) gauge group it is given by [3, 6]

L = Tr

(
−1

4
F 2
µν −

1

2
(DµX

i)2 + iχT /Dχ+
g2

4
[Xi, Xj ]2 −

√
2gχTLγi[X

i, χR]

)
. (1.1)

The bosons Xi, the left-moving fermions χα̇L, and the right moving fermions χαR are in the

8v, 8c, and 8s representations, respectively, of the Spin(8) R-symmetry. The fields are also

in the adjoint representation of the gauge group, so they are valued in u(N) (su(N)) and can

be realized as N ×N (traceless) Hermitian matrices for gauge group U(N) (SU(N)). The

theory has N = (8, 8) supersymmetry generated by the transformations with 16 fermionic

parameters (εαL, ε
α̇
R). We take the worldsheet directions to be µ = 0, 9. The dimensional

reduction of the Lagrangian and the supersymmetry transformations are reproduced in

appendix A.1.

The MSYM2 theory was observed to have classical vacua determined by the zeroes of

the bosonic potential V (X) = g2

4 [Xi, Xj ]2, which are commuting matrices Xi, modulo the

Weyl group SN permuting the eigenvalues [1, 3]. For the U(N) theory on the worldsheet

Rt×S1, all the zero-energy configurations of the gauge field correspond to flat connections

on the trivial U(N)-principal bundle, so in the quantum U(N) theory, the gauge field

contributes a single trivial zero-energy state to the vacuum wavefunction, as elaborated

in [7]. Therefore, it seems natural to conjecture that in the infrared limit, as g → ∞, the
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theory flows to the supersymmetric sigma model into SymN (R8), parametrized by the N

eigenvalues of the Xi and fermionic partners [3]. Similar arguments could be made for the

SU(N) theory, by removing the contributions for the free diagonal U(1) factor of the U(N)

theory, leading to the supersymmetric sigma model into (R8)N−1/SN as the conjectural

IR limit.

However, this is not all of the vacua and therefore not the end of the story. In his

analysis of bound states of fundamental strings and D-branes in Type II string theories,

Witten [1] argued that the existence of (M,N)-string bound states in Type IIB string

theory requires the existence of various supersymmetric vacua for the SU(N) MSYM2. For

the worldvolume theory of N D1-branes, the sector with M bound fundamental strings

corresponds to a “charge at infinity” in the form of a Wilson loop in the Mth tensor power

of the fundamental representation of SU(N) [1]. Therefore, the (M,N)-string is naturally a

superselection sector in the 2d quantum theory, and the vacuum in that sector is identified

as the discrete θ vacuum [8] (of the related SU(N)/ZN theory) with θ angle specified by

M (mod N) as

eiθ = ei
2πM
N . (1.2)

Specifically, Witten argued that the case when M and N are relatively prime should cor-

respond to a single supersymmetric vacuum of the SU(N) theory with a mass gap. This

is because the center-of-mass motion of the branes decouples from the U(N) worldvolume

theory as a free N = (8, 8) U(1) vector multiplet, corresponding to the determinant U(1)

in U(N) (which decomposes as U(N) = (U(1) × SU(N))/ZN ). In the case with M and

N relatively prime, the center-of-mass dynamics encoded in the decoupled U(1) multiplet

correspond to all of the massless physical degrees of freedom of the bound state in the

string theory target space.

In the more general case when M and N are not relatively prime, Witten reasoned

that there is no argument to indicate the corresponding vacuum should be massive. In

fact, the (M,N)-string should be able to split up into D many (M/D,N/D)-string bound

states without an energy barrier, where D = gcd(M,N), as the eigenvalues of the scalars

corresponding to the relative positions of these (M/D,N/D)-strings can take arbitrary

expectation values at no cost in energy. It is then natural to expect that the vacuum corre-

sponding to the (M,N)-string with D > 1 should have massless excitations corresponding

to the massless degrees of freedom of the relative motion of the (M/D,N/D)-strings. The

relative positions of these bound states is just the configuration space of D indistinguish-

able strings in the transverse space R8, with the center-of-mass moduli excluded, which is

described by the 2d symmetric orbifold sigma model into (R8)D−1/SD.

We would like to analyze the classical and the quantum theory, and determine to what

extent these predictions hold. The main feature of the MSYM2 theory which gives rise

to some important subtleties is that all the local fields are in the adjoint representation

of the gauge group G. In particular, if G has a nontrivial center Z(G), then there are no

fields charged under it, so the Z(G) charge cannot be screened, giving rise to superselection

sectors labeled by the Z(G) charge. For example, for G = SU(N), Z(G) = ZN , and there

are N superselection sectors. Given a state in some sector, the emanation of a Wilson loop
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in some representation R of SU(N) with charge NR under ZN will yield a state in another

superselection sector, differing by NR units modulo N . Since there are no fields charged

under the center, we can also define the G/Z(G) = SU(N)/ZN theory that has the same

Lagrangian. The SU(N)/ZN theory has the θ angle parameter as additional discrete data,

and for each of the N choices of θ, the spectrum is a restriction of the SU(N) spectrum

to one of the N superselection sectors. Likewise, one can define the SU(N)/ZK theory for

K|N , which will have N/K superselection sectors with the same ZK ⊂ ZN charge for each

of the K choices of the θ angle.

Interestingly, when we consider the classical vacua of the SU(N)/ZN theory, we recover

a spectrum consistent with the spectrum of relative positions of the (M/D,N/D)-strings.

This requires analyzing the topological sectors of the theory. Let’s recall that the discrete

θ vacua exist for the SU(N)/ZN theory because this gauge group has non-trivial funda-

mental group π1(SU(N)/ZN ) = ZN . Consequently, there are “instanton sectors” of the 2d

theory corresponding to the topologically distinct SU(N)/ZN -principal bundles, labeled by

elements in π1(SU(N)/ZN ) [8, 9]. We denote the Z/NZ-valued instanton number by k. As

usual, the effect of the θ angle in the path integral is to weigh the k-instanton sector by eiθk

in the sum over the instanton sectors. Naturally, the θ angle takes values in the Pontryagin

dual of the π1 of the gauge group, which is ZN once again for π1(SU(N)/ZN ) = ZN . The

theory at a given θ angle could be explicitly defined by including a surface operator con-

structed from the integral of a 2-form gauge field, as in [10]. When one puts the SU(N)/ZN
theory on the two-torus T 2, the SU(N)/ZN -principal bundle PN,k over T 2 with instanton

number k admits flat connections, with moduli space MN,k, so there are classical zero-

energy configurations of the gauge field in each instanton sector. As all of the fields are in

one N = (8, 8) vector multiplet, the modes supersymmetric to the zero-energy modes of

the gauge field are also classically zero-energy field configurations. The moduli space of flat

connectionsMN,k turns out to have complex dimension d−1, where d = gcd(k,N). Thus,

one expects on general supersymmetry grounds to have a 8(d− 1) real dimensional moduli

space of vacua for the scalar fields, specifically (d − 1) real moduli for the eigenvalues of

each of the scalars Xi. Indeed, when d = 1,MN,k is a point, and there is a single classical

zero-energy field configuration with all the scalars set to zero. When d > 1, the zero-energy

scalar fields take the form

Xi = IN/d ⊗

x
i
1

. . .

xid

 , with TrXi = 0, (1.3)

in the strong coupling limit g → ∞, and the eigenvalues parametrize (R8)d−1/Sd. When

d = N , we are in the trivial instanton sector with k = 0, with the classical vacua described

by (R8)N−1/SN , in agreement with [1, 3].

In the quantum theory, the wavefunction of a vacuum state spreads over all classical

vacuum configurations, including the disconnected components. Although one expects that

the quantum vacua should parallel the classical vacua in theories with high supersymmetry,

one might be hesitant to reach this conclusion in our setting as it is a priori unclear how

the sum over classical disconnected configurations reproduces the vacua wavefunctions.
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Nonetheless, the θ angle isolates superselection sectors corresponding to (M,N)-strings,

which have string theoretic descriptions strikingly in parallel with the classical vacua, sup-

porting this conclusion. Here, a few relevant studies are crucial in guiding one’s intuition.

First of all, the SO(8) R-symmetry anomalies vanish for MSYM2 [1], so there are no anomaly

arguments that rule out the existence of the various massive and massless vacua, unlike

in theories with less supersymmetry. Also, in [5], it was argued that the IR description

of MSYM2 could not be a non-trivial superconformal field theory with N = (8, 8) super-

symmetry, as there is no extension of this N = (8, 8) supersymmetry algebra to a linear

superconformal algebra [11].1 This suggests that any scale invariant theories with mass-

less excitations describing the IR fixed points should be free theories, or orbifolds thereof.

Lastly, in [6], MSYM2 was analyzed using discrete light-cone quantization (DLCQ). There,

numerical results were obtained in finite resolution of light-cone momentum indicating the

absence of normalizable massless states and supporting the existence of a vacuum with

mass gap for the SU(N) theory. By these considerations, the only possible choices for

the IR limit of MSYM2 are massive vacua or orbifolds of free N = (8, 8) sigma models.

Given the favorable evidence, we conjecture that the quantum vacuum of the SU(N)/ZN
theory with θ = 2πM/N corresponding to the (M,N)-string should be described by the

sigma model into (R8)D−1/SD, and furthermore that the infrared fixed point of the theory

with the given θ angle is this sigma model. We note that this description is invariant

under the SL(2,Z) S-duality of the Type IIB string theory, which acts on the doublet

(M,N) but leaves D invariant. Also, the vacua of the related SU(N) theory in one of its

N superselection sectors is the vacuum of the SU(N)/ZN theory with the corresponding

θ parameter.

We provide strong evidence in favor of our claim by computing the N = (8, 8) analog

of the elliptic genus — or, index for short — of MSYM2 for SU(N) and SU(N)/ZN gauge

group, for the latter also including the surface operator specifying the θ-angle parameter.

This index is a supersymmetric partition function on the Euclidean flat torus T 2 (with

conformal class τ), which counts states that are BPS with respect to a conjugate pair of

right-moving supercharges. The choice of any such supercharge commutes with a Spin(6)

subgroup of the Spin(8) R-symmetry, and we can refine the index with equivariant param-

eters a1,2,3 = exp 2πiξ1,2,3 coupling to the Spin(6) subgroup. This refinement keeps track

of more information about the spectrum, as well as regulating the otherwise divergent

sum over the infinitely many states contributed by the non-compact bosonic zero-modes.

This index also agrees with the equivariant elliptic genus of the theory when viewed as

a N = (0, 2) supersymmetric theory — from which perspective the Spin(6) symmetry is

just a flavor symmetry. Concretely, the index of an SU(N)/ZK theory is defined as the

following trace in the Ramond-Ramond (RR) Hilbert space H of the theory, which is a

direct sum of K RR Hilbert spaces on the circle, Hk, quantized in the given instanton

background k:

Iθ(τ |ξ) =
∑
k

eiθk TrHk(−1)FafqHL q̄HR . (1.4)

1Non-linear N = 8 superconformal algebras have been constructed, however they are quite exceptional

and do not seem to be relevant to MSYM2. See [12] and the references therein for details.
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Here, q = e2πiτ , and HL and HR are the left- and right-moving Hamiltonians. We show

that the index of the SU(N)/ZN theory with the θ(M) = 2πM/N vacuum is

Iθ(M)
SU(N)/ZN (τ |ξ) =

ID
I1

(τ |ξ), (1.5)

where D = gcd(M,N), and ID is the index of the supersymmetric sigma model into

SymD(R8). Of course, when D = 1, IθSU(N)/ZN = 1, which is the index of a single mas-

sive supersymmetric vacuum. When D > 1, ID/I1 is the index of the sigma model

into (R8)D−1/SD, since by factoring the diagonal copy of R8, we have SymD(R8) =

R8 × (R8)D−1/SD. The expressions for IθSU(N)/ZN (τ |ξ) and IDI1 (τ |ξ) are obtained through

different methods, and it is non-trivial to show that they agree. Thankfully, both sets of

functions enjoy multi-periodicity and SL(2,Z) modular invariance, and using these very

restrictive properties we are able to establish (1.5) for N ≤ 7. Since the index is an invari-

ant of the theory under renormalization group (RG) flow, which is furthermore a “strong”

invariant in the sense that it contains data about the spectrum of the theory, matching the

index computed in the UV with the index of our candidate IR fixed point is a powerful

indication that the two theories are indeed related by RG flow.

From the SU(N)/ZN index, we infer the index of the SU(N)/ZK theory for any K|N ,

Iθ(M)
SU(N)/ZK (τ |ξ) =

∑
m≡M (mod K)

Igcd(m,N)

I1
(τ |ξ), (1.6)

where the sum is over the N/K values of positive integers m between 1 and N equivalent

to M modulo K. The terms being summed over are interpreted as the indices of the

corresponding superselection sectors of the theory, and they are consistent with our earlier

analysis of the superselection sectors.

Having understood the vacua SU(N) MSYM2, we would like to analyze the U(N)

theory as well. Including the center of mass modes into our considerations of the SU(N)

theory, one can readily conjecture that the U(N) theory also has vacua described by sigma

models into SymD(R8) corresponding to the (M,N)-strings, as expected from string theory.

However, the correct analysis of the full N D1-brane worldvolume theory is somewhat more

complicated, and requires some discussion. For a standard 2d U(N) gauge theory with only

adjoint fields, the U(1) degrees of freedom decouple, and the index of the standard U(N)

MSYM2 can be readily inferred from the SU(N) index as

IU(N)(τ |ξ) = IU(1)ISU(N)(τ |ξ) =
N∑
m=1

Igcd(m,N)(τ |ξ). (1.7)

But, this theory is not accurately taking into account the full structure of the (M,N)-string

bound states. The true gauge theory describing the full worldvolume theory of the N D1-

branes is not a standard U(N) gauge theory, but also has the Kalb-Ramond 2-form gauge

field B coming from the Neveu-Schwarz (NS) sector of the string theory. The B-field has

an Abelian gauge symmetry generated by a 1-form gauge transformation, under which the

trace mode of the U(N)-connection A is also charged. Due to this additional 1-form gauge
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symmetry, the theory has generalized field content roughly described by U(1)×SU(N)/ZN
gauge bundles, and the structures of the classical and quantum vacua are different. Indeed,

we find that the U(N) MSYM2 with the 2-form B-field has sectors corresponding to the

(M,N)-strings as sought. The Mth sector has a net U(1) generalized electric flux of M

units, which is interpreted as the flux of the M F-strings, as well as a θ angle 2πM/N

in the SU(N)/ZN sector. When M = 0, the net flux is zero, with correspondingly zero

Yang-Mills energy, so the index is readily interpreted as

IM=0
U(N)+B(τ |ξ) = IU(1)Iθ=0

SU(N)/ZN (τ |ξ) = IN (τ |ξ). (1.8)

What about the other sectors with M 6= 0? Although the bundles with non-zero

field strength have non-zero Yang-Mills action, these (M,N)-string configurations are still

half-BPS in the string theory target space, and must still preserve 16 supersymmetries!

Explicitly, the D1-brane worldvolume theory has non-linearly realized supersymmetries

acting on the U(1) center of mass modes, which are the goldstinos of the spontaneously

broken translation symmetry in the presence of the D-branes [13–15]. The action or energy

of this flux should be considered as part of the binding energy of the (M,N)-string, or as the

difference in the central charge of the two BPS sectors of the target-space supersymmetry

algebra. The binding energy should be attributed to the DBI action [16] in the same sense

as the tension of the N D1-branes is, and should be excluded from the vacuum describing

the fluctuations of the bound state. In particular, we can modify the definition of the

elliptic genus to count states that are BPS with respect to the supercharges preserved

by the bound state, essentially by shifting the Hamiltonian by the central charge of the

superalgebra. The corresponding BPS states are exactly the configurations with fixed

electric flux M and minimal energy. Since the U(1) factor is free, the fields that contribute

to the index are unaffected by this modification. Thus, we obtain the index of the U(N)

theory for given sector with M units of electric flux,

IMU(N)+B(τ |ξ) = ID(τ |ξ). (1.9)

This strongly suggests that the vacuum describing the massless fluctuations of the (M,N)-

string is given by the sigma model into SymD R8. Moreover, we also construct the index

of the U(N) +B theory that sums over each (M,N)-string BPS sector, which is naturally

refined by the U(1) holonomies of the B-field on the spacetime torus eiMφ = eiM
∫
T2 B with

representations labeled by the F1-string winding number M ,

IU(N)+B(τ |ξ) =
∑
M∈Z

eiMφIMU(N)+B(τ |ξ) =
∑
M∈Z

eiMφID(τ |ξ). (1.10)

We note that this D1-brane index is invariant under the S-duality of the Type IIB string,

which is generated by exchanging M and N and shifting M by a multiple of N , all the

while leaving D invariant. By an S-duality followed by a T-duality on the circle wrapped

by the D-string, the (M,N)-string is mapped to N F-strings bound to M D0-branes [3].

Thus, the index (1.10) is also an index of the N Type IIA F-strings bound to D0-branes.

Our result suggests that the world sheet theory of N F-strings bound to M D0-branes in
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the free string limit gs = 0 is given by the supersymmetric sigma model into SymD R8, and

in particular, N/D F-strings bound to M/D D0-branes behave like free strings.

The paper is organized as follows. In section 2, we analyze the structure of topological

sectors of MSYM2 for SU(N) and U(N) gauge group, as well as the related SU(N)/ZK and

U(N) + B theories, and determine the moduli space of flat connections and the classical

vacua when the spacetime is T 2. In section 3 we discuss how the elliptic genus generalizes

for SU(N)/ZN gauge theories to include integration over the various components of the

moduli space of flat connections. In section 4, we compute the elliptic genus of SU(N)/ZK
MSYM2, and infer the elliptic genus for the U(N) theory with and without the B field.

Finally, in section 5, we compute the elliptic genus of the SymN (R8) sigma model, and

establish some of its properties which allow us to match it to the gauge theory elliptic

genus. We also include appendix A, which spells out some details about the action and

supersymmetry transformations of MSYM2.

2 The structure of vacua

Bound states of D1-branes with the F-strings in Type IIB string theory suggest that the

MSYM2 with SU(N) gauge group should have N superselection sectors, and that the full

worldvolume theory of the N D1-branes (with U(N) gauge group) should have topological

sectors labeled by Z [1]. A complete description of the vacua of the MSYM2 should account

for the vacua in these additional sectors as well. Therefore, we will now task ourselves with

hunting for them. We will discover that a rich story underlies the various vacua.

2.1 Topological sectors

Let’s start by focusing on the SU(N) theory. It was shown in [1] that on a worldsheet

with boundary, such as R1,1 for concreteness, the sector with M F-strings attached to the

stack of N D1-branes manifests itself as a Wilson loop “at infinity” in the Mth tensor

power of the fundamental representation of the gauge group. The vacua of superselection

sectors of 2d non-abelian theories have been analyzed a long time ago by Witten [8]. Since

MSYM2 contains only adjoint fields, the center of the gauge group acts trivially on all

fields. In particular, the net charge under the center cannot be screened by local fields.

For G = SU(N), the center is Z(G) = ZN . Therefore, we see that the N superselection

sectors in the SU(N) theory are labeled by the background ZN charge. More precisely, the

theory has a Z(G) 1-form global symmetry, for which the charged objects are the Wilson

loops in SU(N) representations [10], and the corresponding conserved ZN charge labels

the superselection sectors. The creation of a Wilson loop in representation R will act as a

domain wall between two superselection sectors of ZN charge differing by the charge under

the center (or N -ality) NR of the representation.

We would like to be able to identify and isolate the vacua. This is best done if one

declares the gauge group to be Gadj = SU(N)/ZN , which we can do since all the fields

are uncharged under the ZN center. Indeed, the MSYM2 Lagrangian (1.1) with the fields

taken to be valued in su(N) does not uniquely define a quantum field theory, since one can

declare the gauge group to be any Lie group with Lie algebra su(N). This choice does not
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affect the local physics, but determines which non-local operators and instanton sectors

are present in the theory. For example, the theory with SU(N) gauge group has Wilson

loops in all SU(N) representations, whereas the SU(N)/ZN theory only has Wilson loops

in representations for which NR ≡ 0, but also has surface operators which have boundary

Wilson loops in arbitrary SU(N) representations (we will revisit these surface operators

shortly). Moreover, because π1(SU(N)/ZN ) = Z(SU(N)) = ZN , the SU(N)/ZN theory

has a total of N instanton sectors. When the worldsheet is R1,1, the instanton sectors were

described in [8]. More generally, if one considers the SU(N)/ZN gauge theory on a closed

Riemann surface Σ, the instanton sectors are the N SU(N)/ZN -principal bundles on Σ,

labeled by discrete non-abelian ’t Hooft electric flux [9] — or, mathematically, the second

Stiefel-Whitney class of the bundle [17]

w2(P ) ∈ H2(Σ, π1(Gadj)) = H2(Σ,ZN ). (2.1)

The Gadj theory has additional data in the form of the discrete θ angle, which takes values

in the Pontryagin dual ZN of π1(Gadj). For each of the N choices of the θ angle, the theory

isolates a corresponding superselection sector of the SU(N) theory, and the Hilbert space is

a restriction of the SU(N) Hilbert space to that sector. This structure mirrors the structure

of vacua in the closely related pure Yang-Mills theories with SU(N) and SU(N)/ZN gauge

group [18].

The SU(N)/ZN and SU(N) theories are of course closely related. One can obtain

the SU(N)/ZN theory from the SU(N) theory by gauging the 1-form symmetry generated

by the center ZN = Z(SU(N)) [10]. The procedure is illuminating, as it allows one to

explicitly construct the surface operator that detects w2. One can first enhance the SU(N)

gauge field to a U(N) gauge field by adding in the trace component Â, and then impose

the U(1) 1-form gauge symmetry generated by

Â→ Â−Nλ (2.2)

which removes the field strength for Â and also enhances the allowed gauge bundles to

SU(N)/ZN bundles. In the resulting SU(N)/ZN theory, there are no Wilson loops in

representations of SU(N) that transform nontrivially under the center ZN , unless they are

the boundary of a surface operator constructed from dÂ, which is now a 2-form gauge field.

The closed surface operator

eiM
∫
Σ dÂ/N (2.3)

evaluates to ei2πMk/N for a bundle with ’t Hooft flux
∫

Σw2 = k around the two-cycle repre-

sented by Σ. The integral here is schematic, as dÂ is not a globally-defined 2-form, instead

one should integrate it as a Deligne-Belinson cocycle (see [10] and references therein).2

This operator can be inserted into the path integral to obtain the SU(N)/ZN theory with

the discrete θ angle equal to 2πM/N . The parameter M is quantized in integer units, as

required by invariance under large gauge transformations.

2Heuristically, given a cover Ui of the base, the transition functions λij on double overlaps and the cocycle

conditions on triple overlaps of dÂ encode the same information as the ’t Hooft flux of the SU(N)/ZN -

bundle [10]. The integral extracts that data.
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Even as classical theories, the G theory and the Gadj theory are different. In particular,

the Gadj theory has additional classical field configurations corresponding to connections

on Gadj-bundles, even for those which are not G-bundles. Each of these bundles admit

flat connections, so the moduli space of classical vacua of Yang-Mills theory on Riemann

surfaces is enlarged to include flat connections of Gadj-bundles on the Riemann surface. For

theories with supersymmetry, one expects zero energy field configurations supersymmetric

to flat connections for the non-trivial Gadj-bundles. We will describe these configurations

in section 2.2.2, and find a pleasant parallel to the string theory predictions for the vacua.

It is perhaps good practice to say a few words about the definition of a gauge theory

with gauge group G and solidify our footing. In accordance with the literature [19], we

take a general G-gauge theory to satisfy the following properties:

1. All local fields are in representations of G.

2. Wilson lines in all representations of G are present.

3. The path integral sums over all G-bundles. There could be additional data that

determines weights for the sum over G-bundles.

With these properties, the difference between a G and G/H theory where H ⊂ Z(G)

is made explicit. We can go ahead and generalize our above analysis by also defining

the SU(N)/ZK MSYM2 theory with K|N accordingly. The 2d SU(N)/ZK theory has K

instanton sectors, weighted by a ZK valued discrete θ angle. Since the theory contains only

adjoint fields, the charge under the center ZN/K = ZN/ZK will not be screened, and for

each choice of the θ angle the theory will have N/K superselection sectors corresponding

to those superselection sectors of the SU(N) theory with ZN charge congruent modulo K

to a given value determined by the choice of θ.

Let’s return to the U(N) MSYM2. The “standard” U(N) MSYM2 has superselection

sectors analogous to the SU(N) MSYM2 The pure U(N) Yang-Mills theory in 2d has

N superselection sectors [18]. Similarly, a 2d U(N) gauge theory without fields charged

under the center of the gauge group also has N superselection sectors, thus so does U(N)

MSYM2. The U(N) theory has instanton sectors labeled by the integers corresponding to

the quantized electric flux (or vortex number) c1 ∈ H2(Σ,Z). Although one might hope to

identify these sectors with the (M,N)-string sectors, this turns out to be not quite right.

The true theory describing the interactions of N D1-branes is not just the U(N) MSYM2

that we described above by the action (1.1), but also has a 2-form gauge field B coming

from the restriction of the Kalb-Ramond field present in the NS-NS sector of the string

theory target space to the brane worldvolume. The B-field plays a subtle and important

role, primarily by enhancing the classical field configurations of the theory. The B-field,

being a 2-form gauge field, has Abelian 1-form gauge transformations under which the

U(N) gauge field A also transforms [1],

B → B + dλ, (2.4)

A→ A− λ1N , (2.5)

– 10 –



J
H
E
P
1
1
(
2
0
1
7
)
1
4
0

where λ is the 1-form gauge transformation parameter and 1N is the N×N identity matrix

generating the center of the u(N) algebra. The correct gauge-invariant Lagrangian has the

following kinetic term for the gauge field,

− 1

4
Tr (Fµν +Bµν1N )2, (2.6)

and F = F + B1N is the appropriately modified field strength. Writing the U(N) gauge

field as

A =
1

N
Â1N +A′, (2.7)

with Â the U(1) gauge field corresponding to the trace and A′ the leftover SU(N)/ZN gauge

field, we note that the 1-form gauge transformation above acts only on the U(1) gauge field

Â. Since all of the scalar and fermion fields are in the adjoint, Â only appears in the gauge

field kinetic term in the Lagrangian, and therefore none of the rest of the Lagrangian is

modified with the inclusion of the B-field, as they are already gauge invariant under the

1-form gauge symmetry. The N = (8, 8) supersymmetry remains intact once one modifies

the supersymmetry transformations accordingly by replacing F with F .

Now, let’s consider what gauge bundles the theory has. As can be seem from the

equation of motion for Â, TrF is constant, and has periods quantized in integer units when

we impose the parameter λ generates the gauge group U(1) instead of R [1]. So the theory

considered on a Riemann surface Σ has a topological quantum number labeled by c̃1 =

[TrF/2π] ∈ H2(Σ,Z) corresponding to the generalized U(1) electric flux. For an honest

U(N) theory — without the B-field — the single Chern class c1 = [TrF/2π] ∈ H2(Σ,Z)

would classify all U(N)-principal bundles. A U(N)-bundle can be thought of as the data

of a U(1)-bundle and an SU(N)/ZN -bundle, such that the Stiefel-Whitney class of the

SU(N)/ZN -bundle w2 ∈ H2(Σ,ZN ) is related to the U(1) characteristic class as
∫
w2 =

∫
c1

(mod N) [20]. This can be seen at the level of the transition functions for the gauge

field. However, in the theory with the B-field, the additional 1-form symmetry enhances

the transition functions and generalizes the allowed bundles and connections, as detailed

in [10, 21]. The resulting generalized U(N)-connection admits an independent ’t Hooft flux

w2 in addition to the electric flux c̃1. This type of gauge bundle would be more accurately

described in the language of gerbes or 2-bundles, but we will not need to go into such

territory here. Due to the particularly simple 2-group structure, practically speaking we

can think of the allowed gauge bundles as U(1)× SU(N)/ZN -bundles, with independently

chosen characteristic classes (c̃1, w2) ∈ H2(Σ,Z)×H2(Σ,ZN ). The classical configurations

of the scalar and fermion fields in the theory mimic the configurations in a U(1)×SU(N)/ZN
theory. It is important to emphasize that the theory is not a U(1) × SU(N)/ZN gauge

theory; for example the operator content — such as Wilson lines and surface operators —

is different.

Configurations with
∫

Σ TrF/2π = M correspond to the binding of M F-strings [1].

The M units of flux is interpreted as the NS-NS charge carried by the F-string, and TrF
serves as a source for the B-field in the string target space. The generalized Yang-Mills

action (or energy) of the flux is the binding energy of the (M,N)-string, measured as the

– 11 –



J
H
E
P
1
1
(
2
0
1
7
)
1
4
0

difference from the mass of the N D-strings. If one considers the theory on the cylinder

C = Rt × S1, the presence of M units of TrF flux implies that there is a Wilson loop

eiM
∮
∂C Â/N (2.8)

at the boundary. However, this Wilson loop must also be complemented by the B-field

to be gauge invariant. This can be seen by noting that the standard U(N) Wilson loops

are not gauge invariant in this theory, instead one has the following surface operators

considered in [10],(
TrR P exp

∮
∂Σ′

A

)
eiNR

∫
Σ′ B =

(
TrR P exp

∮
∂Σ′

A′
)
eiNR

∫
Σ′

dÂ
N

+B. (2.9)

Note that the inside and outside of this operator differ by NR units of U(1) electric flux

TrF . So, the sector with M units of electric flux has the operator

eiM
∮
∂C

Â
N eiM

∫
C B = eiM

∫
C
dÂ
N eiM

∫
C B (2.10)

turned on. As with the SU(N)/ZN theory, the integral of the 2-form gauge fields dÂ and

B are not of global 2-forms. Upon quantizing the theory on the cylinder, these states with

M units of electric field TrF are the (M,N)-string states. They fall into N superselection

sectors determined by M (mod N).

We are interested in the low-energy fluctuations of the (M,N)-string bound states. The

path integral of the worldvolume U(N) +B theory on the Euclidean torus T 2 is naturally

a trace of the theory quantized on the cylinder C. The trace sums over the (M,N)-string

sectors by summing over the flux c̃1 ∈ H2(T 2,Z). Crucially, the U(N) + B theory has

the operator

eiM
∫
T2 dÂ/NeiM

∫
T2 B (2.11)

turned on in the sector with M units of electric flux. On a closed surface such as T 2,

the first factor measures the ’t Hooft flux in the SU(N)/ZN sector, since
∫
T 2 dÂ =

∫
T 2 w2

exactly as for the SU(N)/ZN theory discussed above. Once again, the presence of this term

provides a discrete θ angle 2πM/N for the sum over the SU(N)/ZN -bundles. The second

factor is simply the Wilson surface operator for the U(1) 1-form gauge symmetry. The

“charge” M is nothing but the F-string winding number once again. This closed Wilson

surface operator measures the U(1)-valued holonomy of the background B-field.

We note that for the U(N) theory with or without the B field, one can also add a

continuous θ-angle term to the action proportional to
∫

TrF or
∫

TrF , or in general a

supersymmetric FI parameter. For the theory with the B field, this θ angle is related to

the axion of the Type IIB string theory [1]. However we will not consider including this

term, as it does not affect the qualitative features of our discussion (or the elliptic genus).

2.2 Classical vacua on T 2

Motivated to perform a quantitative check of our conjectures regarding the structure and

description of the vacua, we would like to compute the elliptic genera of the MSYM2
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theory with the various gauge groups discussed above. The elliptic genus is a certain

supersymmetric partition function on the 2-torus T 2 [22], which counts (with a sign (−1)F )

states in the cohomology of a conjugate pair of right-moving supercharges Q±R.3 States in

the cohomology correspond to right-moving vacua tensored with left-moving BPS states.

Elliptic genera have been extensively used to study N = (2, 2) and more recently N = (0, 2)

theories; for a very restricted set of examples see [23–26]. It is often useful to refine the

elliptic genus by other conserved charges in the theory that commute with Q±R, which allows

more information about the spectrum of the theory to be captured. For a theory with at

least N = (0, 2) supersymmetry, the elliptic genus can be schematically defined as

I = Tr (−1)F
∏
JL

yJL
∏
f

xfqHL q̄HR , (2.12)

where JL stands for the generators of left-moving R-symmetry, and f stands for the gener-

ators of bosonic flavor symmetries, all commuting with the Q±R. With this philosophy, the

definition of the elliptic genus can be extended to theories with higher supersymmetry, as

we will do so for theories with N = (8, 8) supersymmetry in sections 4 and 5. The trace

can be taken in the Ramond or Neveu-Schwartz left- and right-moving Hilbert spaces of

the theory on the spatial circle. We will specialize to the Ramond-Ramond sector. The

elliptic genus is invariant under deformations of a theory preserving the right-moving su-

percharges, and therefore is a topological index of theories. In particular, it is invariant

under RG flow, which allows it to be computed in the free UV limit of a theory. For

example, for Landau-Ginzburg theories it is sufficient to know the contributions from the

field content of the theory in the free limit and impose the restrictions on R- and flavor

symmetries coming from the superpotential [23].

For gauge theories the elliptic genus can be computed in the free limit of the theory by

introducing fugacities for the gauge charges, which amounts to doing the path integral in

the presence of a fixed but arbitrary background flat gauge connection, and then imposing

Gauss’ Law to project onto physical states by integrating over the moduli space of flat

connections [24, 25, 27]. As discussed, for gauge theories with only adjoint fields such as

MSYM2, one has freedom in choosing the global form of the gauge group. For example,

the theory with SU(N) gauge group differs from the theory with SU(N)/ZK gauge group

for any K|N , despite having the same Lagrangian. Since π1(SU(N)/ZK) = ZK , the

SU(N)/ZK theory has additional classical field configurations on T 2, therefore both the

moduli spaces of flat connections and the moduli space of classical vacua are enhanced to

include various disconnected components. These additional components are crucial for the

computation of the elliptic genus for such theories, as the path integral sums over them

as well. We note that to compute the elliptic genus of the SU(N) theory and the U(N)

theory without the B field, we only to integrate over the trivial moduli space of the SU(N)

bundle. However, to compute the elliptic genus of the U(N) theory with the B field, we

need to integrate over the full SU(N)/ZN moduli space. Also, once we have a description

3Elliptic genera can be defined for theories with N = (0, 1) supersymmetry as well, with a single self-

conjugate right moving supercharge QR. However, one expects less control over the spectrum, as generically

R- and flavor symmetries can be discrete.
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of the SU(N)/ZN moduli space, we can infer the SU(N)/ZK moduli space, and compute

the elliptic genera for the SU(N)/ZK theories for free. To prime ourselves for computing

the elliptic genera, we now turn to a description of the moduli space of flat SU(N)/ZN -

connections on T 2. As an added bonus, we will be able to understand the classical field

configurations on T 2 for the various theories discussed, and discover the classical vacua.

2.2.1 Flat connections on SU(N)/ZN -bundles over T 2

A treatment of the moduli spaces of flat connections for SU(N)/ZN bundles was given

in [28], where in particular it was shown that the moduli spaces for the topologically non-

trivial bundles with structure group G are isomorphic to moduli spaces of trivial bundles

for a different structure group Gω. Here, we will give a self-contained, very explicit, and

somewhat pedestrian account of the moduli spaces of flat connections on T 2, specializing

to the structure group Gadj = SU(N)/ZN .

Flat connections can be solved for by their holonomies, and the moduli space is given by

Mflat = Hom(π1(T 2), Gadj)/Gadj . (2.13)

Denoting elements of SU(N)/ZN as conjugacy classes [A] of elements A ∈ SU(N), such

homomorphisms for Gadj = SU(N)/ZN is the set of solutions to the equation

[A][B][A]−1[B]−1 = 1 (2.14)

modulo conjugation by SU(N)/ZN (or, equivalently, by SU(N) as the center acts trivially).

For SU(N), the analogous equation ABA−1B−1 = 1 implies A and B lie in the same

maximal torus. While such commuting holonomies describe flat SU(N)/ZN connections,

they are not the only solutions to (2.14). To find the rest of the solutions, we can lift (2.14)

to SU(N), and find solutions there. In SU(N), we have N equations,

ABA−1B−1 = ωkN , (2.15)

labeled by k ∈ Z/NZ, that project to the equation (2.14) in SU(N)/ZN . In (2.15), A and

B are now in SU(N) and ωN is a primitive Nth root of unity. We can use part of the gauge

freedom to diagonalize B, leaving only the Weyl group, which reorders the eigenvalues.

The equation now reads

SDS† = ωkND, (2.16)

which is an eigenvalue equation for conjugacy action of SU(N) on a diagonal matrix. For

each N and k, there is always a solution, constructed from the clock and shift matrices4

DN =


1

ωN
. . .

ωN−1
N

 , and SN =


0 1

0 1
. . . 1

1 0

 (2.17)

4We note that as defined, DN and SN do not always have determinant equal to 1, and therefore are not

always in SU(N). This can easily be fixed by dividing by the Nth root of the determinant in the definition.

Since this overall phase decouples from the conjugation action, and so does not affect our calculations, we

will drop it to avoid clutter.
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which satisfy

SkNDN (SkN )† = ωkNDN . (2.18)

Correspondingly, the pair of holonomies ([SkN ], [DN ]) describes a flat SU(N)/ZN connec-

tion. Therefore, each k contributes a new component, MN,k, to the moduli space of flat

SU(N)/ZN connections,MN . These components are disjoint, and labeled by discrete data

k, so we can write

MN =
N−1⊔
k=0

MN,k. (2.19)

The principal SU(N)/ZN bundle PN,k on T 2, with ’t Hooft non-abelian flux k =∫
T 2 w2(PN,k), has the moduli space of flat connection precisely MN,k.

Let’s proceed to describe MN,k for given N and k. It will be useful to define d =

gcd(N, k), as MN,k will turn out to have complex dimension d − 1. In fact, for given N

and any two k1 and k2 such that d = gcd(N, k1) = gcd(N, k2), we will have the isomorphism

MN,k1
∼=MN,k2 . This is not a surprise, since the bundles PN,k1 and PN,k2 are related by an

automorphism of π1(SU(N)/ZN ) = ZN exchanging k1 and k2. Motivated by this, we define

MN,d
∼=MN,k. Let’s start with the case when N and k are relatively prime, so d = 1.

Moduli space of bundles with d = 1. We first note that for any pair of elements

(A,B) in SU(N) satisfying some commutation relation, such as (2.15), there are a total

of N2 points (ωaNA,ω
b
NB), where a, b = 1, 2, . . . , N , that do so. (This is necessary for

SU(N) solutions (A,B) to descend to SU(N)/ZN solutions ([A], [B]).) So, we can work

with representatives (A,B) of the conjugacy class ([A], [B]).

To solve (2.15), we can diagonalize either A or B, and obtain the solutions (Dm
N , S

n
N ) or

(SmN , D
n
N ), for somemn = k. We note that SN generates the ZN subgroup of the Weyl group

SN , and therefore has the same eigenvalues as DN (up to an irrelevant determinant factor).

So, SN and DN are conjugate and the solutions (SmN , D
n
N ) and (Dm

N , S
n
N ) are identified by

gauge transformations. Also, since we necessarily have gcd(m,N) = gcd(n,N) = 1, the

solutions for various m,n only reorder the eigenvalues of DN and SN up to an overall

cyclic ordering, and are related by the action of the Weyl group. We can partially fix the

gauge by choosing m = k and n = 1, and we are left with N2 solutions in SU(N) given

by (ωaNS
k
N , ω

b
NDN ). But, precisely because SNDNS

†
N = ωNDN , these N2 points are also

identified by gauge transformations generated by the simultaneous conjugation by DN and

by SN ,

SN (ωaNS
k
N , ω

b
NDN )S†N = (ωaNSNS

k
NS
†
N , ω

b
NSNDNS

†
N ) = (ωaNS

k
N , ω

b+1
N DN ) (2.20)

DN (ωaNS
k
N , ω

b
NDN )D†N = (ωaNDNS

k
ND

†
N , ω

b
NDNDND

†
N ) = (ωa−1

N SkN , ω
b
NDN ) (2.21)

so there is a single solution in SU(N) up to conjugacy. Projecting to SU(N)/ZN , we still

have a single point, ([SkN ], [DN ]), of SU(N)/ZN holonomies, but this point is fixed at order

N2 by the Z2
N generated by simultaneous conjugation by [DN ] and by [SN ],

[SN ]([SkN ], [DN ])[SN ]† = ([SkN ], [DN ]) (2.22)

[DN ]([SkN ], [DN ])[DN ]† = ([SkN ], [DN ]) (2.23)
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So, we finally have

MN,k = {([SkN ], [DN ])}/Z2
N . (2.24)

We see that

MN,d=1 = {([SN ], [DN ])}/Z2
N , (2.25)

and the isomorphism MN,d=1
∼= MN,k is given by replacing the primitive Nth root of

unity ωN by its kth power.

Moduli space of bundles with d > 1. The essential observation for the d 6= 1 cases

is that

SdN = SN/d ⊗ Id, and Dd
N = DN/d ⊗D

d/N
d . (2.26)

Since the d-dimensional factors commute, one can turn on arbitrary eigenvalues in the

corresponding d-dimensional subgroup of the Cartan torus. Explicitly, the solutions are

generalized to

(eihN,d(θs)SkN , e
ihN,d(θt)DN ) = (SN/d ⊗ eihd(θs), DN/d ⊗ eihd(θt)Dd

N ), (2.27)

where

eihN,d(θ) := IN/d ⊗ eihd(θ) := IN/d ⊗


e2πiθ1

e2πiθ2

. . .

e2πiθd

 , (2.28)

as one can easily check that

(eihN,d(θs)SkN )(eihN,d(θt)DN )(eihN,d(θs)SkN )†

= S
k/d
N/dDN/d(S

k/d
N/d)

† ⊗ eihd(θs)(eihd(θt)D
d/N
d )e−ihd(θs)

= ω
k/d
N/dDN/d ⊗ eihd(θt)D

d/N
d

= ωkN (eihN,d(θt)DN ).

(2.29)

The unitarity condition fixes (θs)i and (θt)i to be real, and the determinant condition fixes

their sums to zero. Assigning the two holonomies to the spatial (along 1) and temporal

(along τ) directions of the base torus, the moduli space inherits a natural complex structure,

and is parametrized by complex coordinates ui = (θt)i − τ(θs)i which are periodic: ui ∼
ui + 1 ∼ ui + τ .

In choosing this presentation of the holonomies, we have used part of the gauge sym-

metry to write them as products of factors of size N/d and d. We are left with a Z2
N/d×Sd

subgroup of the gauge group. To see this, note that as far as the N/d by N/d factor is

concerned, the situation is analogous to the d = 1 case, wherein we have used part of the

gauge symmetry to order the eigenvalues of SN/d and DN/d up to a cyclic ordering, and

there is a remaining Z2
N/d, generated by simultaneous conjugation by SN/d ⊗ Id and by

DN/d ⊗ Id, corresponding to the cyclic reordering of the eigenvalues, which acts on the

solutions by identifying ui ∼ ui + 1
N/d ∼ ui + τ

N/d . The d× d block also has its eigenvalues
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permuted by the Weyl group Sd of the d-dimensional Cartan subgroup. So, in SU(N), the

moduli space is M̃N,k/Sd where

M̃N,k :=
{

(S
k/d
N/d ⊗ e

ihd(θs·N/d), DN/d ⊗ eihd(θt·N/d))
}
∼= (T 2/Z2

N/d)
d−1. (2.30)

Here, T 2 is a copy of the base torus, with the same complex structure.

Once we project to SU(N)/ZN , the coordinates undergo the further identifications,

ui ∼ ui + 1
N ∼ ui + τ

N , so the solutions are fixed by the Z2
N/d action above. The moduli

space is then

MN,k
∼= {([Sk/dN/d ⊗ e

ihd(Nθs)], [DN/d ⊗ eihd(Nθt)])}/Z2
N/d × Sd. (2.31)

Once again, dependence on k is only through d, via the choice of an N/dth root of unity,

and we can define

MN,d
∼= (MN,d/Sd)/Z2

N/d, (2.32)

where

MN,d =
{

(SN/d ⊗ eihd(Nθs), DN/d ⊗ eihd(Nθt))
}
∼= (T 2/Z2

N )d−1, (2.33)

and analogously for its lift to SU(N) via M̃N,d
∼= M̃N,k. Note thatMN,d

∼=MN/d,1×Md,d.

2.2.2 Classical vacua in instanton sectors

The classical zero energy configurations in the SU(N)/ZN theory are gauge invariant so-

lutions to the BPS equations,

Fµν = 0,

[Xi, Xj ] = 0,

DµX
i = 0,

(2.34)

as can be seen from the fermionic supersymmetry variations, or directly from the action. In

the IR limit as g →∞, we can think of a particular solution as the data of a flat connection

Aµ, and commuting constant bosons Xi satisfying [Aµ, X
i] = 0. In the sector with trivial

instanton number k = 0, the two components of A commute, so the Xi are all in the same

Cartan subalgebra h, with the Weyl group W permuting the eigenvalues, so the eigenvalues

parametrize (h)8/W = (R8)N−1/SN [3]. However, in the presence of flat connections for

non-trivial bundles, zero-energy configurations of the bosons are restricted further. To see

directly from the above descriptions of the flat connections which Xi are zero energy, we

can exponentiate the relation [Aµ, X
i] = 0 to the holonomies of Aµ as ei

∮
AXie−i

∮
A = Xi

for each of the two 1-cycles, the solutions to which are of the form (1.3), parametrizing

(R8)d−1/Sd for the instanton sector with d = gcd(k,N).

For the U(N) theory with the B field, classical field configurations are determined by

picking (c̃1, w2), which specifies a gauge 2-bundle. Given (c̃1, w2), there will be minimal

action configurations with constant field strength F09 = 2πMN 1N and action proportional to

M2, where M =
∫
c̃1, with the scalars parametrizing SymdR8. (In the Lorentzian theory,

such configurations have M units of constant electric flux and energy g2M2/N .) The naive
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“zero-energy” vacua have c̃1 = 0, but, like the SU(N)/ZN theory, there are N disconnected

components labeled by w2.

What about the other choices for c̃1? In the brane picture, the U(N)+B MSYM theory

is the leading approximation to the brane effective action. One can identify the energy of

the flux TrF as the binding energy of F-strings to the D-strings [1, 3, 16]. These configu-

rations are half-BPS in the target space, so the corresponding state in the MSYM theory

should also preserve 16 supercharges. This is indeed the case, as the U(N) + B MSYM2

theory has nonlinearly realized supersymmetries, which are the goldstinos of the break-

ing of translation symmetry in the presence of D-branes [13–15], so the supersymmetry

variation (A.10) of the fermions is corrected to

δΘ = ΓMNFMN ε1 + 1N ε2. (2.35)

Here, Θ = (χ, 0)T is the 10d Majorana spinor and 1N is the generator of the center of the

u(N) algebra. In particular, the BPS equations are generalized to

F09 = Λ1N ,

[Xi, Xj ] = 0,

DµX
i = 0,

(2.36)

by choosing ε2 = −2ΛΓ09ε1. So, there are BPS sectors with constant F09 = 2πMN 1N such

that the minimal action configurations discussed above — with constant, commuting Xi

parametrizing Symd(R8), which are the solutions to the BPS equations for given bundle

with w2 — preserve 16 appropriately chosen supersymmetries. Therefore, these config-

urations are “supersymmetric vacua”, but in a sector with a different central charge of

the superalgebra.

We comment that it would be interesting to pursue the relation between the existence

of the nonlinear supersymmetry to the presence of the B field.

3 Elliptic genera of SU(N)/ZN gauge theories

We now delve into the task set upon in 2.2 of generalizing the elliptic genus when there

are additional bundles to consider, such as for SU(N)/ZN theories, or for the U(N) theory

with the B-field. Once again, as explored in [24, 25, 27], the elliptic genera of 2d gauge

theories is a certain path integral on the torus, which due to localization can be calculated

by integrating over the moduli space of flat connections. Let G̃ be a simply-connected

semi-simple Lie group with a discrete center Z(G̃). As discussed in the previous section,

when one has a Lagrangian with gauge symmetry G̃ and with all fields invariant under

some subgroup H ′ of Z(G̃), one has several distinct choices of theories corresponding to a

choice of the global form of the gauge group G = G̃/H, for each H ⊂ H ′. These theories

will generically have different choices of gauge bundles on the spacetime, and thus the

choice of the gauge group will determine which bundles are being summed over by the

path integral [19]. For such 2d theories, the elliptic genus is naturally also a sum over

the path integrals for the sectors with different gauge bundles, each of which localizes to
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an integral over the moduli space of flat connections for that bundle. Furthermore, since

π1(G) = H, each 2d G-gauge theory carries additional discrete data in the form of a θ angle

dual to the relevant characteristic class w(P ) of the bundle P , which specifies a weight for

the sum over components. So, the elliptic genus can be written schematically as

Iθ =
∑
P

eiθ
∫
w(P )ZP , (3.1)

where ZP is the result of the path integral for the sector of the gauge theory with gauge

bundle P .

Concretely, for 2d SU(N)/ZN theories, there are N SU(N)/ZN -bundles PN,k, and the

relevant characteristic class is w2(P ) ∈ H2(T 2,ZN ), with k =
∫
T 2 w2(Pk), so we write

IθSU(N)/ZN =

N−1∑
k=0

eiθkZN,k, (3.2)

where θ takes values in

θ = 0, 2π
1

N
, 2π

2

N
, . . . , 2π

N − 1

N
. (3.3)

For U(N) MSYM2, there is an analogous but slightly more nuanced story. For a

standard U(N) theory without the B-field, the gauge bundles are U(N)-bundles, which

are classified by a single integer characteristic class c1 ∈ H2(Σ,Z). Only the trivial bundle

with c1 = 0 admits flat connections. Since the U(1) degrees of freedom are free and

therefore decouple, the elliptic genus is computed as

IU(N) = IU(1)ISU(N). (3.4)

For the U(N) theory with the 2-form gauge field B, recall that there are additional

field configurations corresponding to connections on gauge bundles with Gadj = U(1) ×
SU(N)/ZN structure group. On a Riemann surface, these bundles are characterized by

two independent classes, (c̃1, w2), however, only certain bundles will contribute to the

elliptic genus. For the theory taken at face value, flat connections are only present when

TrF = 0, but there are still the SU(N)/ZN -bundles with flat connections to sum over, so

we have the index

I c̃1=0
U(N)+B = IU(1)Iθ=0

SU(N)/ZN . (3.5)

Let’s consider the other sectors, which require adding to the path integral the operator

eiM
∫
Σ
dÂ
N

+B. (3.6)

As we discussed in section 2, this operator turns on a U(1) electric flux of M units, so

we are in the sector with c̃1 = M . For the SU(N)/ZN sector, w2 is unfixed, and is

summed over with the discrete theta angle θ = 2πM/N specified by the operator eiM
∫
Σ
dÂ
N .

The definition of the elliptic genus for the sector with M strings needs to be modified to

take into account the non-linear supersymmetries, which shifts the central charge in the

superalgebra. The corresponding elliptic genus localizes to states that saturate the BPS
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bound in this sector, F = 2πMN 1ω with ω the volume form, which specifies the bundle with

c̃1 = M . The scalar and fermionic fields in the U(1) multiplet, as well as the SU(N)/ZN
sector of the theory are unaffected by this modification. Isolating the holonomy of the

B-field eiφ = ei
∫
Σ B, we see that the elliptic genus of this sector is

eiMφIMU(N)+B = eiMφI1Iθ=2πM/N
SU(N) , (3.7)

where I1 is the contribution of the free center of mass modes. As a check, note that for

the U(1) theory, the sector with M strings attached, which is the (M, 1)-string, has index

I1. The S-dual (1,M) string indeed has the same index, if IθSU(N) = 1 for θ = 2π/N which

we will show to be the case. We can also construct the elliptic genus that sums over each

BPS sector (labeled by the M units of flux),

IU(N)+B =
∑
M∈Z

eiMφIMU(N)+B. (3.8)

To obtain each of the various indices, the crucial object we need to compute is

IθSU(N)/ZN . The computation requires some discussion, which we will now elaborate.

3.1 Integration over components of the moduli space of flat SU(N)/ZN -

connections

To compute IθSU(N)/ZN , we need to calculate the path integrals ZN,k for the SU(N)/ZN
bundles, so let’s analyze them. In general, ZP is the path integral over all connections for

P , so we can write

ZP =
1

Vol(G(P ))

∫
A∈Ω1(T 2,adP )

DA Z(A). (3.9)

Here, Z(A) is the result of the path integral over all other fields in the presence of a P

connection A, and G(P ) is the group of gauge transformations (automorphisms) of the

bundle P . The path integral for the elliptic genus localizes to a finite dimensional integral

over the flat connections for the bundle P , but there are some global factors we need to

worry about.

Let’s consider the case when the moduli space of flat connections MP for a given

bundle P is a point. After localization, there are no moduli to integrate over, so the path

integral just becomes an evaluation of the torus partition function, Z1−loop(u), of the fields

in the theory in the background of the unique flat connection u ∈ MN,1 (for a similar

example, see the Abelian example in [24, section 4.5]). If the point u is fixed by some finite

group of gauge transformations, as is the case for u ∈MN,1 = MN,1/Z2
N , we should divide

by the order of this group. The bundles PN,k with k ⊥ N (so d = 1) are exactly of this

type, and contribute ZN,k = ZN,1 each, with

ZN,1 = Z1−loop(u)|u∈MN,1
=

1

N2
Z1−loop(u)|u∈MN,1

. (3.10)

Next, let’s consider the integral over the trivial SU(N)/ZN -bundle, PN,k=0. Since the

bundle PN,0 lifts to the (necessarily trivial) SU(N)-bundle P̃N , we can lift the path integral

over the SU(N)/ZN -connection to a path integral Z̃P̃ over an SU(N)-connection, Ã. As
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analyzed in [29, section 4.1], the two path integrals are related by a factor of the ratio

of the volume of gauge transformations of the bundles, which can be computed using the

N : 1 covering map Ã→ A to be

Vol(G(P̃N ))

Vol(G(PN,0))
= |π1(SU(N)/ZN )|1−2g (3.11)

on a Riemann surface of genus g. Now, the SU(N) path integral is precisely what was shown

in [25] to localize to a contour integral over the moduli space of flat SU(N)-connections,

M̃N = M̃N/SN . Therefore,

ZN,0 =
1

N
Z̃P̃N =

1

N

1

|SN |

∮
M̃N

Z1−loop. (3.12)

The contour integral is determined by the Jeffrey-Kirwan residue operation JK-Res. The

integrand is once again Z1−loop(u), which is naturally a meromorphic function on the

SU(N)/ZN moduli space MN,0 for a theory with no fields charged under the center. Since

the SU(N) moduli space M̃N is an N2 : 1 cover of the moduli space MN,0 = MN,0/SN of

PN,0, Z1−loop extends to a periodic function on M̃N . The contours specified by the JK-Res

operation only depend on the charges of the fields giving rise to the poles, so the contours

on the SU(N) moduli space are also periodic on the SU(N)/ZN moduli space for a theory

with no fields charged under the center. In particular, the contour integral over M̃N is just

N2 times the contour integral on MN,0. So, (3.12) can be simplified as

ZN,0 = N
1

|SN |

∮
MN,0

Z1−loop. (3.13)

Finally, let’s consider the case with general k 6⊥ N , so d > 1. The moduli space

in this case is MN,k
∼= MN,d = MN/d,1 × Md,d, so flat connections are of the form

Aµ = (AN/d ⊗ Ad)µ, with AN/d the unique gauge-invariant flat connection on the bundle

PN/d,k/d, and Ad a flat connection on the bundle Pd,0 which needs to be integrated over.

Combining our arguments above leading to the formulas (3.10) and (3.13), the path integral

for such PN,k localizes to ZN,k = ZN,d with

ZN,d =
1

(N/d)2
d

1

|Sd|

∮
MN,d

Z1−loop, (3.14)

where MN,d as given in (2.33). Once again, the contour is determined by the JK-Res

operation.

Collecting our results in equations (3.10) and (3.14), the elliptic genus (3.2) is computed

by the formula

IθSU(N)/ZN =

N−1∑
k=0

eiθk gcd(N, k)
1

|WN,k|

∮
MN,k

Z1−loop(u) (3.15)

=
∑
k 6⊥N

eiθk gcd(N, k)
1

|WN,k|
∑

u∗∈M∗N,d

JK-Res
u=u∗

(Q(u∗), η)Z1−loop(u)

+
∑
k⊥N

eiθk
1

|WN,k|
∑

u∈MN,1

Z1−loop(u) (3.16)
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with WN,k = Z2
N/d×Sd. We will elaborate on the residue prescription JK-Res in section 4.3

as part of the computation of the elliptic genus for MSYM2.

3.2 Adjoint fields in the presence of background flat connections

To evaluate the contribution to the index from each of the components of the moduli space,

we need to analyze how fields behave in the presence of background flat connections, and

determine what Z1−loop(u) is for each component. In line with our end goal, here we will

determine Z1−loop(u) for a theory with all fields in the adjoint representation.

First off, as is well known, background flat connections on T 2 can be interchanged with

boundary conditions around the two 1-cycles for fields charged under them. As a simple

example, one could keep in mind that the choice of periodic or antiperiodic boundary

conditions for fermions is equivalent to the choice of a background flat Z2-connection.

Correspondingly, the boundary conditions determine the mode expansions of the fields

into oscillators. Since the elliptic genus can be computed in the free field limit, the moding

in the presence of arbitrary background flat connections can be easily determined by the

charges of the fields.

Let’s start by considering adjoint fields in the presence of a flat connection for the

bundle PN,1 over T 2, described by a pair of SU(N)/ZN holonomies ([SN ], [DN ]). Although

the two matrices SN and DN do not commute, their actions by conjugation on N × N
matrices commute, since

SNDNA(SNDN )† = ωNDNSNA(ωNDNSN )† = DNSNA(DNSN )†. (3.17)

Therefore, the matrices SN and DN acting on the Lie algebra su(N) by conjugation furnish

an (N2−1)-dimensional representation of ZN×ZN , with eigenvalues (ωaN , ω
b
N ), where a, b =

0, 1, . . . , N−1, and a and b both not 0 (as the mode with a = b = 0 corresponds to the iden-

tity matrix, which is not in su(N)). Explicitly, the eigenspace of the eigenvalue (ωaN , ω
b
N )

is the 1-dimensional vector space of scalar multiples of the matrix S−bN Da
N . For such a flat

connection, adjoint fields will have gauge fugacities exp 2πia+(−1)abτ
N = ωaNq

(−1)ab
N , where

the charges a, b are taken from the set

CN =

{
{−N−1

2 ,−N−1
2 + 1, . . . , N−1

2 } for N odd,

{−N
2 ,−

N
2 + 1, . . . , N2 ,

N
2 + 1} for N even,

(3.18)

but with the eigenvalue a = b = 0 excluded. We had to be careful in picking the sign of the

exponent of q, since we would like our expression to be charge conjugation invariant. This

will be necessary later for evaluating the elliptic genus, which is a trace in the Ramond

sector. These choices are also invariant under the modular S transformation of the base

torus, which amounts to exchanging a and b. To summarize, if the contribution to the

path integral of modes with gauge fugacity z = e2πiu is Ξ(u), the evaluation in (3.10) of

Z1−loop(u) at u ∈MN,1 is

Z1−loop(u)|u∈MN,1
=

1

N2

∏
a,b∈CN

(a,b) 6=(0,0)

Ξ
(
a+(−1)abτ

N

)
. (3.19)
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The result is identical for all bundles PN,k with k ⊥ N ; although the holonomies change to

([SkN ], [DN ]), the action on the Lie algebra is isomorphic — as expected, since they have

isomorphic moduli spaces.

Next, we should consider the bundles with moduli spaces of positive dimension. We

can study the holonomies ([SN/d ⊗ eih(θs)], [DN/d ⊗ eih(θt)]) ∈ MN,d, and the result will be

the same for all k with gcd(k,N) = d. Similar to our above discussion, conjugation by SN/d
and DN/d furnish d2 copies of a (N/d)2-dimensional representation of Z2

N/d. Each of the

d2 copies has the usual gauge charges for the adjoint representation of SU(d). Explicitly,

the matrices

SaN/dD
b
N/d ⊗ (E(d))i,j (3.20)

diagonalize the conjugation action, with eigenvalue(
ωbN/d e

2πi((θs)i−(θs)j), ω−aN/d e
2πi((θt)i−(θt)j)

)
, (3.21)

where (E(d))i,j is the d×d matrix with a 1 in the (i, j)th entry and zeroes everywhere else.

So, for a flat connection on the torus with these holonomies, the adjoint fields have gauge

fugacities ωaN/d q
(−1)ab
N/d zi

zj
, where a, b ∈ CN/d, and zi = exp(2πiui) with ui = (θt)i − τ(θs)i.

One of the d modes with a = b = 0 and i = j corresponds to the identity matrix, and should

be excluded, as above for the d = 1 case. Putting everything together, the contribution

from a component of the moduli space isomorphic to MN,d is schematically

∫
MN,d

Z1−loop = d
1

(N/d)2

1

d!

∮
Md

(∏
i

dui

)
1

Ξ(0)

∏
a,b∈CN/d

d∏
i,j=1

Ξ
(
a+(−1)abτ

N/d + ui − uj
)
,

(3.22)

where the 1/Ξ(0) term serves to remove from the product the mode corresponding to the

identity element in the Lie algebra. As a check, we see that this formula reproduces our

earlier expression (3.19) for d = 1, and reproduces 1/N times the expression for the integral

over the SU(N) moduli space obtained by [24, 25, 27] for the integral over the moduli space

of the trivial bundle with d = N , as can be seen by lifting Md to SU(N).

4 Elliptic genus of MSYM2

4.1 Setup

We are now sufficiently equipped to turn to the computation of the elliptic genus of MSYM2.

To compute the elliptic genus of a N = (8, 8) supersymmetric theory, it is convenient to

pick an N = (0, 2) subalgebra of the N = (8, 8) supersymmetry algebra and express the

fields and the Lagrangian in representations of this N = (0, 2) superalgebra. As elaborated

in appendix A, a choice of an N = (0, 2) subalgebra is given by picking two right moving

supercharges Q±R that generate right-moving supersymmetry transformations ε±R ⊂ εαR,

such that ε±R (and thus Q±R) are eigenstates of a weight of the 8s representation. To

paraphrase the appendix for convenience, this choice decomposes the R-symmetry group
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as Spin(8)→ Spin(2)× Spin(6) ∼= U(1)R × SU(4), such that

8s → 1+1 ⊕ 60 ⊕ 1−1

8c → 4− 1
2
⊕ 4̄+ 1

2

8v → 4+ 1
2
⊕ 4̄− 1

2
.

(4.1)

Let {±ei}i=1,...,4 ⊂ h∗ be the weights of the 8v representation of Spin(8), and let

{Kj}j=1,...,4 ⊂ h denote the Cartan generators with ei(Kj) = δij . A concrete choice of

ε±R is given by the 8s weights ±r where r = 1
2(e1 + e2 + e3 + e4), for which U(1)R is

generated by the Cartan generator JR = 1
2(K1 +K2 +K3 +K4).

Under such a split, the SU(4) factor commutes with the supercharges Q±R; therefore

it is a flavor symmetry from the perspective of the N = (0, 2) superalgebra. This allows

us to define the index in the Ramond-Ramond sector via the N = (0, 2) flavored elliptic

genus [24, 25, 27]

TrH(−1)F qHL q̄HR
∏
A

afAA (4.2)

where fA are the Cartan generators of Spin(6) ∼= SU(4). Generalizing the index to include

the θ angle, we obtain

TrH e
iθ

∫
w2(−1)F qHL q̄HR

∏
A

afAA =
∑
k

TrHk e
iθk(−1)F qHL q̄HR

∏
A

afAA . (4.3)

Under the decomposition (4.1), the fields decompose into SU(4) representations as

{Xi} → {φA, φ̄A}
{χαL} → {λ−, λ̄−, ψAB− }
{χα̇R} → {ψA+, ψ̄+A},

(4.4)

which can be reorganized into N = (0, 2) superfields {ΦA, Φ̄A,Λ, Λ̄,Ψ
A4, Ψ̄A4} as

ΦA = φA + θ+ψA+ + θ+θ
+
D+φ

A

Λ = λ− + θ+ 1√
2

(D + iF09) + θ+θ
+
D+λ−

ΨA4 = ψA4
+ + θ+GA4 + θ

+
EA4(Φ) + θ+θ

+
D+ψ

A4
+ .

(4.5)

The Fermi multiplet Λ is the N = (0, 2) vector multiplet, and carries the gauge field

strength F09 (or F09 for the U(N) +B theory). The E-type interaction term is EA4(Φ) =

−i
√

2g[ΦA,Φ4]. There is also a J-term superpotential

igTr

∫
dθ+ΨA4JA(Φ)

∣∣∣∣
θ
+

=0

+ h.c. = ig
εABC4

3!
Tr

∫
dθ+ΨA4[ΦB,ΦC ]

∣∣∣∣
θ
+

=0

+ h.c. (4.6)

Perhaps the easiest way to derive these interactions is from the Lagrangian of 4d N = 4

SYM written in N = 1 supermultiplets. When dimensionally reduced to 2d, we get 2d
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N = (8, 8) SYM, expressed inN = (2, 2) vector and chiral superfields, denoted Σ̃ and Φ̃1,2,3,

respectively, with the N = 1 superpotential descending to the N = (2, 2) superpotential

igTr

∫
dθ2Φ̃1[Φ̃2, Φ̃3] + h.c.. (4.7)

Now, we can decompose the N = (2, 2) multiplets and the N = (2, 2) superpotential into

their N = (0, 2) counterparts as described in [30]. The vector multiplet Σ̃ decomposes

into a chiral multiplet Φ4 and the Fermi vector multiplet Λ. The chiral multiplet Φ̃A

of N = (2, 2) decomposes into a N = (0, 2) chiral multiplet ΦA and Fermi multiplet

ΨA4, where the Fermi multiplet has E-term D+ΨA = i
√

2g[Φ4,ΦA]. The N = (2, 2)

superpotential W (Φ) descends to JA(Φ) = ∂W
∂ΦA

, which reproduces our expression above.

For the free U(1) theory, the index as defined vanishes due to the zero mode of λ− and

its conjugate, as usual. This is because λ− and its conjugate are in the same eigenstate of

bosonic symmetries as the N = (0, 2) supercharges, including the R-symmetry, and have

opposite fermion number, so their contributions cancel. But, following [31, 32], we can

remove the contribution from the problematic zero modes by inserting a factor of JR into

the definition of the trace, as we will discuss in detail in section 5. Then the index is simply

the product of the one loop partition functions for each of the superfields

IU(1) = ZΛ

∏
A

ZΦAZΨA4 = η(τ)3

∏3
A=1 θ1(τ |ξA + ξ4)∏4

A=1 θ1(τ |ξA)
(4.8)

where ξA are holonomies for flat background gauge fields for the SU(4) “flavor’’ symme-

try, coupling to fields via ρ(ξ) = ρAξA, where ρ is a weight of the fundamental SU(4)

representation. The holonomies ξA satisfy∑
A

ξA = 0, (4.9)

which is the determinant constraint of SU(4), or equivalently the superpotential constraint.

The Dedekind eta function is defined as

η(τ) = q1/24
∞∏
n=1

(1− qn), (4.10)

and the Jacobi theta function is defined as

θ1(τ |u) = −iq1/8z1/2
∞∏
n=1

(1− qn)(1− zqn)(1− z−1qn−1), (4.11)

with q = e2πiτ and z = e2πiu.

Let’s recall that in order to compute the index for the interacting gauge theory, one

also needs to introduce gauge fugacities, and then impose Gauss’ Law, which takes the form

of a contour integral. Since the theory is free in the UV, and the index is scale invariant,

we can do the computation in the free UV limit, so we only need the contribution from

each free field. The integrand of the contour integral for the gauge theory index is then

Z1−loop(τ |u; ξ) =
∏
α

Ξ(τ |α(u); ξ), (4.12)
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where Ξ(τ |α(u); ξ) is the factor from the modes with charge α in the presence of a back-

ground flat gauge connection specified by u, with α(u) as discussed in section 3.2 for the

various components of the moduli space of flat connections. For MSYM2, the free field

index is

Ξ(τ |u; ξ) :=
θ1(τ |u)

∏3
A=1 θ1(τ |ξA + ξ4 + u)∏4

A=1 θ1(τ |ξA + u)
. (4.13)

Note that we can recover the U(1) index as

IU(1)(τ |ξ) = − ∂

∂u

∣∣∣∣
u=0

Ξ(τ |u; ξ). (4.14)

The function Ξ(τ |u; ξ) inherits the following periodicity properties from the theta func-

tion θ1(τ |u),

Ξ(τ |u+ a+ bτ ; ξ) = e−2πib(2ξ4)Ξ(τ |u; ξ),

Ξ(τ |u; ξ1 + a+ bτ, ξ2, ξ3) = e2πib(2u)Ξ(τ |u; ξ),
(4.15)

as well as the following modular transformation properties,

Ξ(τ + 1|u; ξ) = Ξ(τ |u; ξ),

Ξ

(
−1

τ

∣∣∣∣ uτ ;
ξ

τ

)
= e

πi
τ

(4uξ4)Ξ(τ |u; ξ).
(4.16)

These properties imply that the integrand Z1−loop(τ |u; ξ), and therefore the index is a

modular invariant symmetric Abelian (multi-periodic) function of the variables ξ1,2,3 with

modular parameter τ . We will explore such functions in section 5, and their uniqueness

properties will help us match the gauge theory index to the symmetric orbifold index in

section 4.3.

4.2 Contribution from isolated flat connections

We are now ready to compute the various contributions to the SU(N)/ZN gauge theory

index from the components of Mflat. Let’s start with the pointlike components, corre-

sponding to isolated flat connections of the bundles PN,k with k ⊥ N . Applying our earlier

result (3.19), we have

Z1−loop|MN,1
=

1

N2

∏
a,b∈CN

(a,b) 6=(0,0)

Ξ(τ |a+(−1)abτ
N ; ξA). (4.17)

In fact, this expression simplifies quite a bit, due to the identity∏
a,b∈CN

Ξ(τ |u+ a+(−1)abτ
N ; ξA) = Ξ(τ |Nu;NξA). (4.18)

We can now rewrite the contribution to the index as

Z1−loop|MN,1
=

1

N2
lim
u→0

Ξ(τ |Nu;NξA)

Ξ(τ |u; ξA)
=

1

N

IU(1)(τ |NξA)

IU(1)(τ |ξA)
. (4.19)
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4.3 Integral over flat connections on the trivial bundle

Let’s move on to the contributions from components of Mflat of positive dimension. We

will start with the component corresponding to the trivial SU(N)/ZN -bundle PN,0, which

will be the bulk of our computation. As discussed in section 3.1, we can lift the integral

on the moduli space of flat connections MN,N of PN,0 to an integral on the moduli space

of flat SU(N)-connections M̃/SN . This allows us to use the formula obtained by [25] (see

also [24, 27]) and write the integral in (3.12) as∮
MN,N

Z1−loop(u) =
1

|π1(SU(N)/ZN )|
1

|SN |
∑

u∗∈M̃sing∗

JK-Res
u=u∗

(Q(u∗), η)Z1−loop(u), (4.20)

where

Z1−loop =
(
IU(1)

)N−1
∏
i 6=j

θ1(τ |ui − uj)
∏3
A=1 θ1(τ |ξA + ξ4 + ui − uj)∏4

A=1 θ1(τ |ξA + ui − uj)

N∧
i=2

dui. (4.21)

The authors of [25] give a detailed prescription for evaluating the JK-Res operation.

Here, we will briefly recall parts of the prescription, and compute the residue. Let r denote

the rank of the gauge group, so r = N−1 here for SU(N). The integrand Z1−loop is naturally

a meromorphic (r, 0)-form on M̃, which is the torus hC/(Q
∨+ τQ∨) ∼= (C/Z+ τZ)r, where

h is the Cartan subalgebra of SU(N), and Q∨ is the coroot lattice. We pick u2, . . . , uN as

coordinates on M̃ and solve for u1 using the trace constraint
∑

i ui = 0. We observe that

Z1−loop is singular along the hyperplanes

HA
ij = {ui − uj + ξA = 0 mod Z + τZ} ⊂ M̃. (4.22)

Let QAij ∈ h∗ denote the weight of the multiplet responsible for the hyperplane HA
ij , which

are the non-zero roots QAij(u) = ui − uj . Let Q(u∗) = {QAij | u∗ ∈ HA
ij} denote the set

of charges of the singular hyperplanes meeting at u∗. The collection of points u∗ where

at least r singular hyperplanes intersect is denoted by M̃sing∗ . When the charges Q(u∗)

of all singular hyperplanes meeting at a point are contained in a half-space of h∗, the

arrangement of hyperplanes is termed “projective”. When there are exactly r singular

hyperplanes intersecting at a point, labeled say Hj1 , . . . ,Hjr , the arrangement is termed

“non-degenerate”. To evaluate the residue, we need to pick a covector η ∈ h∗, which

for theories with only adjoint fields specifies a Weyl chamber. For a projective and non-

degenerate arrangement, the residue is determined by the operation

JK-Res
u=u∗

(Q(u∗), η)
du1 ∧ · · · ∧ dur

Qj1(u− u∗) · · ·Qjr(u− u∗)
=

 1
| det(Qj1 ...Qjr )| if η ∈ Cone(Qj1 . . . Qjr),

0 otherwise.

(4.23)

Here, Cone(Qj1 . . . Qjr) stands for the positive cone generated by the charge rays

Qj1 , . . . , Qjr . When the arrangement is degenerate, so there are more than r singular

hyperplanes intersecting, the JK-Res operation is more complicated, as one needs to spec-

ify the precise cycle to integrate on. However, for the case of interest for us, whenever the
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arrangement is degenerate, one can exploit the linearity of the JK-Res operation to deter-

mine the cycle relatively easily, as was pointed out in some examples in [25]. In any case,

the JK-Res operation corresponds to a particular linear combination of iterated residues,

and in our case we will be able express JK-Res explicitly as a somewhat simple prescription

of iterated residues.

Let’s analyze which poles give non-zero contributions to the sum in (4.20). It simplifies

the classification of poles to note that non-zero residues are from points u∗ where s singular

hyperplanes and s′ zero hyperplanes intersect, such that s − s′ = r. We see that Z1−loop

has zeroes along the hyperplanes defined by

Nij = {ui − uj = 0 mod Z + τZ},
NB4
ij = {ui − uj + ξB + ξ4 = 0 mod Z + τZ},

(4.24)

for i 6= j and B = 1, 2, 3. So, for example, at the N2 points where the hyperplanes

HA
i+1,i with i = 1, . . . , N − 1 and some fixed A intersect, there are no other singular

or zero hyperplanes intersecting (for generic ξA). These points therefore give non-zero

contributions as long as η ∈ Cone({QAi+1,i}i=1,...,N−1). However, whenever say HA
i,j and

HA
i′,j intersect, we have ui = ui′ , at which point there is a double zero in the integrand,

and such points don’t contribute for generic ξA.

We note that sets of hyperplanes that contribute a non-zero residue always intersect

at N2 points, and each of these points will contribute identical residues. This is coming

from the fact that we have lifted the integral on the trivial SU(N)/ZN -bundle’s moduli

space to the SU(N) moduli space M̃, which as we discussed in section 3.1 is an N2 → 1

covering. For concreteness, we will continue the integral on M̃ to make direct contact with

the literature, and observe that we will obtain N2 times the integral over the SU(N)/ZN
moduli space.

Let’s return to the classification of poles. There are some points where a degenerate

intersection occurs with the required number of zero hyperplanes for the residue to be

non-zero. When this is the case, first of all, we need to determine what order of iterated

residues JK-Res corresponds to. A second point that needs attention is as follows. We

note that due to the constraint
∑
ξA = 0, the second set of zero hyperplanes NB4

ij can be

written as

NAB
ij = {ui − uj + ξA + ξB = 0 mod Z + τZ} (4.25)

with A,B = 1, 2, 3, 4, but A 6= B — essentially, as an rank 2 antisymmetric tensor of SU(4).

Although the zeroes are totally symmetric in the ξA (as expected, since the integrand is to-

tally symmetric in the ξA), the signs of the factor in the integrand giving these hyperplanes

differ for the pairs (A,B) ∈ {(1, 4), (2, 4), (3, 4)} versus (A,B) ∈ {(1, 2), (1, 3), (2, 3)}. This

introduces a subtle sign in the computation of the residue, which we have to keep track of.

For concreteness, let’s look closely at an example, as it will illuminate some of the

subtleties in the computation. For N = 4, there are N2 = 16 points where four singular

hyperplanes HA
12, HB

13, HB
24, and HA

34 meet the zero hyperplane {ε(A,B)(u1−u4)+ξA+ξB =

0}. Here, ε(A,B) is the sign that determines the correct zero hyperplane, NAB
14 or NBA

14 ; it
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is 1 if either of A or B is 4, and −1 otherwise. The intersection occurs at the points

(u2, u3, u4) =
1

2
(ξA − ξB,−ξA + ξB, ξA + ξB) +

a+ bτ

4
(1, 1, 1) (4.26)

for a, b = 1, . . . , 4. A more suitable choice of coordinates is given by vi = Qi1(u) = ui − u1

for i = 2, 3, 4. The intersection points in these coordinates are at

(v2, v3, v4) = (ξA, ξB, ξA + ξB) + (a+ bτ)(1, 1, 1). (4.27)

First of all, let’s note that the integrand is doubly periodic in each of the variables vi under

translations by Z + τZ, so each of the poles contributes the same residue. Shifting the

coordinates so that the intersection happens at vi = 0, we need to evaluate

JK-Res
v=0

(Q∗, η)
ε(A,B)v4

v2v3(v4 − v2)(v4 − v3)

dv2 ∧ dv3 ∧ dv4

4
. (4.28)

The set of charges Q∗ is {Q12, Q13, Q24, Q34}, which are

Q12 = (−1, 0, 0), Q13 = (0,−1, 0), Q24 = (1, 0,−1), Q34 = (0, 1,−1) (4.29)

in coordinates dual to vi. We pick the convenient choice of η = (−1,−1,−1) in these

coordinates. Now, we need to determine which cycle of integration JK-Res corresponds

to for this η. As discussed in (4.20), there could be various such cycles, depending on

which sub-chamber η sits in; however, the results are equivalent. By linearity of the

JK-Res operation, if we find some cycle of integration such that when applied to the 3-

form defined by

ω234 =

(
a

v2v3(v4−v2)
+

b

v2v3(v4−v3)
+

c

v2(v4−v2)(v4−v3)
+

d

v3(v4−v2)(v4−v3)

)
(4.30)

gives the correct residue for each of the linear pieces, as according to (4.23), then it is the

right prescription for the degenerate case. Noting that for the four subsets of charges, only

Cone(Q12,Q13,Q24) and Cone(Q12,Q13,Q34) contain η, the correct cycles are determined

as Res
v4=0

Res
v3=0

Res
v2=0

and Res
v4=0

Res
v2=0

Res
v3=0

, as both evaluate to a+b when applied to ω234. Therefore,

applying either of the iterated residues to (4.28), we see that it evaluates to ε(A,B)/4. Such

poles generalize to N > 4 as Young tableaux along pairs (A,B) as one expects.

Another subtlety comes from poles containing “cubes”, which starts occurring for

N ≥ 8. Concretely, for N = 8, we have a pole at the point

(vi)i=2,...,8 = (ξ1, ξ2, ξ3, ξ1 + ξ2, ξ1 + ξ3, ξ2 + ξ3, ξ1 + ξ2 + ξ3). (4.31)

There are 13 singular hyperplanes

H1
12, H

2
13, H

3
14, H

1
25, H

2
35, H

3
26, H

1
46, H

3
37, H

2
47, H

3
58, H

2
68, H

1
78, H

4
81 (4.32)

and 6 zero hyperplanes N34
51 , N

24
61 , N

14
71 , N

14
82 , N

24
83 , N

34
84 meeting at this point. However, the

charge vector Q81 coming from H4
81 points outside of any half-space containing all the other
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charge vectors, so the arrangement is not projective. As was pointed out in [25], we can

deal with this situation by relaxing the constraint on the R-symmetry fugacities (which

resolves the intersection into a bunch of projective ones), computing the residues, and then

taking the limit ε→ 0. Relaxing the constraint on ξA to ξ1 + ξ2 + ξ3 + ξ4 = ε, the singular

point is resolved to two points, at v8 = ξ1 + ξ2 + ξ3 and at v8 = −ξ4 = −ξ1 − ξ2 − ξ3 + ε

with v2, . . . , v7 as before. For η = (−1, . . . ,−1), the second point does not contribute, and

to obtain the contribution from the first point, we need to calculate

JK-Res
v=0

(Q∗, η)
(v5 + ε)(v6 + ε)(v7 + ε)

v2v3v4(v5 − v2)(v5 − v3)(v6 − v2)(v6 − v4)(v7 − v3)(v7 − v4)

× (v8 − v2 + ε)(v8 − v3 + ε)(v8 − v4 + ε)

(v8 − v5)(v8 − v6)(v8 − v7)(−ε− v8)

∧8
i=2 dvi

8
.

(4.33)

We can determine possible choices of a cycle of integration for this degenerate arrangement

as above, and once again the residue is independent of this choice. One choice is given by

JK-Res
v=0

(Q∗, η)

8∧
i=2

dvi = Res
v8=0

Res
v7=0

. . . Res
v2=0

, (4.34)

so (4.33) evaluates to −1/8. Note that this sign comes from the singular hyperplane H4
18

with the problematic charge covector which made the arrangement non-projective in the

first place, and is separate from the sign coming from zero-hyperplanes discussed above.

So, in general we need to keep track of both sources of sign for the residue.

Finally, we note that starting N ≥ 16, there are poles containing “hypercubes”, with

v16 = ξ1 + ξ2 + ξ3 + ξ4. Due to the constraint on ξA, v16 = 0 and there is a double zero

from N16,1 and N1,16, so such poles have vanishing residue.

We are now ready to compute the contour integral for general N . The contributing

poles in any Weyl chamber are classified by certain 4d Young tableaux of size N .5 A

4d Young tableau is a collection of N “nodes” Y = (y1, . . . , yN ) ∈ Z4
≥0, subject to the

“stacking” condition: if the node x = (x1, x2, x3, x4) ∈ Y , then so do all the nodes y =

(y1, y2, y3, y4) with 0 ≤ yA ≤ xA for all A = 1, 2, 3, 4 [33]. We also require that each node

yi have at most 3 non-zero coordinates yAi . We will denote the collection of such 4d Young

tableaux of size N by YN . Each such 4d Young tableau Y of size N describes N ! ·N2 poles

of the integrand, at coordinates given by solutions to ui − uj = yAσ(i)ξA, for some choice

of j and the (N − 1)! orderings σ(i) of the remaining ui with i 6= j.6 The choice of j is

related to the choice of a Weyl chamber; for any choice of η only (N −1)! ·N2 poles survive

the JK-Res operation, corresponding to some fixed j. For concreteness, we fix j = 1 with

the convenient choice of η = (−1,−1, . . . ,−1) in coordinates (u2, u3, . . . , uN ). Since the

integrand is symmetric in the ui, the (N−1)! orderings σ(i) contribute identically, cancelling

part of the factor coming from the order of the Weyl group. We define vi = Qi1(u) = ui−u1

for i = 2, . . . , N , noting the relation
∑
ui = 0. Contributing poles are at points v(Y ) given

54d Young tableaux of size N also classify solid (3d) partitions of N ,
∑
i,j,k ni,j,k = N, where for each

nonzero nijk, there are nijk corresponding nodes (i − 1, j − 1, k − 1, l), with 0 ≤ l < nijk. In [33], such

partitions are denoted 4d partitions of N .
6We have picked yAj = 0 which we are free to do for any Y .
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by coordinates vi = yAi ξA + a+ bτ , for a, b = 1, . . . , N . Due to the periodicity structure of

the integrand, the sum over a, b is trivial and produces a factor of N2.

We introduce the following partial ordering � on the nodes of 4d Young tableaux,

yi � yj if yAi ≤ yAj for all A, (4.35)

which keeps track of the stacking of the nodes. The operation JK-Res for a pole Y =

(y1, . . . , yN ), partially ordered such that yi � yj if i < j, is given explicitly by the iterated

residue

JK-Res
u=u∗

(Q∗, η)
∧
dui =

1

N
Res

vN=yAN ξA

· · · Res
v3=yA3 ξA

Res
v2=yA2 ξA

. (4.36)

The integral over the moduli space is then∮
MN,N

Z1−loop =
1

N

∑
Y ∈YN

N2 JK-Res
vi=yAi ξA

(Q∗, η) Z1−loop(u) (4.37)

=
1

N

∑
Y ∈YN

ε(Y ) lim
δ→0

1

Ξ(τ |δ; ξ)
∏
i,j

Ξ(τ |yAi ξA − yAj ξA + δ; ξ), (4.38)

where we have introduced an auxiliary variable δ to simplify the expressions of the residues.

The coefficient ε(Y ) is a sign due to degenerate and non-projective intersections, and is

determined as follows. Let c3(Y ) be the number of nodes in Y with at least 2 nonzero

entries in the first 3 coordinates, and let c4(Y ) be the number of nodes in Y with exactly

3 nonzero coordinates, or

c3(Y ) = #{yi ∈ Y | yBi = 0 for at most one B, with B ∈ {1, 2, 3}.}
c4(Y ) = #{yi ∈ Y | yAi = 0 for exactly one A, with A ∈ {1, 2, 3, 4}.}

(4.39)

Then, the sign ε(Y ) is given by

ε(Y ) = (−1)c3(Y )+c4(Y ). (4.40)

We conjecture that the sum over the residues greatly simplifies to the expression

1

N

∑
|Y |=N

ε(Y ) lim
δ→0

1

Ξ(τ |δ; ξ)
∏
i,j

Ξ(τ |yAi ξA − yAj ξA + δ; ξ) =
1

N

∑
s|N

s
IU(1)(τ |Ns ξ)
IU(1)(τ |ξ)

. (4.41)

This is a highly nontrivial simplification to check analytically, as the summands on the left-

hand side grow in number and complexity very quickly in N . Fortunately, the functions on

both sides of this equation are very special, and they enjoy some very restrictive properties,

which allows us to make some exact statements. Specifically, they are modular invariant

symmetric Abelian (multi-periodic) functions of the variables ξ1,2,3 with the modulus τ

and period as in (5.14), of the kind explored in detail in section 5. This follows from

the periodicity and modular transformation properties of Ξ(τ |u; ξ) and IU(1)(τ |ξ); as the

integrand (4.21) is such a function, so is the integral. We will explore some key properties

of such functions in section 5, leading up to Lemma 5.1 which states that such functions are

completely determined by the rational function in variables a1,2,3 = exp 2πiξ1,2,3 obtained
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by setting τ = i∞ (or q = 0), corresponding to the constant term in the Fourier expansion

in q. This dramatically simplifies the effort of checking (4.41), since if we can show the

equality for q = 0, the full equality follows exactly! We were able to show this for N ≤ 7

by using Mathematica to simplify the sum over the residues with q = 0. For larger N , up

to N ≤ 12, we checked that the pole structure of the rational functions obtained by setting

q = 0 on both sides agrees, as well as by performing some numerical checks.

4.4 Integral over flat connections on generic bundles

Having computed the integral on the moduli space of the trivial bundle, turns out we can

infer the integral on each of the other components of Mflat. We first note that we can use

the identity (4.18) to simplify the integrand in (3.22),∫
MN,d

Z1−loop =
d2

N

IU(1)(τ |Nd ξ)
IU(1)(τ |ξ)

1

d!

∮
Md

(∏
i

dui

)(
N

d
IU(1)

(
τ |Nd ξ

))d−1 d∏
i,j=1
i 6=j

Ξ(τ |Nd (ui−uj); Nd ξ).

(4.42)

We recognize the first factor as the contribution from MN/d,1. The integral is the same as

the integral over Md,d, but with scaled flavor charges ξ → N
d ξ. Quoting our result above,

we have∫
MN,d

Z1−loop =
1

N

IU(1)(τ |Nd ξ)
IU(1)(τ |ξ)

∑
s|d

s
IU(1)(τ |ds

N
d ξ)

IU(1)(τ |Nd ξ)
=

1

N

∑
s|d

s
IU(1)(τ |Ns ξ)
IU(1)(τ |ξ)

. (4.43)

4.5 Putting the pieces together

Adding up the contributions from each of the components of the moduli space of flat

connections, we obtain the index

IθSU(N)/ZN (τ |ξ) =
1

N

N∑
k=1

eiθk
∑

s| gcd(k,N)

s
IU(1)(τ |Ns ξ)
IU(1)(τ |ξ)

. (4.44)

In fact, we can evaluate the sum over k with given θ = 2πM
N (mod 2π)

Iθ=
2πM
N

SU(N)/ZN (τ |ξ) =
∑
s|D

IU(1)(τ |sξ)
IU(1)(τ |ξ)

=
ID
I1

(τ |ξ) (4.45)

where D = gcd(M,N). Thus we establish that the index for the SU(N)/ZN MSYM2

theory at theta angle θ = 2πM
N is equal to the index of the sigma model into (R8)D−1/SD,

providing strong evidence that the IR limit of the gauge theory with the corresponding

theta parameter is described by this sigma model.

We can also easily infer the index of the SU(N) and SU(N)/ZK theories for each K|N
with our results thus far. For each such theory, the contributing bundles are a subset of

the SU(N)/ZN -bundles, with the moduli space of flat connections lifted appropriately. For

the SU(N) theory only the trivial bundle contributes, so we have the index

ISU(N) =
∑
s|N

s
IU(1)(τ |Ns ξ)
IU(1)(τ |ξ)

=

N∑
k=1

Igcd(k,N)

I1
(τ |ξ), (4.46)
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which is the sum of the index of each of the N superselection sectors in the theory, with

the kth superselection sector described by the sigma model into (R8)d−1/Sd with d =

gcd(k,N). For a SU(N)/ZK theory, there are K bundles to sum over, corresponding to

those SU(N)/ZN bundles with w2 liftable to H2(T 2,ZK) where ZK ⊂ ZN — essentially

those with K|w2. Accounting for the volume of gauge transformations and adding in the

ZK-valued θ angle θ = 2πM/N with M ∈ ZN/ZN/K ∼= ZK , we obtain the index

Iθ=
2πM
N

SU(N)/ZK (τ |ξ) =
1

K

N/K∑
k=1

eiθkK
∑

s| gcd(kK,N)

s
IU(1)(τ |Ns ξ)
IU(1)(τ |ξ)

(4.47)

=
∑

k≡M (mod K)

∑
s| gcd(k,N)

IU(1)(τ |sξ)
IU(1)(τ |ξ)

(4.48)

=
∑

k≡M (mod K)

Igcd(k,N)

I1
(τ |ξ). (4.49)

For each of the K values of θ, the index is the sum of the indices of the N/K superselection

sectors of the SU(N) theory with the same ZK charge.

As discussed, the index of the U(N) theory can be inferred from that of the SU(N)

theory, and is

IU(N)(τ |ξ) = IU(1)ISU(N)(τ |ξ) =
N∑
k=1

Igcd(k,N)(τ |ξ). (4.50)

The U(N) theory has N superselection sectors, as expected.

The index of the N D1-branes worldvolume theory with U(N) gauge field and the

B-field in the sector with M units of flux c̃1 is

IMU(N)+B(τ |ξ) = I c̃1=M
U(1) I

θ= 2πM
N

SU(N) (τ |ξ) = ID(τ |ξ). (4.51)

We have used the fact that the U(1) factor is free, and since the field strength does not con-

tribute to the index, I c̃1U(1) = I1 in the appropriate topological sector of the supersymmetry

algebra. The index summing over all flux sectors (and therefore all BPS sectors) is

IU(N)+B(τ |ξ) =
∑
M∈Z

eiMφID(τ |ξ). (4.52)

Once again, we note that the D1-brane index is invariant under the S-duality of the Type

IIB string, which is generated by exchanging M and N and shifting M by a multiple of N ,

while leaving D invariant.

5 Elliptic genera of N = (8, 8) sigma models

We have thus far computed an N = (8, 8) analog of the elliptic genus of the SU(N) and

the U(N) MSYM2, and claimed that they are equal to the corresponding elliptic genus of

some symmetric orbifolds of the supersymmetric sigma model into R8. In this section, we

will compute the elliptic genus of the orbifold sigma model, and establish some of its key

properties that allow us to match it with the gauge theory elliptic genus.
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5.1 Elliptic genus of the R8 sigma model

For brevity, we will denote the supersymmetric sigma model into R8 by C. C is a free

theory. When viewed as a non-supersymmetric theory, C carries 3 Spin(8) flavor symmetry

groups, labeled Kb, Kl, and Kr, each acting separately on the 8 real bosons, the 8 real

left-moving fermions, and the 8 real right-moving fermions. When viewed as a N = (8, 8)

supersymmetric theory, these actions are combined into a single copy of Spin(8), K, which

is the R-symmetry identified as the rotation symmetry of the target space, with the bosons,

the left-moving fermions, and the right-moving fermions transforming in the 8v, 8s, and

8c representations, respectively (up to Spin(8) triality). We can pick the representations

of the fields under Kb ×Kl ×Kr as

(8v,1,1)⊕ (1,8s,1)⊕ (1,1,8c). (5.1)

With this choice, K is identified as the diagonal combination of Kb ×Kl ×Kr.

The philosophy for computing the flavored elliptic genus is to pick an N = (0, 2)

supersymmetry, and insert into the trace fugacities for every bosonic charge which com-

mutes with the chosen supersymmetry. We can think of C as an N = (0, 8) theory with

R-symmetry Kr, which has flavor symmetry Kb ×Kl. Any choice of an N = (0, 2) subal-

gebra gives the free theory with 4 chiral and 4 Fermi complex N = (0, 2) superfields. The

flavored elliptic genus in the RR sector of this theory is then

Z1(τ |ξA, ζ̃Ã) = TrRR(−1)F qHL q̄HR
4∏

A=1

a
Kb,A
A

4∏
Ã=1

b
Kl,Ã

Ã
=
θ1(ζ̃1)θ1(ζ̃2)θ1(ζ̃3)θ1(ζ̃4)

θ1(ξ1)θ1(ξ2)θ1(ξ3)θ1(ξ4)
(5.2)

where ξA and ζ̃Ã are eigenvalues of flat background gauge fields for Kb and Kl corresponding

to the Cartan generators Kb,A and Kl,Ã, with

aA = e2πiξA , b̃Ã = e2πiζ̃Ã . (5.3)

We have used the superscript tildes for the Kl Cartan to denote the basis in which the 8s
weights are diagonal. The transformation to the basis in which the 8v weights are diagonal

is given by

Kl,Ã = MA
Ã
Kl,A, where MA

Ã
=

1

2


1 1 1 1

1 −1 −1 1

−1 1 −1 1

−1 −1 1 1

 . (5.4)

However, this Kb×Kl flavor symmetry only commutes with the action of a N = (0, 8)

superalgebra, and does not respect the full N = (8, 8) supersymmetry of the theory. If we

insist that C is indeed an N = (8, 8) supersymmetric theory, there is a single K = Spin(8)

R-symmetry, which is not respected by the backgrounds considered above. As described

in section 4.1 and appendix A.2, once an N = (0, 2) subalgebra of the N = (8, 8) algebra

is chosen, the supersymmetry generators Q± are eigenstates of a corresponding Spin(2)

subgroup of K, and there is only a Spin(6) ∼= SU(4) symmetry commuting with it. In this
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case, we can define an index with fugacities for the SU(4) ‘‘flavor’’ symmetry, which we

label K ′,

Z1(τ |ξ′B) = TrRR(−1)F qHL q̄HR
3∏

B=1

a′K
′
B

B , (5.5)

with K ′B the Cartan generators of K ′. But the left-moving fermions and the right-moving

supersymmetry generators transform in the same representation, 8s, of K. So, for any

choice of an N = (0, 2) subalgebra, there will be left-moving fermions which are eigenstates

of the Spin(2) R-symmetry, and therefore uncharged under the SU(4) flavor symmetry. The

index as defined in (5.5) vanishes due to the contributions of these fermion zero modes,

as was the case for the free U(1) multiplet as discussed in the paragraph leading up to

equation (4.8).

Once again, as is commonly done in the literature, we can remove the contributions

from the uncharged fermion zero modes by slightly modifying the index (5.5). This is done

by (re)introducing fugacities for symmetries the fermions with problematic fermion zero

modes are charged under (so that the modified index has a zero when the fugacities are

turned off), taking appropriate derivatives to get rid of the zero, and then turning off the

fugacities, as in [32] (see also [31]). We can do this by relating (5.2) to (5.5). First, we

identify Kb and Kl diagonally, and write the reduced N = (0, 8) index

Z1 (τ |ξA) =
θ1

(
ξ1+ξ2+ξ3+ξ4

2

)
θ1

(
ξ1−ξ2−ξ3+ξ4

2

)
θ1

(
−ξ1+ξ2−ξ3+ξ4

2

)
θ1

(
−ξ1−ξ2+ξ3+ξ4

2

)
θ1 (ξ1) θ1 (ξ2) θ1 (ξ3) θ1 (ξ4)

. (5.6)

The N = (8, 8) index (5.5) can be computed from (5.6) by further identifying Kr with Kb

and Kl diagonally (so KA = Kb,A +Kl,A +Kr,A), and turning off the fugacity correspond-

ing to the Spin(2) R-symmetry of the N = (0, 2) subalgebra. Choosing the N = (0, 2)

superalgebra as in section 4.1 and equation (A.15), with the R-symmetry generated by

JR = MA
1 KA = 1

2(K1 +K2 +K3 +K4), we identify

K ′B = MA
B+1KA, B = 1, 2, 3 (5.7)

as the Cartan generators of K ′. Practically, turning off the fugacity for JR can be realized

by having the ξA descend to eigenvalues of background flat SU(4)-connections, which satisfy

the trace constraint

ξ1 + ξ2 + ξ3 + ξ4 = 0. (5.8)

The N = (0, 8) index (5.6) has a first-order zero at exactly this constraint due to fermion

zero-modes, as it should by our argument above. To remove this zero, we simply take

the derivative with respect to b1 = exp(2πiζ̃1) = exp(2πi ξ1+ξ2+ξ3+ξ4
2 ) =

√
a1a2a3a4, and

set b1 = 1,

I1(τ |ξA) := − ∂

∂b1
Z1(τ |ξA)

∣∣∣∣
b1=1

(5.9)

=
η3(τ)θ1(τ |ξ1 + ξ4)θ1(τ |ξ2 + ξ4)θ1(τ |ξ3 + ξ4)

θ1(τ |ξ1)θ1(τ |ξ2)θ1(τ |ξ3)θ1(τ |ξ4)
. (5.10)
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In this expression, it is understood that the ξA satisfy the constraint above. One could

explicitly plug in ξ4 = −ξ1−ξ2−ξ3, if desired. We note that this is exactly the index for the

(necessarily free) U(1) N = (8, 8) vector multiplet with the vanishing gaugino zero-mode

contributions removed, which is a good check that the two definitions of the index for the

gauge theory and the sigma model agree.

More generally, for any N = (8, 8) theory, this index is defined as

I(τ |ξA) = − ∂

∂b1

∣∣∣∣
b1=1

TrRR(−1)F qHL q̄HR
4∏

A=1

aKAA (5.11)

= TrRR(−1)FJRq
HL q̄HR

3∏
B=1

a′K
′
B

B . (5.12)

Fourier expansion of I1. The index I1 enjoys a number of very special properties.

For definiteness, we will solve for the SU(4) (or, really, SL(4,C)) constraint by setting

ξ4 = −ξ1 − ξ2 − ξ3 explicitly in this section.

• (Abelian function.) I1 is holomorphic in τ ∈ H/SL(2,Z) (including at the cusp q = 0

or τ = i∞), and meromorphic in each ξA ∈ C/(Z + τZ). Moreover, I1 is doubly

periodic in each ξA under translations by the lattice Z + τZ, i.e.

I1(τ |ξ + Ω · n) = I1(τ |ξ), (5.13)

where n ∈ Z6 and Ω is the period matrix

Ω =

1 τ 0 0 0 0

0 0 1 τ 0 0

0 0 0 0 1 τ

 . (5.14)

• (Symmetric function.) I1 is symmetric in ξA.

• (Modularity.) I1 is modular invariant, i.e. under SL(2,Z) transformations τ → aτ+b
cτ+d ,

we have,

I1

(
aτ + b

cτ + d

∣∣∣∣ ξA
cτ + d

)
= I1(τ |ξA),

(
a b

c d

)
∈ SL(2,Z). (5.15)

It follows from these properties that I1 is an honest map (H/SL(2,Z)) × (C/Z +

τZ)3 → C, and also a 3 variable Jacobi form (function) of weight 0 and index (0, 0, 0). The

periodicity in τ → τ + 1 and ξA → ξA + 1 allows for a Fourier expansion, of the form

I1(τ |ξA) =
∑
m

qmfm(ξ) =
∑
m≥0,l

c(m, l)qm
∏
A

alAA . (5.16)

Since the function is holomorphic in q, the coefficients fm(ξ) of qm are unique and well-

defined. But since the fm are meromorphic functions themselves, they might have multiple
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Fourier expansions. For example, we can easily determine

I1|q=0 (ξ) := I1(τ = i∞|ξ) =
(1− a1a2)(1− a1a3)(1− a2a3)

(1− a1)(1− a2)(1− a3)(1− a1a2a3)

= 1 +
a1

1− a1
+

a2

1− a2
+

a3

1− a3
− a1a2a3

1− a1a2a3
.

(5.17)

The function I1|q=0 (ξ) has different Fourier expansions in different regions of convergence

of the aA. Now, we can use the periodicity in ξA → ξA + τ to find a recursion relation for

c(m, lA), which, when combined with modular invariance, determines I1 completely given

I1|q=0 := I1(τ = i∞|ξ). Explicitly, we have

I1(τ |ξ) = I1|q=0 (ξ) +

∞∑
m=1

qm
∑
s|m

χ(sξ) (5.18)

where χ(ξ) is the SL(4,C) character

χ(ξA) = χ�(ξA)− χ∧3 �(ξA) = a1 + a2 + a3 + a4 −
1

a1
− 1

a2
− 1

a3
− 1

a4
. (5.19)

To see this, note that the periodicity of I1 under ξ1 → ξ1 + τ implies the identity,∑
m≥0,lA

c(m, l1, l2, l3)qmal11 a
l2
2 a

l3
3 =

∑
m≥0,lA

c(m, lA)qm+l1al11 a
l2
2 a

l3
3 , (5.20)

and similarly for ξ2 and ξ3. To retain a holomorphic series expansion in q, we must choose

c(0, l) to be the coefficients of the expansion of I1|q=0 in positive powers of aA, i.e. the

expansion convergent in the region |aA| < 1. From here, for each A = 1, 2, 3 and m ≥ 0,

we infer the following relations

c(m, l1, l2, l3) =

{
0 if m > 0 and, m+ lA < 0 or m− lA < 0,

c(m+ lA, l1, l2, l3) if m+ lA > 0.
(5.21)

The case with lA < 0 such that m + lA = 0 should be handled with more care. In that

case, for say A = 1, we have

I1|q=0 (ξ) =
∑

l1≤0,l2,l3

c(−l1, l1, l2, l3)al11 a
l2
2 a

l3
3 , (5.22)

which determines c(−lA, l1, l2, l3) = c̃(0, l1, l2, l3) where c̃ are the coefficients of I1|q=0 in

the expansion with negative powers of aA. Putting it together, we have7

c(m, l1, l2, l3) =


c(0, l1, l2, l3) if lA > 0 and lA|m for some A,

c̃(0, l1, l2, l3) if lA < 0 and lA|m for some A,

c(m, 0, 0, 0) if lA = 0 for all A,

0 otherwise.

(5.23)

7We should note that for the general case, the first two cases should be generalized to hold for the

conditional nAlA = m for some integers nA, rather than just lA|m. But for the specific case of I1, since c(0, l)

is only nonzero when l = (l1, l2, l3) is of the form (l, 0, 0), (0, l, 0), (0, 0, l), or (l, l, l), the notions coincide.
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The only coefficients that are not determined by these relations are those of the form

c(m, 0, 0, 0), implying that the function is determined up to a holomorphic function of

q. Requiring the function to be modular invariant fixes this ambiguity, since the only

holomorphic modular invariant functions are constants. For I1, c(m, 0, 0, 0) = 0 for m > 0,

and we obtain (5.18).

It is important to note that our discussion above proves that if any Abelian, modular

invariant function f(τ |ξ) with the same period matrix Ω as I1(τ |ξ) agrees with I1 at q = 0,

then it must equal I1. More generally, we have the following result.

Lemma 5.1 Let f(τ |ξA) be a modular invariant, Abelian function with periods 1 and τ

for each ξ, holomorphic in τ (including at the cusp, q = 0) and meromorphic in ξA. Then

f(τ |ξA) is completely determined by f |q=0 (ξA) = f(τ = i∞|ξA).

A particularly useful class of such functions for us turn out to be I1(τ |Nξ), which

satisfy the same properties as I1(τ |ξ).

5.2 Elliptic genus of the SymN(R8) sigma model

There are various equivalent methods of computing the partition function ZN of a sym-

metric product theory given the partition function of the base theory Z1. We list three

prominent methods here.

• Summing over SN connections and twisted sectors

ZN =
1

|SN |
∑
gh=hg

(ZN1 )g,h (5.24)

• The DMVV formula [34]

Z := 1 +
∑
N≥1

pNZN (q,~a) =
∏

n>0,m≥0,~l

1

(1− pnqm~a~l)c(nm,~l)
. (5.25)

• Hecke operators [32]

logZ =

∞∑
M=1

pMTMZ1, (5.26)

so in particular

ZN = TNZ1 + · · ·+ 1

N !
(T1Z1)N (5.27)

where

TMZ1(τ |~ξ) :=
1

M

M∑
d|M,d=1

M/d−1∑
b=0

Z1

(
dτ + b

M/d

∣∣∣∣ d~ξ) . (5.28)

The Hecke operators turn out to be the most straightforward to extract a closed-form

expression for ZN , given one for Z1. For the index we are interested in, we need to perform

the “index operation” to remove zero-mode contributions,

IN := − ∂

∂b1

∣∣∣∣
b1=1

ZN , (5.29)
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like we did to obtain I1. Analogous to the case in [32], only the term linear in Z1 survives

this operation, as all the other terms have zeroes of order greater than 1 at b1 = 1. Thus,

IN = − ∂

∂b1

∣∣∣∣
b1=1

TNZ1 =
1

N

∑
d|N

N/d−1∑
b=0

d I1

(
dτ + b

N/d

∣∣∣∣ dξA) . (5.30)

Specializing to the sigma model into SymN (R8), turns out we can simplify further,

IN =
∑
d|N

I1(τ |dξA). (5.31)

This last simplification is nontrivial, but can be seen in two ways. One can notice that the

q = 0 piece of the two expressions in (5.30) and (5.31) agree, and they are both periodic

functions on (C/Z + τZ)3; therefore they are equal by Lemma 5.1. Alternatively, one can

directly compute from the Fourier expansion:

1

N

∑
d|N

N/d−1∑
b=0

d I1

(
dτ + b

N/d

∣∣∣∣ dξA) =
∑
d|N

I1|q=0 (dξA) +
∑
d|N

∞∑
m=1

qdm
∑
s|N
d
m

χ(sdξA)

=
∑
d|N

I1 (τ = i∞|dξA) +

∞∑
k=1

qk
∑
d′|N

∑
s′|k

χ(s′d′ξA)

=
∑
d|N

I1(τ |dξA).

(5.32)

6 Conclusions and future directions

We have computed the elliptic genera of the SU(N)/ZK MSYM2 and U(N) MSYM2 with

and without the B field, with each corresponding choice of the discrete θ angle, and matched

it with the elliptic genus of a corresponding N = (8, 8) sigma model into a symmetric

orbifold of R8, which we claim describes the IR fixed point in that sector. While the main

focus of this work was in answering questions about the vacua of MSYM2, the elliptic

genera we have computed as part of our analysis are interesting objects in their own rights.

For example, they are related to the supersymmetric partition function of the free second

quantized Type IIA string as explored in [34], if one performs the sum over the string

winding number N ;

Z0(τ, σ|ξ) = 1 +
∑
N≥1

pNIN (τ |ξ), (6.1)

where p = e2πiσ. One needs to modify this expression with an appropriate factor to

obtain the T-duality invariant partition function Z(τ, σ|ξ) [34]. T-duality exchanges sting

winding number and oscillator number, so acts by interchanging p and q, which can be

used to determine Z. One could try to extract information about the strongly coupled

limit of the string, which is M-theory, using the topological invariance of this function. It

would also be an interesting question to understand the automorphic properties of Z, a
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la [35]. One might also consider replacing IN with the full D1-brane index IU(N)+B, which

in the Type IIA picture sums over the bound states with D0-branes as well.

This work was inspired by the 4d-2d correspondence explored in [30], as well as by

recent developments in the computation of flavored elliptic genera for 2d gauge theories.

In particular, MSYM2 can be obtained by considering M5-branes on a four-dimensional

torus T 4 and letting the volume of the T 4 shrink to zero. On the other hand, considering

M5-branes on T 6 = T 2 × T 4, and compactifying first on the T 2 factor taken to be the

worldvolume of the MSYM2, one obtains 4d N = 4 SYM. Following the general idea of [30],

the elliptic genus of MSYM2 is then related to the Vafa-Witten partition function of the

4d N = 4 theory on T 4, as well as to an appropriate supersymmetric partition function of

the 6d N = (2, 0) theory on T 6. We will be exploring this relation in upcoming work.
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A Action and supersymmetry transformations of MSYM2

A.1 Dimensional reduction from 10d to 2d

The Lagrangian for the N = (8, 8) super Yang-Mills theory in 2 dimensions can be obtained

by dimensionally reducing the 10 dimensional N = 1 SYM action∫
d10xTr

(
−1

4
FMNF

MN +
i

2
Θ̄ΓMDMΘ

)
(A.1)

where

DM = ∂M + ig[AM , ·] (A.2)

FMN =
1

ig
[DM , DN ] = ∂MAN − ∂NAM + ig[AM , AN ]. (A.3)

The dimensionally reduced Lagrangian is [3, 6]

L = Tr

(
−1

2
(DµX

i)2 + iχT /Dχ− 1

4
F 2
µν +

g2

4
[Xi, Xj ]2 −

√
2gχTLγi[X

i, χR]

)
. (A.4)

We will summarize the derivation presented in [6], but adopt a “mostly plus” metric

signature in contrast. We use the 10 dimensional metric

gMN = ηµν ⊕ δij (A.5)
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where µ, ν = 0, 9, and i, j = 1, 2, . . . , 8, and ηµν = diag(−1,+1). We can write the following

10d Majorana-basis (purely imaginary) gamma matrices satisfying {ΓM ,ΓN} = −2gMN

Γ0 = σ2 ⊗ I16

Γi = iσ1 ⊗ γi

Γ9 = iσ1 ⊗ γ9,

γi =

(
0 βi
βTi 0

)
,

γ9 =

(
I8 0

0 −I8

)
,

(A.6)

where the σa are the usual Pauli matrices,

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (A.7)

and the γi are 16×16 SO(8) gamma matrices of the reducible 8s⊕8c representation, with the

βi satisfying {βi, βTj } = 2δij . The 10d spinor Θ is Majorana, and has real components in the

Majorana basis we have chosen above, thus we can identify the charge conjugation matrix

C = −Γ0. Θ also satisfies the Weyl condition Θ = Γ11Θ, where Γ11 = Γ0 · · ·Γ9 = σ3 ⊗ I16

is the 10d chirality matrix, which allows us to write Θ = (χ, 0)T . The 8d chirality matrix

γ9 allows us to decompose further as χ = (χL, χR).

Dimensionally reducing on the 1, 2, . . . , 8 directions, we define scalars Xi := Ai, and

obtain the action

SMSYM2 =

∫
dx2 Tr

(
−1

2
(DµX

i)2+
i

2
χTL(D0+D9)χL+

i

2
χTR(D0−D9)χR−

1

4
F 2
µν

+
g2

4
[Xi,Xj ]2−gχαLγiαβ̇ [Xi,χβ̇R]

)
.

(A.8)

We are interested in the theory with gauge group U(N) or SU(N). The scalars Xi

and the fermions χ = (χαL, χ
α̇
R) are in the adjoint of the gauge group. The Lagrangian

manifestly possesses a Spin(8) R-symmetry, interpreted as rotations in the 8 transverse

directions, under which the scalars Xi and the spinors χαL, and χα̇R transform in the 8v, 8s,

and 8c representations, respectively.

The supersymmetry transformations can be deduced from the 10d SYM transforma-

tions [36]:

δAM = iε̄ΓMΘ (A.9)

δΘ = ΓMNF
MNε. (A.10)

After dimensional reduction, they are given by

δAµ = iεTΓ0Γµχ (A.11)

δX i = iεαLγ
i
αα̇χ

α̇
R + iεα̇Rγ

i
α̇αχ

α
L (A.12)

δχαL = 4c

[(
+F09δαβ −

ig

2
[Xi, Xj ]γ

i
αρ̇γ

j
ρ̇β

)
εβL + (D0 −D9)Xiγ

i
αβ̇
εβ̇R

]
(A.13)

δχα̇R = 4c

[(
−F09δα̇β̇ −

ig

2
[Xi, Xj ]γ

i
α̇ργ

j

ρβ̇

)
εβ̇R + (D0 +D9)Xiγ

i
α̇βε

β
L

]
(A.14)
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where c is the constant in ΓMN = c[ΓM ,ΓN ], and is determined as c = 1
4 by imposing

ΓMNΓMN = −2
(

10
2

)
. In the U(N) +B theory, one should replace F09 with the generalized

field strength F09.

A.2 Supersymmetry subalgebras and superspace formulation

For the purpose of computing the index of MSYM2, it is convenient to express fields and

the Lagrangian in N = (0, 2) or N = (2, 2) superspace. This can be done by considering

the representations of the fields and supersymmetries under the Spin(8) R-symmetry. The

16 supersymmetry generators (εα̇L, ε
α
R) are in the representation 8c⊕8s of Spin(8). A choice

of a N = (0, 2) subalgebra of the supersymmetry algebra is generated by ε±R := ε1
R ± iε2

R

corresponding to a pair of antiparallel weights of the 8s representation. Letting {±ei} ⊂ h∗

be the weights of the fundamental representation 8v, we pick the two weights ±r of 8s where

r :=
1

2
(e1 + e2 + e3 + e4). (A.15)

Note that ±r are eigenvalues for the action of the Cartan generator J = 1
2(K1 + K2 +

K3 + K4) on the weightspaces of ±r, where ei(Kk) = δik. With this choice, the Spin(8)

representations reduce as

8s → 1+1 ⊕ 60 ⊕ 1−1

8c → 4− 1
2
⊕ 4̄+ 1

2

8v → 4+ 1
2
⊕ 4̄− 1

2

(A.16)

under the decomposition U(1)R × SU(4) ∼= Spin(2) × Spin(6) ⊂ Spin(8), where U(1)R is

generated by J . The supersymmetry generators are now (εα̇L, ε
α
R) = (εAL , (εL)A, ε

±
R, ε

AB
R ),

where A,B = 1, 2, 3, 4 are SU(4) indices for the fundamental representation 4. The field

content of the theory is organized into N = (0, 2) superfields as in (4.5) in the main text,

with the Lagrangian given by the standard D-terms and the superpotential (4.6).

To get an N = (2, 2) subalgebra, one can to pick l := 1
2(e1 + e2 + e3 − e4). Then, the

vector and axial R-symmetries are determined by

RV = r + l = e1 + e2 + e3, RA = r − l = e4 (A.17)

This choice further decomposes the R-symmetry to U(1)R×U(1)L×SU(3) ⊂ Spin(8), with

the representations decomposing as

8s → 1+1,+ 1
2
⊕ 30,+ 1

2
⊕ 3̄0,− 1

2
⊕ 1−1,− 1

2

8c → 3− 1
2
,0 ⊕ 1− 1

2
,−1 ⊕ 3̄+ 1

2
,0 ⊕ 1+ 1

2
,+1

8v → 3+ 1
2
,+ 1

2
⊕ 1+ 1

2
,− 1

2
⊕ 3̄− 1

2
,− 1

2
⊕ 1− 1

2
,+ 1

2

(A.18)

The supersymmetries are generated by (ε±L , ε
A
L , (εL)A, ε

±
R, ε

A
R, (εR)A). In N = (2, 2) super-

space, the SU(3) singlets correspond to the components of the vector multiplet Σ̃ and its

conjugate, and the 3 ⊕ 3̄ correspond to the compontents of the chiral fields Φ̃B and its

conjugate, with the superpotential as in (4.7).
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