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Abstract—Signal processing on graphs finds applications in
many areas. In recent years renewed interest on this topic was
kindled by two groups of researchers. Narang and Ortega con-
structed two-channel filter banks on bipartitie graphs described
by Laplacians. Sandryhaila and Moura developed the theory
of linear systems, filtering, and frequency responses for the
case of graphs with arbitrary adjacency matrices, and showed
applications in signal compression, prediction, etc. Inspired by
these contributions, this paper extends classical multirate signal
processing ideas to graphs. The graphs are assumed to be general
with a possibly non-symmetric and complex adjacency matrix.
The paper revisits ideas such as noble identities, aliasing, and
polyphase decompositions in graph multirate systems. Drawing
such a parallel to classical systems allows one to design filter
banks with polynomial filters, with lower complexity than ar-
bitrary graph filters. It is shown that the extension of classical
multirate theory to graphs is nontrivial, and requires certain
mathematical restrictions on the graph. Thus, classical noble
identities cannot be taken for granted. Similarly, one cannot claim
that the so-called delay chain system is a perfect reconstruction
system (as in classical filter banks). It will also be shown that
M -partite extensions of the bipartite filter bank results will not
work for M -channel filter banks, but a more restrictive condition
called M-block cyclic property should be imposed. Such graphs
are studied in detail. A detailed theory for ) -channel filter banks
is developed in a companion paper.

Index Terms—Multirate processing, graph signals, aliasing on
graphs, bandlimited graph signals, block-cyclic graphs.

I. INTRODUCTION

The processing of signals defined on graphs has been of
interest for many years, and finds applications in a diverse
set of fields such as sensor networks [1], social and economic
networks [2], biological networks [3] and others [4]. A detailed
introduction can be found in [5], and in the tutorial articles
[6], [7]. In graph signal processing applications, signals are
not defined as functions on a uniform time-domain grid but
they are defined as vectors indexed by the vertices of a graph
— possibly directed. In recent years renewed interest on this
topic was kindled by two groups of researchers. The first set
of papers, pioneered by Narang and Ortega [7]-[12] showed
how two-channel filter banks can be constructed on graphs,
and went on to develop elegant techniques for the design of
down-sampled, two-channel perfect reconstruction filter banks
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on bipartitie graphs. These results were developed for graphs
that have a real, symmetric adjacency matrix, and all results
were based on the graph Laplacian.

An independent development of graph signal processing was
advanced by Sandryhaila and Moura [5], [6], [13], wherein
the graph adjacency matrix A was allowed to be arbitrary —
possibly non-symmetric (and complex) that allows for directed
graphs in the development. By proposing that the adjacency
matrix can be regarded as a graph-shift operator, a beautiful
extension of the basic concepts of linear shift invariant systems
on graphs was developed in [5], giving rise to insightful
notions such as filtering and frequency responses on graphs.
Many applications of such elegant theory were delineated,
such as linear prediction, data compression, and classification.
Further extensions of these results were also developed in
[14]-[17].

Multirate analysis for graph signals has been of interest
in recent years. Studies in [18]-[20] mainly focus on circu-
lant graphs and analyze two-channel decomposition of graph
signals. Multirate decomposition can be achieved by iterative
application of 2-channel systems. The study in [21] proposes
to combine decimators and filters for construction of a filter
bank on a graph. Motivated by Haar filter banks in the classical
theory, a graph filter bank is developed using the partitions of
the graph.

Inspired by the pioneering contributions of [5] and [8],
this paper and the companion work [22] extend many of the
basic concepts of classical multirate signal processing and
filter bank theory to graphs. In this paper (Part I) we develop
the equivalent of fundamental ideas such as noble identities,
aliasing, and polyphase decompositions in graph multirate
systems. A detailed general theory for M-channel filter banks
is then developed in the companion paper [22]. The graphs
are assumed to be very general as in [5], with a possibly non-
symmetric and complex adjacency matrix.

In the context of graph signal processing a linear filter is just
a square matrix. By a cascade of such matrices one can trivially
construct a graph filter bank. Problems with this approach and
reasons why we focus on polynomial filters are detailed in
in Sec. III. We will see in these papers that the extension
of classical multirate signal processing theory to graphs is
nontrivial, and requires certain mathematical restrictions on
the graph adjacency matrix A. While some of the results
of classical filter bank theory extend easily, some of the
deeper results unfold a lot of surprises — some extend and
some do not extend to the case of graphs. For example, the
classical noble identities [23] cannot be taken for granted, and
require some restrictions on the graph matrix A. Similarly,
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one cannot take it for granted that the delay chain system [23]
is a perfect reconstruction filter bank (an easily proved result
in the case of classical filter banks). It will also be shown
that M -partite extensions of the bipartite results in [8] will
not in general work for M channel filter banks, but a more
restrictive condition called M -block cyclic property should be
imposed on the graph. While a number of results in this and
the companion paper require this property, there are ways to
relax it as explained in Sec. VII of the companion paper [22],
and also in specific theorem statements. A detailed outline of
this paper is given below, and an outline of the companion
paper can be found in Sec. I of [22].

While dealing with graphs, we often make comparisons
with conventional multirate systems and filter banks defined
in the time domain [23]-[28]. On rare occasions we also make
comparisons with systems defined in the cyclic (periodic) time
domain that is equivalent to a graph with a specific cyclic
adjacency matrix (Eq. (12) in [13]). These systems defined in
the time-domain (or cyclical time domain on occasions) will
be referred to as “classical” systems, ‘“classical” filter banks,
and so forth.

A. Scope and outline

After introducing the canonical downsampling and up-
sampling operators on graphs, we begin with a study of
noble identities. These identities are known to be important
in theoretical developments and practical implementations of
classical multirate systems [23], [27]. For the case of graphs
we will show in Sec. II-B that the noble identities make
sense only for graphs with a certain specific structure on
the adjacency matrix (Theorems 1 and 2). We then show
in Sec. II-C that the delay chain filter bank (or the lazy
filter bank) does not in general have perfect reconstruction
property for arbitrary graphs. We introduce Type-1 and Type-
2 polyphase representation of polynomial filters in Sec. II-D.
Section III discusses how one can trivially construct a graph
filter bank, and motivates the use of polynomial filters. In
order to extend the results for bipartite graphs on 2-channel
systems to M -channels, one may propose to use M -partite
graphs rather than bipartite graphs. In Sec. IV we briefly
discuss that such a generalization is not useful. Section V
introduces M -block cyclic graphs that are important for many
of the later developments in this and the companion paper [22].
The eigenstructure of M -block cyclic graphs, which forms the
foundation for many of these results, is developed in Sec. VI
(Theorem 5). Many of the results developed in this and the
companion paper [22] are therefore valid only for graphs that
satisfy either the M-block cyclic property or the eigenvector
structure of M-block cyclic graphs. In Sec. VII of [22] we
also discuss how this restriction can be removed, and what
the price paid is.

The concepts of spectrum folding and aliasing are developed
in Sec. VII for graphs that have an eigenvector structure similar
to those of M-block cyclic graphs. These will be used later
to develop perfect reconstruction filter banks in [22].

Section VIII embarks on a study of three related properties
of linear systems on graphs: namely the polynomial property,

the shift invariance property, and the so-called alias-free prop-
erty. While these properties are identical in classical signal
processing theory, such is not the case on graphs. Some of
these interrelations were developed in [5], but Sec. VIII goes
deeper and establishes the complete picture. This will be useful
for obtaining a deeper understanding of alias-free maximally
decimated M -channel graph filter banks in [22]. Preliminary
conference versions have appeared in [29], [30].

B. Notation

The set of column vectors of size N with complex valued
elements is denoted by CV. The set of N x M matrices with
complex valued elements is denoted by CV*M . The set of
square matrices with size N is denoted by M® . For a matrix
A the conjugate transpose is given by A*, and the transpose is
given by AT The column vector of size N with all 1 entries
is denoted by 1 . For the standard basis, k" vector is denoted
by ey, that is, e; has zero elements except for the k" index
where it has 1. Identity and zero matrix of size N x N are
denoted by Iy and Oy, respectively.

We will use ® to denote the Kronecker product with the
following definition

&1,1B aLMB

A@B: ec(NP)X(IWQ)7 (1)

an,mB

where A € CNV*M and B e CP*@.

Given a graph, A represents the adjacency matrix of the
graph. We often refer to a graph with adjacency matrix A as
“graph A” for convenience. Throughout the paper, N denotes
the size of the graph and length of the signal and M denotes
the decimation ratio or the number of filters in a graph filter
bank, according to context. Hence, A € MY . The (4, j)”"
block of the adjacency matrix A is denoted by (A);; and
(v); denotes the (i)' block of the vector v. Throughout
the paper, when it is not indicated, it should be clear that
(A); j € MN/M and (v); € CN/M . Otherwise, they are clearly
indicated to have the specified sizes. For a vector x € CV,
diag(x) € MY is a diagonal matrix with elements of & being
on the diagonal. The cyclic permutation matrix of size N is
denoted by C'y, and it is defined as:

ClNJB

0 O 0 1
1 0 0 0
CN= 0 : GMN~ (2)
: .0 0
0 0 1 0

C. Review of DSP on Graphs

We will follow the construction presented in [5], [13]. Let
x € CN be a signal on a graph with adjacency matrix A. We
will assume that the graph is known a priori. The i*" vertex in
this graph is supposed to produce the i*" element of the signal
x. The (i,7)"" element of the adjacency matrix, a; ;, denotes
the weight of the edge from the j** vertex to the i'" vertex.

When a; ; = 0, it means that there is no edge. We consider the
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general case and allow a; ; to be different from a; ;. When this
happens, the graph is called directed, or digraph. We do not
assume anything on a; ;, and they are allowed to be complex.

In DSP on graphs, the adjacency matrix of the graph of
interest is considered to be the unit shift operator for a signal
on the graph [5]. Namely, let « be a signal on a graph with
the adjacency matrix A. Then the signal y computed as

y=Axz, 3)

is called as the unit shifted version of . We also would like
to indicate that the adjacency matrix is not the only choice
for the shift operator in general. The study in [31] proposes
alternative definitions for the shift operator. Nevertheless, for
simplicity, we will stick with the adjacency matrix as done in
(51, [13].

In general, any square matrix of size N, H € MN | s
considered as a linear graph filter on the graph. When we
have y = Hx, we call y as the filtered version of the signal
x. In this study, we are interested in a special type of linear
filters, namely polynomial filters, which are defined as follows.

Definition 1 (Polynomial filters [5], [32]). A linear system H
on a graph A is said to be a polynomial filter if

L
H = H(A) =) hy A", “
k=0

for a set of hy, € C. Here L is called the order of the filter. )

We can assume without loss of generality that L < N. This
is because, according to Cayley-Hamiltion theorem, powers
Ak for k> N can be expressed as linear combinations of
smaller powers [33].!

For a graph with the adjacency matrix A, let the following
denote the Jordan decomposition [5], [33] of the adjacency
matrix

A=V JV1 5)

where V' is composed of the (generalized) eigenvectors of the
adjacency matrix and J is the Jordan normal form of A. When
A is diagonalizable, (5) reduces to the following form

A=VAV? (6)

for some diagonal A consisting of the eigenvalues and some
invertible square matrix V' consisting of the eigenvectors of
the adjacency matrix. When A has distinct eigenvalues, it is
necessarily diagonalizable, but not vice versa.

Using the Jordan decomposition in (5), we then have the
following definitions.

Definition 2 (Graph Fourier transform [5], [13]). Let x be
a signal on a graph with the adjacency matrix A. Then the

graph Fourier transform of x on the graph A is given by
z=V'ig,

)

where V' has the (generalized) eigenvectors of A as in (5).

L Also see Theorem 3 of [5].

Definition 3 (Frequency domain operation). Let H be a linear
filter on a graph with the adjacency matrix A. Then the
frequency domain operator corresponding to H is defined by

H=V'HV, (8)
where V' has the (generalized) eigenvectors of A as in (5). &

Definiton 3 does not imply that V' diagonalizes the filter
H, that is, H is not diagonal in general.

Notice that Definitions 2 and 3 are consistent with each
other, that is, for a graph signal x 3251 a linear filter H,
we have y = Hz if and only if y = HZ. As explained in
Sec. VII (and Definition 7) later, H will be referred to as the
frequency response of H only when H is a diagonal matrix.

II. BUILDING BLOCKS FOR MULTIRATE PROCESSING ON
GRAPHS

A. Downsampling and Upsampling Operations

One of the most essential building blocks for multirate
signal processing is the decimation operation [23]. In the
graph signal processing, we will assume that this operator
retains N /M samples of the original graph signal « that has
N samples. It will be assumed that M is a divisor of V. Since
the numbering of the graph vertices is flexible [5], [34], we
will assume, without loss of generality, that the first N/M
samples of x are retained by the decimator. Thus the graph
decimation operator is defined as:

Definition 4 (Canonical Decimator). The M-fold graph dec-
imation operator is defined by the matrix

D= 1Iymn Onu On/vr | € CIN/MPXN = (9)
Given a graph signal x, decimated graph signal is then
denoted as Dx. &

We refer to D as canonical decimator with decimation ratio
M. This is a mapping from N dimensional complex space to
N/M dimensional complex space. Similar definitions for the
decimator operator have been introduced in the literature [8],
[91, [16], [35].

Next, the upsampling operation U e CN*(N/M) jg 3
mapping from N/M dimensional complex space to N dimen-
sional complex space. Once we define the downsampling, we
cannot arbitrarly select the upsampling operator, they should
be consistent with each other. In general, downsample-then-
upsample is a lossy operation. Contrary to that, upsample-
then-downsample operator is expected to be equal to identity.
That is to say

DU = Iy (10)

For a given D, the right inverse U is not unique. When we
look for the minimum norm solution, we get

U = D*(DD*)", (1)

assuming that D has full row rank. This result reduces to

In/m

On/,
N./M e CNX(N/M).

U=DT= (12)

On/m
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for the decimator operator defined in (9). Hence, the cor-
responding uniform upsampler with expansion ratio M is
defined by the matrix D”. This operation merely inserts
blocks of zeros, analogous to conventional expanders [23],
[24].

With this selection of the upsampler, we have the following
equalities for upsample-then-downsample and downsample-
then-upsample operations:

T _ T _
DD” = Iy, DD_[ o

] e MY, (13)
respectively, where zero blocks have appropriate sizes.

In the following, our result will be based on the simple
canonical D defined in (9). More generally, decimator can be
selected as an arbitrary (N/M) x N matrix with full row-
rank. Such a definition provides an extension to the results
presented in the following sections and allows us to remove
some of the restrictions on the adjacency matrix. These details
are elaborated in Sec. VII of [22].

B. The Noble Identities

In classical signal processing, we have the first noble
identity described in Fig. 1(a), where H(z) denotes the transfer
function of an LTI filter [23]. For graph signals, it is possible
to obtain a similar result under some conditions on the graph.
The result is given in Fig. 1(b) and requires some explanation.

In the classical case, the unit delay z™! has the same meaning
for both the original and the decimated signals. But for graph
signals, the elementary shift operator should match size of the
signal. Since the decimated signal has length N /M, we need
to define a different shift operator for the decimated signal. The
matrix A in the figure denotes this adjusted shift operator.

X(2)~ HEMY | M bY (2)=X(2)~ | M || H(z) Y (2)

(@)
N, =~ — 2
y=2 I p [ m@) [y

e cir

N
= S A [

(b)
Fig. 1. The first noble identity (a) for classical multirate signal processing
where | M denotes decimator operation, (b) for graph signals on the adjacency
matrix A.

With the adjusted shift operator for the decimated signal, we
have the following form of the first noble identity for graph
signals:

D HAM)=H(A) D. (14)
This is shown schematically in Fig. 1(b). It is important
to notice that the required adjusted shift operator A that
satisfies the noble identity in (14) may not exist in general.
In the following we will provide the sufficient and necessary
condition on A so that an adjusted shift operator exists and
satisfies (14).

Theorem 1 (The first noble identity). Let the decimator D
be as in (9). If the noble identity (14) is satisfied by a graph

A for all polynomial filters H(-) for some A, then AM has
to have the form

M (AM)l,l 0
=[Gyt iy, |09
where (AM); 1 € MN/™ | and furthermore
A=DAYD", (16)

ie, A= (AM), . Conversely if A and A have the above
form, then noble identity (14) holds for all polynomial filters.
In short, (14) holds for all polynomial filters if and only if
both (15) and (16) are true. &

Proof: First assume (14) holds for all polynomials H(-),
ie, DY, hy AMF =3 hy, A" D for all {hi}. Then

DAY~ 4 p (17)
for all £ > 0. Now express AM in partitioned form
M M
ar-l @ Q]
where  (AM);, e MY/M_ For k=1, (17) yields
DAM = AD. Using (9) this becomes
[ (AM)11 AM)i2 [=[ A Oymvnpan |, (19

which proves A = (A*);; and (AM), » = 0 indeed. Thus
(14) implies (15) and (16).

Conversely assume the form (15) and the relation (16)
are true. First observe that when (15) holds, we have
(AME), 1 = ((AM);1)". Since (16) also holds, it follows that

( AMk)l | = Ak

)

(20)

for all £ > 0. This is equivalent to (17), as seen by substituting
from (15) and (9). Thus (15) and the relation (16) imply the
noble identity (14) indeed. [ ]
The second noble identity in classical signal processing [23]
is described schematically in Fig. 2(a). For graph signals, the
analogous identity would be as in Fig. 2(b), where input and
output are called as lower and higher rate signal, respectively.
Let A denote the adjusted shift operator for the lower rate
signal in the second noble identity. We have the following
form of the second noble identity for graph signals.
H( A]W ) DT _

DT H(A). 21)

X(2)={1 M| H(zM) [5Y (2) =X (2)~ H(z) || 1 M pY(2)

(a)

H(AM) oy = b H(A)

S
)
Z|

CN

N
C DT y

x DT

(b)
Fig. 2. The second noble identity (a) for classical multirate signal processing
where 1M denotes expander operation, (b) for graph signals on the adjacency
matrix A.
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Theorem 2 (The second noble identity). If the noble identity
(21) is satisfied by a graph A for all polynomial filters H(:)
for some A, then AM has to have the form

m_ [ (A (A
AT = 0 (14M)2,2 ) (22)

where (AM); 1 € MN/M | and furthermore
A=DAMDT", (23)

e, A = (AM)M. Conversely ifAM and A have the above
form, then noble identity (21) holds for all polynomial filters.
In short, (21) holds for all polynomial filters if and only if
both (22) and (23) are true. &

Proof: First assume there exists an A such that 21) is
true for all polynomial filters H (-). This implies in particular

AMEDT — pTA” (24)

for all £ > 0. Now consider the partitioned form in (18).
Setting k£ = 1 in (24) and using the form of D7 in (12), we

get
[
(AM)on |7

which shows that if (21) has to be true for all polynomial
filters, then A = (AM); 1 and (AM),, = 0.

Conversely, suppose the form (22)) and the relation (23)

Mk M L xF A

are true. Then (A" ");1 =((A")11)" =A . But this is
equivalent to (24) as seen by substituting from (22) and (9).
So (21) holds for all polynomials H(-) indeed. [ |

Combining the preceding two theorems we get

[ A (25)
O(n-N/MY, M

Theorem 3 (The noble identities). For a graph A, the two
noble identities

D H(AM)=H(A) D,

H(AM) DT = DT H(A)

(26)
; (27
are simultaneously satisfied for all polynomial filters H(-) if

and only if the following two equations are satisfied: AM phas
the form

AM) 0
AM = | (A 28
0 (AM)272 ( )
and _

A=DAM D" e MN/M (29)

where (AM), | € MN/M, ¢

It is clear that an arbitrary graph may not satisfy the
condition in (28). Specific examples of graphs that meet, or
do not meet, the condition of Theorem 3 will be presented in
Sections IV and V.

C. Lazy Graph Filter Banks

An important theoretical example of a maximally decimated
filter bank in classical signal processing is the M -channel
delay-chain filter bank, also known as the lazy filter bank,
shown in Fig. 3(a). This is a perfect reconstruction system
[23], and serves as a starting point for developing more useful

filter bank systems. Such a development is typically based on
the use of polyphase representations and noble identities [23].
We have already developed noble identities for graph signals
above. In the following subsection we will develop polyphase
representations for graph filters and in Sec. V of [22] we
shall develop graph filter banks. In the present subsection we
consider the graph equivalent of the lazy filter bank shown
in Fig. 3(b). In this system the graph signal « € CV is passed
through a chain of graph shift operators AF 0 <k < M-1and
each shifted version is passed through the downsampler D and
upsampler DT, The resulting M signals are then graph-shifted
again and added. It is clear that the system is linear with the
input-output relation y = T(A) « where

M-1
T(A) = 2 AME DT D A*. (30)
k=0
For the classical lazy filter bank we have

Y(z) = ™M1 X(2), and it is a perfect reconstruction
system. Similarly, we say that the lazy graph filter bank has
perfect reconstruction (PR) if T(A) = AM1 that s,
M-1
Z AMEE DT D AF = AMAL (31)
k=0
This will be referred to as the lazy FB PR condition. We
will return to more general filter banks on graphs, along with
the theory of perfect reconstruction and alias cancellation in
Sections II-V of [22].

(@ (b)

Fig. 3. (a) M-channel lazy filter bank in classical multirate signal processing,
(b) M-channel lazy filter bank on a graph with adjacency matrix A. The
decimation matrix D is as in (9) with decimation ratio M.

D. Polyphase Implementation of Decimation and Interpola-
tion Filters

A useful tool in multirate signal processing is the polyphase
representation of linear time-invariant filters [23], [24], [27].
Similar to the classical case, for a given polynomial graph
filter, we can write Type-1 polyphase decomposition of the
filter as follows:

M-1
H(A) = Z Ak Ek:(AM)7
k=0
and Type-2 polyphase decomposition as follows:
M-1
H(A) =) AM'F R (AM).
k=0

(32)

(33)
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Notice that there is no assumption on the structure of the
adjacency matrix, hence any polynomial filter on any graph
has a polyphase representation. As in the classical theory
[23], Type-1 and Type-2 polyphase components are related
as Ri(A) = Enm1x(A).

Fig. 4(a) shows a graph filter followed by a graph decimator
on A. This is called a decimation filter, in analogy with
classical theory. Similarly the system in Fig. 5(a) is called
an interpolation filter. For graphs that satisfy the conditions of
the noble identities (28), these filters can be implemented in
simplified form using the polyphase representation as shown
next.

Let T(A) denote the overall response of the system in
Fig. 4(a). Then we can write it as:

DZA’c
M-1

ZDEk (AM) AF =
k=0

DH(A

T(A) (AM) (34)

A)D Ak,

3, rua

where we use the fact that E;,(A™) and A commute since E,
is a polynomial in A, hence it is shift invariant (see Sec. VIII).
We then utilize the noble identity in (26) to get the final result.
The adjusted shift operator given in (29) is denoted by A.
Fig. 4(b) and Fig. 4(c) schematically show the steps in (34).

z—{ H(A) D

(a)
Ey(a") Ml Eo(4) |-~
Era(AM)} D) @» Eara(A)

(®) (©
Fig. 4. (a) Polynomial filtering then decimation operation on a graph with the
adjacency matrix A. (b) Polyphase implementation of (a). (¢) Simplification
of (b) using the first noble identity (26). The decimation matrix D is as in (9)
with decimation ratio M. Implementation in (b) exists without any restriction
on the adjacency matrix. However, A should satisfy (15) in order to utilize
the first noble identity for the implementation in (c).

xr

Complementary to (34), upsampling followed by a filtering
operation can be implemented via Type-2 polyphase decom-
position of the filter. Namely, let T(A) denote the overall
response of the system in Fig. 5(a). Then we can write it as:

M-1
T(A) = H(A)D" =)' AM'"* R (AM)D"
k=0
M-1

Z A]\/f—l-k‘ DT Rk(A).

(35)

where we use the fact that R;,(A") and A commute since Ry,
is a polynomial in A, hence it is shift invariant (see Sec. VIII).
We then utilize the noble identity in (27) to get the final result.
Fig. 5(b) and Fig. 5(c) schematically show the steps in (35).

z—| pT H(A)—Y
(@)
x —
DTH Ro(AM) | T+ Ro(A)
Yy _
DT R (AM) D~ Ru1(A)
(b) ©

Fig. 5. (a) Expansion then polynomial filtering on a graph with the adjacency
matrix A. (b) Polyphase implementation of (a). (c) Simplification of (b) using
the second noble identity (27). The expansion matrix D* with expansion ratio
M is transpose of D, which is in (9). Implementation in (b) exists without
any restriction on the adjacency matrix. However, A should satisfy (22) in
order to utilize the second noble identity for the implementation in (c).

We will use polyphase implementation of decimation and
interpolation filters when we develop polyphase implementa-
tion of filter banks in Sec. V of [22].

III. GRAPH FILTER BANKS AND POLYNOMIAL FILTERS

The ultimate goal in this paper and the companion paper
[22] is to develop a theory of analysis/synthesis filter banks
for graphs with properties such as perfect reconstruction, alias
cancellation, and so forth. Fig. 6 shows such a filter bank for
a signal x € CY defined on the graph A. Here each analysis
filter Hj; is an N x N matrix, and the decimator D is as
defined in Sec. II. Since there are M analysis filters and each
decimator retains N/M samples, this constitutes a maximally
decimated analysis bank. The expanders D’ (defined as in
Sec. II-A) are followed by synthesis filters F';, which are also
N x N matrices.

analysis filter bank

synthesis filter bank

Fig. 6. A maximally decimated graph filter bank where the filters H and
F';. are arbitrary matrices (i.e., not necessarily polynomials in A).

When the filters and decimators are cascaded, the max-
imally decimated analysis bank can clearly be defined
by the M matrices {DH,, DHq, ..., DH )51} where
DH;, € CN/M)*N Similarly, the expander and the synthesis
filters can be lumped into one matrix Fj, DT e CN*(N/M)
Therefore, the entire analysis bank, H ., and the synthesis
bank, F'sy,, are just N x N matrices as follows:

DH,

Fy=|FD" Fy D" |, Hyy= (36)

DH

Thus, perfect reconstruction property is equivalent to having
FwH,, = I, so that as long as H,y has full rank, we can
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find synthesis filters for perfect reconstruction. But there are
practical difficulties in taking this “brute force” approach with
“unconstrained” filter matrices. The complexity of the analysis
bank (including decimators) is N2 multiplications, and so is
the complexity of the synthesis bank. For large graphs (large
N), this complexity can be impractical.

Fig. 7 filter

. . Implementation of  the
Hi(A) = 25:0 hi(n)A™. When the graph is sparse and has simple edge
weights this system requires only LN multiplications for its implementation,
compared to N2 in the brute force method of Fig. 6.

polynomial  graph

In parallel to the classical case, we can force the filters,
{Hy, F}}, to be polynomial in A as given in (4). This
construction is also used in [5], [8], [32]. The advantage is that
the graph filters can now be implemented as in Fig. 7, where
L is the polynomial degree, and the scalars hy(n) are the
coefficients of the k*" filter. This implementation is especially
attractive when A is sparse and has simple entries like 0, 1, -1,
etc., as in many practical graphs (e.g., the Minnesotta traffic
graph in [8], [36]). In this case the implementation of the
matrix multipliers A has negligible complexity since they only
require additions. Therefore an order L polynomial requires
only LN multiplications (the coefficients h(i)I) compared
to the N2 multipliers in the case of unconstrained filters. This
is a significant saving when L « N. Another important point
is that, as discussed in [32], [37], an order L polynomial is
L-hop localized on the graph, hence, it can be implemented at
each node locally via L message passings between neighbors.

IV. RELATIONS TO M -PARTITE GRAPHS

From Theorem 1 and 2, it is clear that some structure on the
adjacency matrix is required in order to generalize the basic
concepts in the classical multirate signal processing theory to
graph signals. In order to investigate the required structure, we
start with bipartite graphs. In [8], bipartite graphs are shown to
be useful for 2-channel filter banks where the development was
based on the graph Laplacian. We observe the same when we
focus on the adjacency matrix. Let A be the adjacency matrix
of a directed or undirected bipartite graph in the following

form
Ry

A0 (37)

where A;, Ay € MN/2. Then, it is straightforward to verify
that noble identity condition in (28) is satisfied for M = 2.
Furthermore one can show that T'(A) = A, that is, 2-channel
lazy filter bank provides perfect reconstruction on a bi-partite
graph. Even though (37) considers the case of bipartite graphs
with equal sized partitions, it extends to arbitrary bipartite
graphs with a proper update on the size of the decima-
tion operator. More importantly, one can also show that bi-
partiteness is necessary for 2-channel lazy FB to provide
perfect reconstruction [38].

Even though bipartite graphs are in conformity with the 2-
channel systems as discussed above, this relation cannot be
generalized to M -channel systems on M -partite graphs. An
M -partite graph is one whose vertex set can be partitioned into
M subsets so that no edge has both ends in any one subset
[39]. Under suitable labelling of the vertices, the adjacency
matrix of an M-partite graph can be written as follows:

0 (A)12 (A)1,m
A— (A.)Z,l 0 (38)
: . g (A) a1, M
(A (A) v 0

where (A); ;’s have arbitrary but appropriate sizes. In particu-
lar, the diagonal blocks of the adjacency matrix of an arbitrary
M -partite graph are zero. We have the following negative
observations for M -partite graphs with M > 2:

1) The M -partite property is neither necessary nor sufficient
for validity of the noble identity condition (28).

2) The M -partite property is in general not sufficient to
ensure perfect reconstruction property of the lazy filter
bank of Fig. 3(b).

All proofs, counter-examples and further details of these
results can be found in [38].

V. M-BLOCK CYCLIC GRAPHS

Contrary to intuition, the two channel filter bank results on
bipartite graphs do not extend to M -channel filter banks on M -
partite graphs, as discussed in Section IV. In the following, we
will show that, with more restrictive conditions on the graph,
it is possible to generalize the classical multirate theory to
graph signals for arbitrary M. For this purpose we define the
following graph.

Definition 5 (M-block cyclic graphs). A graph is said to be
M -block cyclic if the adjacency matrix of the graph has the
following form:

0 0 0 A
A O 0 0 0
0 A, O 0 0
_ N
A= 0 0 A, e MV, (39)
: : : 0 0
0 0 0 Apna 0

where each A; has arbitrary but appropriate sizes. Further-
more, such a graph is said to be balanced M-block cyclic,
when Aj;’s have the same size, that is A; € MN™M Iy this
case, we can write the adjacency matrix as:

(A)ij = Aj (j-i+1), (40)

where (-); j denotes the (i, j)'" block of the adjacency matrix
and 6(-) is the M-periodic discrete Dirac function, that is
d(M3j) =1 for all integer j and zero otherwise. %

In the rest of the paper, when we refer to M-block cyclic
graphs, we always mean balanced M-block cyclic graphs.
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Some of the results presented in this study can be generalized
to unbalanced M-block cyclic graphs also. However, the
adjacency matrix of an unbalanced M -block cyclic graph can
be shown to be non-invertible and non-diagonalizable. Such a
case requires a careful treatment that falls outside of the scope
of this study and will be elaborated elsewhere.

For the visual representation of M -block cyclic graphs, see
Fig. 9(a) for a balanced 5-block cyclic graph of size 20. Also
consider Fig. 8 to see the relation between the cyclic shift
matrix in (2) and M-block cyclic matrices. We now state
some properties of M-block cyclic graphs that can be readily
verified:

Fact 1. If a graph is M-block cyclic, then it is M-partite, but
not vice-versa.

Fact 2. A graph is 2-block cyclic if and only if it is bi-partite.

Fact 3. An M-block cyclic graph is necessarily a directed
graph for M > 2, hence its adjacency matrix does not have
any symmetry property in terms of edge weights.

Fact 4. A cyclic graph of size N, C'y, is an M-block cyclic
graph for all M that divides N. See Fig. 8.

Some other properties of the adjacency matrix of an M-
block cyclic graph are presented in Sec. II of the supplemen-
tary document [38].

e

(a) C12 as 12-block cyclic

<P

(c) C12 as 4-block cyclic  (d) C12 as 3-block cyclic
Fig. 8. Under suitable permutation of the vertices, cyclic graph of size N
can be represented as an M -block cyclic graph of size N where M divides
N. Notice that cyclic graph of size IV is equivalent to N-block cyclic graph
of size N. All the edges are directed clock-wise as indicated by the arrow.

(b) C12 as 6-block cyclic

Even though arbitrary M -partite graphs are not suitable
for M-channel systems as discussed in Section IV, imposing
more restrictions and having M -block cyclic structure in (39)
provides much more freedom in terms of multirate processing
on graphs, which is formally stated in the following theorem.

Theorem 4 (M -block cyclic graphs, noble identities, and lazy
filter banks). Let A be the adjacency matrix of a balanced
M-block cyclic graph. Then, noble identity condition in The-
orem 3 and lazy FB PR condition in (31) are satisfied. &

Proof: According to Corollary 2 of [38], A™ is a block
diagonal matrix with blocks of size MN/M  which satisfies
the condition in Theorem 3. Therefore, noble identities hold
true with the adjusted shift operator

A=DAM DT = A, ---A;. 41)

For the lazy filter bank condition, consider Corollary 4 and
5 of [38]. Since A*DT is a block-column vector and D A*
is a block-row vector, we have

(A*"D"DA*). = = (A*D"), (DA"),
1,7 J
= Inmu 0(i-1+k) 0(j-14k) (42)

Therefore,

M-1
( > A'kDTDAk) = In/nr 0(i-j), (43)
k=0 i

that is 224:(1) A*DTDA* = I'y. Hence, T(A) = AL, that
is, M-channel lazy filter bank provides perfect reconstruction
due to condition in (31). Notice that this proof implicitly
assumes that A is invertible. However, the result still holds
true even if the adjacency matrix is not invertible as long as
it is M-block cyclic. We omit these details for brevity. [ ]

VI. EIGEN-PROPERTIES OF M-BLOCK CYCLIC GRAPHS

M-block cyclic graphs have an important eigenvalue-
eigenvector structure that will play a key role in the devel-
opment of graph filter banks. This property is as follows.

Theorem 5 (Eigen-families of M -block cyclic graphs). Eigen-
values and eigenvectors of the adjacency matrix of an M-
block cyclic graph come as families of size M. That is,
if (\,v) is an eigenpair of M-block cyclic graph, then
{(\0), (WA, Q), (WX, Q%), - (WX QM )} are
all eigenpairs of the same graph, where

—j27T/]\/1’ (44)

w=e
Q= diag([l whw? .- w'(M'l)]> ® Inpn-  (45)

2

Proof: Let (\,v) be an eigenpair of a balanced M-block
cyclic graph. Assume that we have the following partitions for
the eigenvector

*
v=|@7F @3 @] (46)
where (v); € CN/M for all 1 < i < M. Then,
An (v)m A (o)
Ay (v) A (v)2
Av = . =)\v = . , @7
Apra (V)aa A ()
that is,
Ai (’U)l =\ (’l))i+1. (48)
When both sides of (48) are multiplied by w!, we get
A; (wl'i(v)i) = (w)\) (w'i(v)i+1). (49)
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Therefore wA is also an eigenvalue with the correspondit}g
eigenvector v’ = [w” (v){ w!(v)} w ™D (v)T 7.
Due to definition of € in (45), we have the following:

[wo (v)lT wt ('u)2T oo (M) (U)E]T =Quw,

hence, (wA, Q) is also an eigen-pair.

Iterating this argument % times, we get (w*\, Q"v) as an
eigenpair. However notice that w™** = w* and QM** = QF,
Therefore, starting from an eigenpair and iteratively using (49),
we can produce at most M -1 distinct eigenpairs. As a result,
if (\,v) is an eigenpair, (w*\, Q"v) is also an eigenpair for
0<k<M-1 [ |

This eigenvalue relation of block cyclic matrices has also
been observed in earlier studies [34], [40]-[42].

(50)

4
7
o
(4]
L}
n
<
| |
»

%

N2

7

4;//

AN\

S
‘ 4

(@) (®)
Fig. 9. (a) 5-block cyclic graph of size 20, (b) eigenvalues of the graph.
Notice that all the edges are directed along with the clock-wise direction and
they have complex valued weights. As given in Theorem 5, eigenvalues of
a balanced M-block cyclic graph come as families of size M. Eigenvalues
belonging to the same family are equally spaced on a circle in the complex
plane. Actual values of the eigenvalues depend on the weight of the edges.

Fig. 9(b) visualizes the relation between the eigenvalues
of an M-block cyclic graph. There are N/M concentric
circles centered at the origin. Each circle has M eigenvalues
equispaced in angle. The circles need not have distinct radii.

One immediate consequence of this eigenfamily structure
of the M-block cyclic graph is that eigenvalues can be real
only for M = 2. We formally state this property as follows.

Corollary 1 (Complex eigenvalues of M-block cyclic). For
M > 2, if an M-block cyclic graph has a non-zero eigenvalue,
then it has at least one complex valued eigenvalue.

Proof: Let A be a non-zero eigenvalue of an M-block
cyclic graph. Then w* )\ is also eigenvalue for 0 < k < M-1
due to Theorem 5. Therefore for M > 2, there exists a k£ such
that w* )\ is complex valued. [ ]

It should be clear that Theorem 5 gives information about
only one eigen-family and does not imply diagonalizability of
the adjacency matrix in general. When A is not diagonalizable,
Theorem 5 still applies to its proper eigenvectors, whereas we
cannot say too much for the generalized eigenvectors coming
from the Jordan chain. However, we note that a randomly
generated balanced M-block cyclic matrix is diagonalizable
with probability 1.

Assuming that the adjacency matrix is diagonalizable, we
will use double indexing to represent the eigenvalues and the
eigenvectors of M-block cyclic graphs, since they come as

families of size M. That is, the eigenpair (\; ;,v; ;) will de-
note the j* eigenpair of the i‘* family, where 1 < i < N/M
and 1 < j < M. Using this indexing scheme, with the use of
Theorem 5, we have the following form:

wkf A

k
Vigee = 7.

&1y
(52)

i ji+k i

It is important to state that this indexing scheme has a circular
structure. Even though we do not explicitly indicate this fact
in the notation, it should be clear that A; j.pr = A;; and
Vi j+m = v;; for all ¢ and j. This property comes from the
fact that w™ =1 and QM =T.

With this specific family structure of the eigenvalues of
an M-block cyclic graph, when we talk about the eigenvalue
decomposition of the adjacency matrix,

A=VAV? (53)

we will assume that eigenvalues and the eigenvectors are
ordered as follows:

A= diag(P\l,l e ALM o AN /\N/M,M])a 54

V= [01,1 VLMt UN/ML "’UN/M,M]~ (55)

It is also important to notice that the eigenfamily structure
described in (51) and (52) is unique to M -block cyclic graphs.
This fact is stated in the following theorem whose proof is
given in Sec. I-A of the supplementary document [38].

Theorem 6 (Eigen-structure of M-block cyclic graphs). Let
V' be an invertible matrix indexed as in (55) with columns that
have the property in (52). Let A be a diagonal matrix indexed
as in (54) with diagonal entries that have the property in (51).
Then A = VAV is diagonalizable M-block cyclic graph.
Conversely the adjacency matrix of a diagonalizable M -block
cyclic graph always has the form A = VAV where V and
A are as described above. &

In order to enhance our motivation for M-block cyclic
graphs, we would like to consider a specific case where
M = 2. Due to Fact 2 in Sec. V, this is equivalent to bipartite
graphs.

For bipartite graphs, we now present Theorem 7 given
below. In [8], 2-channel filter banks on bipartite graphs are de-
veloped using this result from the spectral graph theory. Note
here that the Laplacian of a graph is given as L = D — A,
where D is the diagonal degree matrix and the normalized
Laplacian is given as £ = D'?LD 2,

Theorem 7 (Lemma 1.8 in [43] or Lemma 1 in [8]). The
following statements are equivalent for an undirected graph
with real non-negative edge weights:
1) A is bipartite.
2) The spectrum of L is symmetric about 1 and the minimum
and maximum eigenvalues of L are 0 and 2, respectively.
3) If v =[(v)] (v)5]* is an eigenvector of L with eigen-
value ), then the deformed vector © = [(v)F -(v)3]* is
also an eigenvector of L with eigenvalue 2-\. &

Notice that Theorem 7 is valid for the normalized Laplacian
of the graph. Since we work directly on the adjacency matrix

1053-587X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2016.2617833, IEEE

Transactions on Signal Processing

IEEE TRANSACTIONS ON SIGNAL PROCESSING

rather than the Laplacian, we will not utilize this result in our
development. Interestingly, Theorem 5 provides a very similar
statement for the adjacency matrix of the graph when M = 2.
To see this, observe the following corollary.

Corollary 2 (Bipartite as 2-block cyclic). If A is an eigenvalue
of the adjacency matrix of an arbitrary balanced bipartite
graph with the eigenvector v = [(v)T (v)3]*, then -\ will
be an eigenvalue of the same graph with the eigenvector

v =[(v)f -(v)3]*. %

Proof: Set M = 2 in Theorem 5. Then w = -1. ]
When the graph is bipartite, £ and A have the same
eigenvector structure even though they may have different
eigenvectors. However, due to normalization by the degree
matrix (£ = I — D/2AD™?), symmetric eigenvalues of £
add up to 2, whereas symmetric eigenvalues of A add up to
0, which agrees with the fact that trace of A is zero when it is
M -block cyclic. Notice that Corollary 2 is valid for arbitrary
bipartite graphs with complex edge values whereas Theorem 7
is constrained to undirected graphs with non-negative edge
weights. From this comparison we can conclude that use of
A as the unit shift operator rather than £ allows more general
class of bipartite graphs. Furthermore, Theorem 5 generalizes
this property of 2-channel systems on arbitrary bipartite graphs
to M-channel systems on M -block cyclic graphs.

Due to Theorem 4 and 5, we conclude that M -block cyclic
graphs defined in (39) have all the necessary properties to
generalize the classical multirate theory to the graph signals.

At this point it is interesting to notice the connection to
circulant graphs discussed in [18]-[20]. Circulant graphs do
satisfy the eigenvector condition in (52). This result follows
from the fact that DFT matrix diagonalizes any circulant
matrix. Further, with proper permutations (relabelling of the
nodes), DFT matrix satisfies the condition in (52). An example
of such a permutation will be demonstrated on the directed
cyclic graph, which is a circulant graph, in the following para-
graph. This is very interesting because some of our theorems
(Theorem 8 of this paper, Theorems 3 and 4 of [22]) that
only require the eigenvector condition are now applicable to
circulant graphs. However, the eigenvalue condition of an M-
block cyclic graph, (51), is not satisfied by the circulant graphs
in general.

The connection to the classical cyclic graph (Sec. II-C
of [13]) is also important to understand. For the classical
cyclic shift matrix, the classical time domain decimator retains
every M*'" sample (rather than the first N/M samples). But
our convention for graphs is that the first N/M samples
are retained. To match with our convention, we permute the
vertices (i.e., change the numbering convention). This converts
the classical cyclic shift matrix into an M -block cyclic matrix.
For example, suppose N = 4 and M = 2. The classical cyclic
shift matrix, C4, is

0 0 01
10 0 0
01 0 0f” (56)
0 010

where rows and columns are numbered as 0,1,2, and 3.

The classical decimator retains samples 0 and 2 whereas our
canonical decimator, by convention, retains 0 and 1. So we
simply exchange columns 1 and 2 and also exchange rows 1
and 2. The resulting matrix is:

00 10
00 01
01 0 0]” 7
10 0 0

which satisfies the requirements of Theorem 1, 2, and 3 (for
M = 2). In fact the above matrix is a 2-block cyclic matrix. As
stated in Fact 4, this permutation is possible for any (N, M)
pair where M divides N. For a visual example with N = 12,
please see Fig. 8.

VII. CONCEPT OF SPECTRUM FOLDING AND ALIASING

In order to talk about alias-free and perfect reconstruction
graph filter banks, we need to first define what aliasing
is in graph signals. For this purpose we now revisit the
downsample-then-upsample (DU) operation. According to our
canonical definition of decimator in (9), DU operator is given
in (13). Since DU replaces samples with zeros, it is a lossy
operation and the erased samples cannot be reconstructed back
from the remaining data in general. We now analyze the effect
of the DU operator from the frequency domain viewpoint,
and explain the spectrum folding or aliasing effect. A similar
approach is presented for two-channel systems in [8], where
graph signal processing is based on the graph Laplacian. In
our development the graph A is allowed to have complex edge
weights and can be directed.

Using the canonical definition of the decimator in (9) and
eigenvector-shift operator 2 in (45), the DU operator can be
written as a sum of powers of 2. That is,

DTD - L If QF. (58)
M k=0

Now consider the DU version of a graph signal x, namely

y=DTDux. (59)

Remember that graph Fourier transform of a graph signal =
is given in Definition 2. Let Z and ¥y denote the graph Fourier
transform of the input and output signal of the DU system. Let
G denote the frequency domain operation of the DU operator.
That is, y = G &. Due to Definition 3 we have

G=V'D"DV. (60)
Using (58), we can write G as follows:
1 M
G=— )Y Vviaov. 61
m ;0 (61)

In the following, we will not constrain ourselves to M -block
cyclic graphs and assume that A is diagonalizable and only the
eigenvectors of A satisfy (52) and let eigenvalues be arbitrary.
In Sec. VII of [22] we will discuss how this assumption on
the eigenvectors can be removed by appropriately generalizing
the definition of the decimator D.
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Now notice that €2 is the eigenvector-shift operator for
the eigenvectors satisfying (52). Therefore, QF V' will be the
column permuted version of V. Due to (52), QF will circularly
shift each vector of an eigen-family to the left by & times. Due
to our ordering convention on the eigenvectors in (55), we have
the following

Qv = ['Ul,1+lc © UL M4kt UN/M ek UN/M,M+k]-(62)

Notice that this permutation of the columns of V' can also be
written with a column permutation matrix. Therefore we have

Q" V =V I, (63)
where
Cﬁfw e 0
My=Inyy ®Cy=| o0 . o |+ (©4
o --- C%

where C'; is the size M cyclic matrix defined in (2). Using
(63) and (64), the frequency domain operation G in (60) can
be written as:

G=Iynu ® (65)

M-1
17 2 Cn
M=
Since the first M powers of cyclic matrix of size M add up
to matrix with all 1 entries, this response further simplifies to

G=Innu ® — ]lM]l (66)

where 1,; denotes the column vector of size M with all 1
entries.

To be consistent with double indexing of the eigenvectors,
we will stick to that scheme for the frequency components of
a graph signal. That is to say,

~ ~ ~ ~ ~ T
Z=[Z1a-2Tim o TNy Ty (67)

Due to (66), we have the following relation between the graph
Fourier transform of the original signal and the graph Fourier
transform of the downsampled-then-upsampled signal

M
1 Z z
Li,j,
M &

N/M. We state this result in the following

Uil =Yig="=Yim = (68)
for all 1 <7<
theorem.

Theorem 8 (Spectrum folding in graph signals). Let A be the
adjacency matrix of a graph. Assume that A is diagonalizable
and has the eigenvector structure in (52) as indexed in (55)
with arbitrary eigenvalues. Let x be a signal on the graph and

= DT Dx where D is as in (9). Then, the graph Fourier
transforms of * and y are related as:

(69)
¢

Thus the DU operation results in the phenomenon described
by (68) in the frequency domain. This is similar to aliasing
or spectral folding because multiple frequency components

~ 1 ~
Y=/ (IN/M ® ]1M]1§1) T

of the input overlap into the same frequency component of
the output. This is similar to the effect of decimation in
classical signal processing [23]. From the folded spectrum
(68) we cannot in general recover the original signal, which
is consistent with the fact that decimation is in general a
information-lossy operation. It should be remembered however
that the expression (68) has been derived only for graphs A
for which the eigenvectors have the restricted structure (52).

VIII. LINEAR SYSTEMS ON GRAPHS: INTERCONNECTION
BETWEEN SHIFT INVARIANCE, ALIAS-FREE PROPERTY,
AND POLYNOMIAL PROPERTY

The above notion of aliasing or spectrum folding due to the
DU operator on a graph can be generalized. Thus consider
any system S defined on a diagonalizable graph A, producing
output y = S(x) in response to an input . Let Z and § denote
the graph Fourier transforms of x and y. We say that the
system S is alias-free if each component of g is determined by
the corresponding component of Z, i.e., J; = g;(Z;). In other
words, there is no interference between Fourier components.
For the special case of linear systems on the graph A, this
reduces to y; = oy T;, where «; is analogous to frequency
response.

In classical signal processing, it is well known that linear
shift invariant systems are automatically alias-free. For the
case of graph signals this equivalence is not always true as
we shall elaborate. It was proved in [5] that shift invariance
of a linear system on a graph A is equivalent to the statement
that the system H be a polynomial (under some conditions,
see Theorem 9 below). In this section we will see that the shift
invariance, alias-free property, and polynomial property do not
imply each other in general. Their inter relationship depends
on whether the graph A has distinct eigenvalues or not. These
results are elaborated in Theorems 10 and 11, which we shall
prove in this section. For clarity we begin with the following
formal definitions.

Definition 6 (Shift-invariant filters [5]). Let A be the adja-
cency matrix of a graph. Let H be a linear system on the
graph. It is said that H is shift-invariant if it commutes with
A, that is, AH = HA. &

Definition 7 (Alias-free filters). Let the graph be such that A
is diagonalizable, i.e., A = VAV for some diagonal A and
invertible V. Let H be a lmear system on A with frequency
domain operation H VHV. We say H is a alias free
filter on graph A if Hisa diagonal matrix. In this case H
is called the frequency response of the filter H. &

A polynomial filter is always shift invariant because

N-1 N-1
HA = (Z akAk>A = A(Z akAk> =AH. (70)

k=0 k=0

But in general the converse is not true. The following result
was proved in [5]:

Theorem 9 (Polynomial and shift-invariant graph filters, The-
orem 1 in [5]). Let A be the graph adjacency matrix and
assume that its characteristic and minimal polynomials are
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equal. Then a graph filter H is linear and shift-invariant if
and only if H is a polynomial on the graph shift A. &

We now state and prove the following results.

Theorem 10 (Linear systems on diagonalizable graphs). Let
H be a linear system on the graph A. Assume A is diago-
nalizable. Then the following are true:

1) If H is a polynomial in A then it is alias free.

2) If H is alias-free then it is shift invariant. &

Proof: 1) Let A = VAV be the eigenvalue decompo-
sition of A. Since H is polynomial in A we have H = H(A)
where H(-) is a polynomial. Then H = VH(A)V"!, where
A is the diagonal matrix consisting of the eigenvalues of
A. Notice that H(A) = V*HV is the frequency domain
operation of the system, which is a polynomial of a diagonal
matrix. Therefore the overall frequency domain operation is a
diagonal matrix, hence it is alias-free.

2) Let A= VAV be the eigenvalue decomposition of
A. Assume that H is alias-free. Then it can be written as
H=VZV'fora diagonal Z due to Definition 7. Then, we
have HA = VZAV' = VAZV"' = AH since diagonal
matrices commute. Hence, H is shift-invariant. [ |

Theorem 11 (Linear systems on graphs with distinct eigenval-
ues). Let H be a linear system on the graph A. Assume A has
distinct eigenvalues (so that it is, in particular, diagonalizable).
Then the following statements are equivalent:

1) H is a polynomial in A.

2) H is alias-free.

3) H is shift invariant. &

Proof: Since A is diagonalizable, it follows from Theo-
rem 10 that (1) implies (2) and (2) implies (3).

We now prove that (3) implies (2): Assume H is shift
invariant, that is, AH = H A. Since A has distinct eigenval-
ues, this implies the following: H is also diagonalizable; A
and H are simultaneously diagonalizable. (These two claims
follows from Problem 13 on page 56 of [33]). But since A has
distinct eigenvalues, V is its only diagonalizing matrix (up to
a permutation and scaling of columns). So, V' in particular,
diagonalizes H, which (by Definition 7) shows that H is alias-
free.

We finally prove that (2) implies (1): Assume H is alias-
free, that is, VHV =Z is a diagonal matrix with N
diagonal elements z;. Since the eigenvalues \;, 1 <¢ < N
of A are distinct, we can always find a set of N numbers h;
such that the following holds:

1 )\1 A{V_l ho 21
1 X )\é\f—l hi Z9
. : = (71
1 Ay PN hn ZN

This is because the matrix on the left, being Vandermonde
with distinct );, is invertible. Thus, there exists a polynomial
H()\) = 3370 hy, AF such that H()\;) = z;. In matrix notation
we can rewrite this as H(A) = Z, or
N-1 N-1
DA =2Z, ie, V Y mA'VI=H (12
k=0 k=0

or equivalently Zg:'t hi A¥ = H, which proves that H is a
polynomial in A. ]
According to Definition 1 and 6, we can talk about poly-
nomial and shift-invariant filters on a graph with an arbitrary
adjacency matrix. However, the definition of alias-free filters
is exclusive to graphs with diagonalizable adjacency matrices.
We intentionally exclude the graphs with non-diagonalizable
adjacency matrices due to following reasons. In [13], authors
use total variation to quantify the notion of frequency in the
graph signals. When the adjacency matrix is not diagonaliz-
able, total variation of a generalized eigenvector inherently
depends on the next generalized eigenvector in the Jordan
chain that makes it difficult to interpret. Furthermore, when
the adjacency matrix is not diagonalizable, even the unit shift
element, A, has a non-diagonal frequency domain operation.
Hence, relation between the polynomial filtering and aliasing
in the case of non-diagonalizable adjacency matrices is out of
the scope of this work and deserves an independent study.

In the following we will provide three examples to demon-
strate the necessity of distinct eigenvalues for the equivalence
of the above mentioned three properties. Let A = VAV ™ be
the eigenvalue decomposition of the graph as in (6).

1) Let H be an alias-free filter: H = VZV™ where Z is
a diagonal matrix with distinct diagonal entries z; such
that z; # z; for ¢ # j. Let X be a repeated eigenvalue of
A with algebraic multiplicity 2. In order to represent H
as a polynomial, we need to find a polynomial H(-) such
that H(X\) = z; and H(\) = z; for some ¢ # j. Since 2;’s
are distinct, such a function does not exist. Hence, H is
alias-free but not polynomial in A.

2) Let A be an eigenvalue of A with algebraic multiplicity m
[33]. Assume m > 1. Hence, A has repeated eigenvalues.
Then we can write A as follows (by ordering the eigen-

A, O

vectors):
Z; 0

A:[ 0 A’]’ Z:[ 0 Z
Let H be such that H = VZV™ with Z is as in (73)
where Z, is a diagonal but Z; is a non-diagonalizable
square matrix of size m. Notice that A and Z commute.
Hence, A and H commute, that is, H is shift invariant
on the graph. But Z, which is the frequency domain
operation of H, is not diagonal since m > 1 and Z; is
non-diagonalizable. As a result, H is shift-invariant but
not alias-free.

3) Consider the construction in the previous example (73).
Since A is a diagonal matrix, any polynomial of A will
be diagonal. That is, no polynomial of A is equal to non-
diagonal Z. Hence, H is shift-invariant but not polynomial.
Notice that Theorem 9 applies to any graph whether its

adjacency matrix is diagonalizable or not. In the case of

diagonalizable matrices, the minimal polynomial is equal to
characteristic polynomial if and only if the matrix has distinct
eigenvalues [33]. Fig. 10 schematically shows the relation
between shift-invariance, alias-free property, and polynomial
property of a linear system on a graph.

When the adjacency matrix is the directed cycle C'n, graph
signal processing reduces to the classical theory [5]. Since

] (73)
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Polynomial

Alias Free Shift Invariant

Fig. 10. Relations between the alias-free, shift invariant and polynomial graph
filters. Implications shown with solid lines exist for diagonalizable adjacency
matrices whereas broken lines further require all eigenvalues to be distinct.
In fact, polynomial filters imply shift invariance even if the adjacency matrix
is not diagonalizable.

Cy has distinct eigenvalues in the form of e=727%/N for
0 < k < N-1, polynomial, alias-free and time-invariant filters
are equivalent to each other. Therefore, relations in Fig. 10 are
consistent with classical signal processing theory but show that
our understanding of these properties do not extend to graph
case trivially.

IX. CONCLUSIONS

In this paper we first developed fundamental blocks for
multirate signal processing on graphs by drawing a parallel
with classical multirate systems. We started with the canonical
definition of the decimator and identified the corresponding
expander. We then defined noble identities for graph multirate
DSP. Contrary to the classical case, we showed that a certain
structure needs to be imposed on the graph to establish
these identities. We then studied some graphs that satisfy the
conditions and defined M -block cyclic graphs in this context.
The unique eigenstructure of such graphs was also shown,
and the concept of spectrum folding in such graphs was
thereby established. Finally we showed that alias-free systems,
polynomial systems, and shift-invariant systems on graphs do
not imply each other for arbitrary graphs, and established
conditions under which these three concepts are equivalent.
In the companion paper [22], we will build upon these results
to develop M-channel filter banks on graphs, and study the
alias cancellation and perfect reconstruction properties in such
graph filter banks.
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