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ABSTRACT
We study the compatibility of large quasar groups with the concordance cosmological model.
Large quasar groups are very large spatial associations of quasars in the cosmic web, with sizes
of 50–250 h−1 Mpc. In particular, the largest large quasar group known, named Huge-LQG,
has a longest axis of ∼860 h−1 Mpc, larger than the scale of homogeneity (∼260 Mpc), which
has been noted as a possible violation of the cosmological principle. Using mock catalogues
constructed from the Horizon Run 2 cosmological simulation, we found that large quasar
groups size, quasar member number and mean overdensity distributions in the mocks agree
with observations. The Huge-LQG is found to be a rare group with a probability of 0.3 per cent
of finding a group as large or larger than the observed, but an extreme value analysis shows that
it is an expected maximum in the sample volume with a probability of 19 per cent of observing
a largest quasar group as large or larger than Huge-LQG. The Huge-LQG is expected to be
the largest structure in a volume at least 5.3 ± 1 times larger than the one currently studied.

Key words: quasars: general – cosmology: observations – large-scale structure of Universe.

1 IN T RO D U C T I O N

The spatial distribution of galaxies is not homogeneous, but instead
galaxies form a complex hierarchy of structures, forming clusters
and groups, filaments and walls of galaxies that surround enormous
underdense volumes called voids. Together, they are known as the
large-scale structure of the Universe (LSS, hereafter) or the cosmic
web. The LSS is one of the main subjects of study of observational
cosmology as it allows us to probe the underlying distribution of
matter of the Universe (Peebles 1980), and it provides fundamental
constraints for the concordance cosmological model (Spergel et al.
2003). In particular, the LSS can provide important evidence about
the existence of non-Gaussianities in the initial conditions or viola-
tions of hypothesized homogeneity and isotropy of the Universe, the
so-called cosmological principle. However, the study of these ideas
requires very large volume surveys, due to the large scales studied.
But, redshift surveys using normal galaxies are currently limited
to redshifts too low for a good sampling of the very large scales
needed to test them. Instead, other kind of objects has been used
to sample medium to high redshifts. Quasars, the brightest class
of active galactic nuclei (AGNs; see Antonucci 1993), with their
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high luminosities have allowed the construction of redshift surveys
at medium and high redshift, e.g. the 2dF QSO Redshift Survey
(Colless et al. 2001, 2003) and the Sloan Digital Sky Survey Data
Quasar Catalogue (see Schneider et al. 2010). The larger volumes
and redshift ranges available in quasar redshift surveys have pro-
duced new opportunities to test deviations from the standard cos-
mology (e.g. Sawangwit et al. 2012) or the cosmological principle.

One of the findings in the quasar LSS is the presence of very
large groups or associations of quasars at large scales (hundreds of
Mpc), that we call large quasar groups (LQGs). LQGs are very large
in comparison with low-redshift structures, with dimensions in the
range of 50–250 Mpc, and they have been detected in the redshift
range z ∼ 0.4–2.0. The first detection was done by Webster (1982),
but this first detection was done for a small sample and the redshifts
have larger errors in comparison with modern surveys. It was not
until the construction of sizeable quasar redshift surveys that it
was possible to improve the confidence in the detection, increasing
the number of successful detections in the following years. The
Clowes–Campusano LQG (Clowes & Campusano 1991) was the
largest LQG known in the literature with a size of ∼250 Mpc (now
the largest LQG is the Huge-LQG). The Clowes–Campusano LQG
is also the most studied of these structures (Haines, Campusano &
Clowes 2004; Haberzettl et al. 2009; Clowes et al. 2012, 2013b;
Einasto et al. 2014). For further references about LQGs see Clowes
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et al. (2012) and references therein. LQGs provide a sample of large-
scale overdensities at medium redshifts for which the galaxy LSS
is not well mapped. Therefore, they could provide a way to study
the growth of the LSS, its connection to the galaxy formation, and
possibly additional constraints on the concordance cosmological
model.

Using the Sloan Digital Sky Survey (SDSS) DR7QSO redshift
survey, Clowes et al. (2012, 2013a,b) performed a search for LQGs
at medium redshifts, and produced a catalogue that represents an
order-of-magnitude increase in the number of known LQGs over the
pre-SDSS total. Clowes et al. (2012) corroborate the previous detec-
tion of the Clowes–Campusano LQG and found a similar detection
in the neighbourhood. Therefore, this kind of LQG is more common
than previously expected. Clowes et al. (2013a) show the detection
of the largest LQG known with an extension of 868 h−1 Mpc, which
is known as the Huge-LQG. This structure has received additional
corroboration using Mg II absorbers (Clowes et al. 2013a). Hut-
semékers et al. (2014) found that the quasar polarization is partially
correlated with the direction of its main branches, which might be an
indication of the association of the LQG sub-structures with walls
in the LSS (see Hahn et al. 2007). Other groups have recovered
similar LQGs using slightly different definitions (e.g. Einasto et al.
2014).

The very large size of the Huge-LQG and other LQGs could
represent a challenge for the accepted values of ‘the scale of ho-
mogeneity’, the minimum scale at which the Universe looks sta-
tistically homogeneous, a fundamental assumption of the standard
cosmological model. Estimates for the scale of homogeneity are as
small as 60–70 h−1 Mpc (Hogg et al. 2005; Yadav et al. 2005; Sarkar
et al. 2009) or as large as 260 h−1 Mpc (Yadav, Bagla & Khandai
2010). Similar claims of extreme structures in the LSS have been
made before, as the case of the Sloan Great Wall (Gott et al. 2005) in
the SDSS redshift survey, and two large ‘hotspots’ that correspond
to two superclusters in the 2dFGRS (Baugh et al. 2004; Croton
et al. 2004). These were found to be consistent with the LSS in the
concordance cosmology by Yaryura, Baugh & Angulo (2011, study
of the two large superclusters in the 2dFGRS volume), Sheth &
Diaferio (2011, study of the compatibility of Shapley supercluster
and the Sloan Great Wall) and Park et al. (2012, analysis of the
Sloan Great Wall compatibility using cosmological simulations).

There have been performed various analyses about the likelihood
of the Huge-LQG (Nadathur 2013; Pilipenko & Malinovsky 2013;
Park et al. 2015). However, all these analyses are based on random
catalogues, samples of randomly distributed points from a uniform
distribution in the volume. They are therefore just testing the statis-
tical significance of an LQG against a null hypothesis of complete
spatial randomness, instead of compatibility with the expected LSS.
Nadathur (2013) performed an analysis of the homogeneity of the
quasar sample, which he found to be consistent with homogeneity,
and an analysis of the likelihood of the Huge-LQG in random cata-
logues, using the probability that the largest random group has more
members than Huge-LQG. Using the same linking length chosen
by us, he finds that this p-value probability is 0.085. However, this
is not a significance test for the group but an extreme value analysis
as it deals with the largest object in the sample. A true significance
test has to compare it against a random group population. Park et al.
(2015) used a similar analysis using length and richness. No extreme
value or outlier analysis is given, in this case. In their conclusion,
they correctly say the existence of the Huge-LQG does not directly
imply a challenge for the concordance cosmological model and fur-
ther analyses using cosmological simulations are needed. Hence,
there has not been a proper comparison with the LSS predicted by

the concordance model. This comparison is necessary as random
catalogues cannot give any insight into the relation between the LSS
and the LQGs.

In this paper, we performed an analysis of the LQG compati-
bility with the concordance cosmological model by comparing the
observed LQGs with those from mock LQG catalogues obtained
from the Horizon Run 2 cosmological simulation (Kim et al. 2009).
These LQG mock catalogues were constructed from a set of mock
quasar catalogues using the same group finder and significance test
employed for the observational sample. We also perform an ex-
treme value analysis of the probability of observing the Huge-LQG
in these mock catalogues.

The paper is organized as follows. In Section 2, we describe the
observational sample of LQGs used in the comparison and we dis-
cuss its main properties. In Section 3, we describe the construction
of the intermediate mock quasar catalogues from the Horizon Run 2
cosmological simulation. In Section 4, we show the resulting mock
LQG catalogues and their comparison against observations. In Sec-
tion 5, we show the extreme value analysis of the largest LQG in
size and quasar number. Finally, in the last section we present the
summary and discussion of our results.

We adopt a fiducial cosmological model close to the best values
of the concordance cosmological model, with �T = 1, �M, 0 = 0.27,
��, 0 = 0.73 and H0 = 70 km s−1 Mpc−1. All distances shown are
comoving distances.

2 LARGE QUA SAR G RO UP SAMPLE

The LQG catalogue in Clowes et al. (2012, 2013a) was constructed
using the SDSS Quasar Redshift Survey Data Release 7 (Schneider
et al. 2010, SDSS-QSO DR7). This catalogue is part of the Sloan
Digital Sky Survey (York et al. 2000) and was the largest quasar
redshift survey at the time, being the conclusion of the SDSS-I and
SDSS-II quasar surveys. The catalogue contains 105 783 spectro-
scopically confirmed quasars with luminosities brighter than Mi =
−22.0 (in their fiducial cosmology) and fainter than i ≈ 15.0. Most
of these quasars have highly reliable redshifts with errors of the or-
der of a few percent. The catalogue covers an area of ∼9380 deg2.
The quasar redshifts range from 0.06 to 5.46, with a median value of
1.49. The spatial distribution of the survey is shown in Fig. 1. This
catalogue does not constitute a statistical sample, i.e. a sample ob-
tained through homogeneous selection, as noted by Schneider et al.
(2010). Richards et al. (2006) describe how to construct a statistical
sample from the DR3QSO catalogue. However, their criteria were
chosen to estimate the luminosity function of the sample not for
reconstruction of structures, so it can be modified if necessary. The
quasar sample chosen by Clowes et al. (2012, 2013a) is defined by
those quasars with apparent magnitude i ≤ 19.1 for the entire an-
gular coverage of the catalogue and redshift in the range 1.0 ≤ z ≤
1.8. The magnitude limit gave an approximately spatial uniform
selection for redshifts z ≤ 2 (Vanden Berk et al. 2005; Richards
et al. 2006). This sample is called A9380, from its solid angle in
squared degrees. Additionally, a control area, called A3725, was
defined in RA 123.◦0–237.◦0 and Dec. 15.◦0–56.◦0, which encloses
∼3725 deg2. This region is used in the statistical analysis of the
LQG candidates. Its limits were chosen so the region does not in-
clude the Clowes–Campusano LQG, the largest LQG known before
Clowes et al. (2013a), a possible outlier in the quasar distribution
that could possible bias the mean quasar density estimation. The
control area also does not include the Huge-LQG, therefore, is still
a valid control area in this regard.
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Figure 1. Hammer–Aitoff sky projection of the full SDSS Quasar Redshift Survey DR7 (SDSS-QSO DR7, left-hand panel) and our sample (right-hand panel).
For display purposes, only a random selection of the total sample is shown. For the full catalogue a 10th of the quasars is shown, and half of the quasars in the
quasar sample. The largest contiguous region corresponds to the SDSS Legacy survey. The angular limits restricted the quasar sample to a region that contains
most of the contiguous region of the SDSS-QSO DR7, avoiding the regions with very low completeness in the outskirts of the SDSS survey.

However, this sample is not completely adequate for comparing
the LQGs against cosmological simulations, as this was not the main
goal in the previous papers. The redshift distribution in this redshift
range is flat and therefore the quasar number density is decaying
with redshift. This effect is mainly due to the magnitude limit of
the sample, but also it is caused by the evolution of the luminosity
function, which can be explained by either luminosity evolution or
density evolution (see Richards et al. 2006). This variation affects
the group finder as the algorithm used, the friends-of-friends (FOF)
algorithm, depends on the local density. As a result, the groups at
higher redshift are fewer and smaller than lower redshift groups
for a fixed linking length or threshold density. Additionally, the
clustering properties of quasars change with redshift and the bias
parameter increases from ∼2.0 at redshift 1 to ∼3.0 at redshift 2
(Porciani, Magliocchetti & Norberg 2004; Ross et al. 2009). This
effect can be explained if quasars are hosted in massive dark matter
haloes, of ∼1013 M�, and there is no time evolution in the charac-
teristic mass of these haloes (see subsection 3.2). In this case, the
evolution in the quasar clustering introduces a systematic effect in
the detection of LQGs as the variance of the quasar sample changes
with radial distance to the observer. This effect makes harder the
construction of mock catalogues as we need many snapshots of
a simulation at different redshifts. To perform a comparison with
simulations, we rerun the group finder in a subset of the original
volume used in Clowes et al. (2012, 2013a) so the LQGs are more
uniformly detected. We use the redshift range 1.2 ≤ z ≤ 1.6, which
roughly corresponds to an interval of one billion years in cosmic
time. In this range, the clustering evolution is weak enough that the
change in the estimated bias is within its error (Porciani et al. 2004;
Ross et al. 2009). We restrict the sample to RA 120.◦0–240.◦0 and
Dec. 0.◦0–60.◦0, avoiding regions with very low completeness in the
SDSS catalogue that could affect the group finder performance. The
angular distribution of this quasar sample is shown in Fig. 1.

We employed the same methodology described in Clowes et al.
(2012) to construct the LQG catalogue. We summarize the pro-
cedure here. A detailed description can be found in Clowes et al.
(2012). We use the FOF method (Press & Davis 1982) as the group
finder. Also called single-linkage hierarchical clustering in the sta-
tistical literature, this is a well-known cluster finder. It is related
to the minimal spanning tree (MST; Kruskal 1956; Prim 1957), a
construct of graph theory, as FOF clusters can be obtained from
the division or ‘pruning’ of an MST at a certain length. The FOF
algorithm links together in the same group all objects with mutual
separation less than a certain distance, usually called the linking
length. Therefore, the linking length must be chosen carefully in or-
der to avoid the risk of percolation, the merging of most objects in
a single group spanning the volume. A possible specification of the

linking length is the mean nearest neighbour separation of the sam-
ple, ∼74 Mpc, which is a good compromise value in general. But
this value is estimated in redshift space. By including the effect of
redshift errors and peculiar velocities in the estimation of comoving
distances, and testing the detection performance a comoving linking
length of 100 Mpc in our fiducial cosmology was selected. We do
not consider candidate LQGs with fewer than 10 members because
groups with fewer than 10 members are more likely to be affected
by noise and their geometrical properties are very uncertain.

Once we obtained the candidate groups, we performed a hypoth-
esis test against the null hypothesis of groups come from a point
set that is randomly distributed, i.e. they correspond to random
groups. The statistic used is the volume of the point distribution
estimated using a procedure we called the convex hull of member
spheres (Clowes et al. 2012, CHMS, hereafter). This method assigns
a sphere with radius half of the mean linkage (MST edge length)
to each member position and then computes the convex hull of the
sphere set. This method is conservative and avoids underestimations
due to the use of single points in the estimation of the convex hull.
As random groups have larger expected volumes than real groups,
we define one-sided test with a specified region of rejection for
group volumes larger than a critical volume. We chose this region
to represent a significance level of 2.5 per cent. For a one-sided test
and assuming approximate normality this level correspond to 2.8
standard deviations from the mean. The critical volume depends on
the number of members, therefore for each quasar-member number
the region of rejection is estimated using Monte Carlo simulation
of random groups from uniformly distributed points with the same
number density.

The final LQG sample then consists of 59 significant groups
(from 189 candidates). The distribution of these LQGs is shown in
Fig. 2.

3 M O C K QUA S A R C ATA L O G U E S

To predict the properties of the LQG population in the standard
cosmology, it is necessary to be able to perform the same procedure
as used in the observational catalogue, so that the resulting mock
catalogues have the same biases and systematics errors present in
observations. Therefore, it is necessary to construct a set of mock
LQG catalogues from a cosmological simulation. As LQGs are con-
structed from the quasar distribution, it is also necessary to construct
intermediate mock quasar catalogues that reproduce the same biases
and selection effects found in the SDSS-DR7 quasar catalogue. In
this section, we describe the procedures followed to construct these
intermediate mock quasar catalogues from the chosen cosmological
simulation and their testing against observations.
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Figure 2. RA–Dec. plot of the LQG member quasars. LQGs are found to
surround low-density regions, delimiting cosmic voids. The geometry of the
LQGs is web-like and elongated.

3.1 Cosmological simulation

As LQGs are very large structures, we require that the cosmo-
logical simulation selected is accurate at large scales. Therefore,
the volume of the simulation needs to be many times larger than
the largest structure, because the largest wavelength perturbations
detectable are equal to the box size (L) of the simulation. Addition-
ally, high resolution to sub-galaxy scales is not necessary because
of the current uncertainties in the theory of the AGN formation and
evolution makes necessary the use of analytical approximations at
galaxy scales anyway. Also, the observational errors in the radial
and angular position and the sampling bias from the fibre collisions
means that the quasars can only be sampled with an accuracy 1 Mpc
at the typical redshift of the sample, which correspond to the size
of a galaxy cluster (van de Weygaert 2006). Therefore, we need a
detailed simulation only at the level of dark matter haloes. Haloes
are collapsed regions in the matter field and they have a dynamical
quasi-equilibrium distribution that is thought to be universal (see
Cooray & Sheth 2002, for a review).

We selected the Horizon Run 2 cosmological N-body simulation
(Kim et al. 2011). Horizon Run 2 (HR2, hereafter) is one of the
largest pure dark matter cosmological simulations available, with
60003 = 216 billion particles, and a volume of (7200 h−1 Mpc)3,
which is more than 2700 times the volume of the Millennium Run
(Springel et al. 2005). It resolves galaxy cluster size haloes with
mean separations of 1.2 h−1 Mpc, and the minimum halo mass is
3.75 × 1012 h−1 M�. A summary of the main parameters of the
HR2 simulation is shown in Table 1. HR2 is a dark-matter-only
simulation, and therefore we use their dark matter halo catalogues
to produce mock catalogues. We used the FoF dark matter halo cat-
alogue of a snapshot of the HR2 at redshift 1.4, which corresponds
to the median redshift of our quasar sample. In principle, a more
realistic light-cone simulation should be used, but HR2 does not
have the temporal resolution at redshifts higher than 1 to construct
a light-cone mock catalogue. However, the evolution of the dark
matter halo clustering in the redshift range 1.2–1.6 is small, and
most of the density, luminosity and possible clustering evolution
can be ascribed to quasar evolution.

Table 1. Main parameters of the HR2 simulation.

Parameter HR2 value

Model WMAP5
�M 0.26
�b 0.044
�� 0.74
Spectral index 0.96
H0 (km s−1 Mpc) 72
σ 8 0.794
Box size ( h−1 Mpc) 7200
Number of particles 60003

Starting redshift 32
Particle mass (1011 h−1 M�) 1.25
Mean particle separation ( h−1 Mpc) 1.2
Minimum halo mass [30 particles] (1011 h−1 M�) 37.5

A possible shortcoming of this halo catalogue is that the minimum
number of mass particles per halo is low, 30 particles. Therefore,
the estimated mass of each halo has an important uncertainty be-
cause of Poisson noise. The low number of particles also produces
artificial discreteness in the mass distribution that could invalidate
the application of analytical formulae that depend on the continuity
in halo mass. To avoid this effect, we smooth the halo mass by
applying a random scatter following a uniform distribution of half
a particle to simulate a continuous distribution of mass levels. An-
other shortcoming is that FoF haloes tend to include matter particles
that are not actually gravitationally bound to the haloes. This affects
in particular the high-mass end of the mass function of haloes, and
as a result the halo mass function is more heavy-tailed than it should
be for real virial masses. We correct for this effect by applying the
Warren et al. (2006) correction for the number of mass particles,
which is based on the comparison of virial and FOF masses in dark
matter N-body simulations. The Warren correction is

Nh = NFOF
(

1 − (
NFOF

)−0.6
)

, (1)

where Nh is the corrected number of particles and NFOF is the num-
ber of particles obtained using the FOF method. The corrected
mass is Mh = mpNh, where mp is the particle mass, equal to 1.25 ×
1011 h−1 M� for HR2 and 1.79 × 1011 M� in our fiducial cosmol-
ogy.

The volume of the HR2 simulation is divided into sub-volumes
with the same geometry as the sample volume. We obtained 11
independent volumes for the construction of the mock catalogues.

3.2 Quasar halo occupation distribution model

We construct our mock quasar catalogues using a halo occupa-
tion distribution (HOD hereafter, Berlind & Weinberg 2002). This
is a probabilistic model of the galaxy (or a different object like
quasars) distribution within a dark matter halo. Together with the
halo model, this completely defines the large-scale distribution of
a particular type of galaxy, such as quasars. The HOD can be cal-
ibrated using observations and therefore it is particularly suitable
for the construction of large mock catalogues. HOD models have
been used extensively in the analysis of the clustering of quasars,
and they have been successful in clarifying the relation between the
dark matter halo distribution and quasars (e.g. Martini & Weinberg
2001; Croom et al. 2004; Porciani et al. 2004; Shen et al. 2007;
Ross et al. 2009; Richardson et al. 2012). These studies found that
quasar clustering is consistent with quasars being hosted by mas-
sive dark matter haloes of about 1012–1013 M�, independent of
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redshift. Haloes of this mass range are about 100–1000 times more
abundant than quasars (depending on the model), which excess is
explained by quasars having a relatively short duty cycle. Assum-
ing that all haloes with more than the threshold mass contain a
galaxy with a supermassive black hole (SMBH), then the observed
fraction of quasars is just the mean duty cycle. For a duty cycle
of 0.1–1 per cent, the mean quasar lifetime should be in the range
10–100 Myr, consistent with theoretical predictions of the e-folding
time of the SMBH growth (Martini & Weinberg 2001). This lifetime
is an average for a given time period: the actual quasar activity could
consist of a series of luminous periods with added total time equal
to the mean lifetime, as is suggested by recent evidence supporting
this picture (see Alexander & Hickox 2012, for a review).

We adopted a modification of the Berlind & Weinberg (2002)
HOD model, a widely used HOD model that has been used success-
fully in galaxy populations, by multiplying the occupation number
(mean number of objects in the halo) by a constant effective quasar
duty cycle, similarly to Padmanabhan et al. (2009). This is the light-
bulb model: quasars are either active or inactive, and they radiate
at close to peak luminosity. It is widely used in studies of quasar
clustering (e.g. Martini & Weinberg 2001; Porciani et al. 2004;
Croton 2009; Padmanabhan et al. 2009; Conroy & White 2013).
Even though this model is not enough to reproduce the luminosity
function and other properties of AGN in general, it is successful in
reproducing the spatial clustering of quasars. A constant duty cycle
means that the quasar lifetime is independent of the mass of the
host halo. Observational evidence shows that the fraction of galax-
ies with active AGNs increases with stellar mass (Best et al. 2005)
and correlates with virial halo mass (Behroozi, Wechsler & Conroy
2013). But in the case of luminous quasars, the stellar masses are
larger than 1011 M�, and in this regime the fraction is weakly de-
pendent on the stellar mass. Thus, a constant duty cycle is a good
approximation of the behaviour of quasars in high-mass haloes (e.g.
Conroy & White 2013). This behaviour is related to the triggering
mechanism of quasars that is most likely to be caused by major
mergers (see discussion in the following paragraph).

The Berlind & Weinberg (2002) HOD model distinguishes be-
tween central and satellite galaxies, to reproduce the different
kinematics and morphologies observed in cluster galaxies. Evi-
dence suggests that low-to-moderate luminosity AGN are hosted in
disc-dominated galaxies (Gabor et al. 2009; Cisternas et al. 2011;
Schawinski et al. 2011; Kocevski et al. 2012) suggesting a predom-
inantly secular fuelling of the AGN by disc instabilities or minor
mergers (Hopkins, Bahcall & Bode 2005; Menci et al. 2014). In
contrast, there is strong evidence suggesting that major mergers,
i.e. merger of galaxies with similar masses, are the predominant
mode of triggering high-luminosity AGN as quasars (Kauffmann
et al. 2003; Treister et al. 2010, 2012; Villar-Martı́n et al. 2011,
2012; Menci et al. 2014). Also, there is evidence that quasars at
all redshifts are preferentially located in early-type galaxies, or at
least galaxies with a dominant spheroidal component (Kauffmann
et al. 2003; Kocevski et al. 2012) with respect to normal galaxies,
consistent with the relation between the black hole mass and the
spheroid mass (Magorrian et al. 1998; Ferrarese & Merritt 2000;
Tremaine et al. 2002; Marconi & Hunt 2003). There is some evi-
dence that AGN and quasars are preferentially located in satellite
galaxies at z < 1 (Söchting, Clowes & Campusano 2002; Alexander
& Hickox 2012). However, there is not enough evidence to have a
clear picture of the location of quasars in dark matter haloes at high
redshift. Major mergers are more prevalent in satellite galaxies, but
they are also present in central galaxies at high redshift and the
formation of central elliptical galaxies requires major mergers of

massive galaxies. Therefore, we assume for this work that quasars
can be triggered either in central or satellite galaxies, with no strong
dependence on the mass of the dark matter halo, as is expected if
major mergers are the predominant mode of triggering and fuelling
of quasars. This assumption is found in most of the HOD models
applied to quasars (Porciani et al. 2004; Padmanabhan et al. 2009;
Richardson et al. 2012).

The main parameter of HOD models is the mean occupation
number 〈N|M〉, the mean number of objects in a halo of mass M.
After the mean occupation number is defined, the actual number
of objects is defined by a probability distribution with a parameter
that is the mean occupation number. Following Berlind & Weinberg
(2002), the central quasar mean occupation number is modelled as
a step function (this produces the light-bulb behaviour),

〈N |M〉cen =
{

fq, M ≥ Mmin

0, M < Mmin.
(2)

where Mmin is the minimum halo mass for which a dark matter
halo can host a quasar, and fq is the effective duty cycle, i.e. the
fraction of haloes that host active quasars combined with the effect
of the incomplete sampling of quasars. The satellite quasar mean
occupation number is a broken power law (the same as satellite
galaxies, see Berlind & Weinberg 2002),

〈N |M〉sat =
{

fq

(
M
Ms

)α

, M ≥ Mmin

0, M < Mmin.
(3)

The actual number of quasars is obtained from Monte Carlo
simulation from the central and satellite probability distributions
that defines the HOD. Following Berlind & Weinberg (2002), we
use a Bernoulli distribution (nearest neighbour distribution) with a
success probability equal to 〈N|M〉cen for the central quasars and a
Poisson distribution with rate equal to 〈N|M〉sat for satellites.

There are four parameters in the model: the minimum halo mass
Mmin, the power-law scale Ms, the power-law α and the fraction
of quasars in haloes fq. However, we lack enough constraints to
accurately fit these parameters and also we want to avoid overfitting
of the model. We adopt the scaling relation for the power-law index
and the power-law scale from Kravtsov et al. (2004) to fix α and Ms

in our HOD model. They estimated the HOD of sub-haloes: haloes
merged into a larger halo as part of the hierarchical formation of
structure in dark matter N-body simulations. As it is expected that
galaxies are formed in sub-haloes, and their number and kinematics
should approximately follow galactic ones. Kravtsov et al. (2004)
used the Berlind & Weinberg (2002) HOD to model the distribution
of sub-haloes in dark matter haloes. They found that the power-law
index is approximately α = 1 and that the power-law scale, Ms,
follows the scaling relation Ms ≈ 20Mmin at z = 1.

The two remaining free parameters Mmin and fq are fitted using the
observed mean number density and two-point correlation function.
The best-fitting parameters are Mmin = 6.16 × 1012 M� which
is similar to the minimum halo mass found in previous studies
(Porciani et al. 2004; Richardson et al. 2012), and fq = 0.002.
Consequently, Ms = 20Mmin = 1.2 × 1014 M�. The minimum halo
mass sets the effective bias of the mock catalogues and therefore it
sets their two-point correlation function, whereas the effective duty
cycle sets the observed quasar mean number density. The estimated
quasar lifetime implied by fq is tq = fqtH(z = 1.4) = 12.7 Myr for
our fiducial cosmology (�m = 0.3, �� = 0.7, h = 0.7), where tH is
the Hubble time at mean redshift of the comparison sample (1.4).
This is consistent with other estimations of the quasar lifetime in the
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literature (e.g. Martini & Weinberg 2001; Richardson et al. 2012;
Conroy & White 2013).

The spatial location of a quasar within the halo is not relevant
for the mock LQG catalogues, given the scales involved. However,
it can be important in the reproduction of selection effects as red-
shift distortions. We assign a position and velocity to each quasar
depending on whether it is a central quasar or a satellite quasar.
Central quasars are hosted by the central galaxy and we assume that
this is the most massive galaxy in the halo, and therefore it should
be located close to the centre of mass of the halo. Consequently, we
assign the coordinates and peculiar velocity of the halo itself to the
central quasar. Satellite quasars are located in satellite galaxies that
are distributed according to the sub-halo spatial distribution. A good
model in this case is to assign to each satellite a random position,
following the observed radial profile. The radial profile of satellite
quasars is found to be well described by a power law (Degraf et al.
2011; Chatterjee et al. 2012, 2013). Chatterjee et al. (2013) find the
radial profile is well fitted by

n(R) = 10−0.67

(
R

R200

)−2.3

, (4)

where R200 is the radius within which the enclosed mean density
is 200 times the critical density. We then assign a peculiar velocity
equal to the centre-of-mass peculiar velocity plus a random peculiar
velocity following the Maxwell distribution.

3.3 Selection effects and observational errors

The SDSS-QSO quasar sample contains many different sources
of observational error and biases that need to be reproduced in
the mock catalogues, so they can be directly compared against
observations. In the following, we detail the main selection effects
and the reproduction of these in the mock quasar catalogues.

3.3.1 Radial selection function: luminosity assignment
using abundance matching

The SDSS-QSO quasar sample is a magnitude-limited sample and
thus it has a radial selection function. To reproduce the observed
radial selection function, we assign absolute magnitudes to each
quasar using the scheme called halo abundance matching (HAM;
Kravtsov et al. 2004; Tasitsiomi et al. 2004; Vale & Ostriker 2004;
Conroy, Wechsler & Kravtsov 2006; Conroy & Wechsler 2009;
Behroozi, Conroy & Wechsler 2010; Guo et al. 2010). The HAM
is a non-parametric estimator of the relation between halo mass
and the object luminosity. This method ensures that the resulting
mock catalogue has the correct luminosity function and avoids the
introduction of an ad hoc model. The method is based on matching
the mean number density of quasars in haloes with virial mass larger
than M to the mean number of quasars more luminous than L for
every possible mass and luminosity, i.e.∫ ∞

M

n(M ′, z) dM ′ =
∫ ∞

L

φ(L′, z) dL′. (5)

The result is a monotonic relation between halo mass and lumi-
nosity, effectively assigning the most luminous quasar to the most
massive halo. This is an important assumption, but it is justified by
the observation of a direct relation between the quasar luminosity
and halo mass (Lidz et al. 2006; Shen 2009; Shankar et al. 2010;
Chatterjee et al. 2012; Conroy & White 2013) and between the virial
halo mass and black hole mass (Di Matteo et al. 2003; Di Matteo,

Springel & Hernquist 2005; Di Matteo et al. 2008; Shankar et al.
2010).

We use the Richards et al. (2006, R06 hereafter) analytical quasar
luminosity function to apply the abundance matching. The formula
was fitted using the DR5 data, but Shen & Kelly (2012) found that
this formula is still consistent with DR7 data. Because the formula
cannot differentiate between luminosity evolution and number den-
sity evolution with redshift, we take advantage of this degeneracy
and we assume pure luminosity evolution of the quasar population
for the redshift range 1.2 ≤ z ≤ 1.6. The R06 luminosity function
is

φ(Mi , z) = φ∗10Aμ, (6)

where

μ = Mi − (M∗ + B1ξ + B2ξ
2 + B3ξ

3), (7)

and

ξ ≡ log10

(
1 + z

1 + zref

)
. (8)

In these equations, Mi is the absolute magnitude in the i band,
and φ∗, A, B1, B2, B3, zref and M∗ are free parameters. zref is
set to 2.45 and M∗ = −26. The best-fitting parameters of the R06
luminosity function for z ≤ 2.4 are A = 0.84, B1 = 1.43, B2 = 36.63,
B3 = 34.39 and log10 φ∗ = −5.7.

We obtain n(< Mi) by integration of φ(Mi , z) between Mb, the
absolute magnitude of the brightest quasar detectable in the sample,
and Mi , the absolute magnitude of interest. Defining

m∗(z) = (M∗ + B1ξ + B2ξ
2 + B3ξ

3), (9)

this results in

n(< Mi) =
∫ Mi

Mb

φ(Mi , z) dMi

= 1

A ln(10)
φ∗

(
10A(Mi−m∗(z)) − 10A(Mb−m∗(z))

)
. (10)

We solve the equation for density and impose n(< Mi) = n(> Mh),
resulting in

Mi = μ + 1

A
log10

[
A ln(10)

φ∗ n(> Mh) + 10A(Mb−μ)

]
, (11)

We estimate the cumulative density of haloes with mass n( > Mh)
using the rank in mass of each halo divided by the volume of the
sample. Then, we assign the absolute magnitude using equation (11)
with Mb = −29.5 (the absolute magnitude limit in the sample).
Additionally, recent works in HAM acknowledge the possibility
of intrinsic scatter in the relation between mass and luminosity in
galaxies (Trujillo-Gomez et al. 2011; Behroozi et al. 2013; Hearin
et al. 2013), and they add a random scatter to the relation between
mass and luminosity to reproduce better observations. We follow
this procedure and we apply a normal random number with a scatter
of 0.3 mag to improve the agreement to the observed magnitude
distribution.

Having assigned the absolute magnitudes to the mock quasars,
we compute apparent magnitudes using the standard formula in our
fiducial cosmology,

mi = Mi + 5.0 log10((1 + z)Dc) + 25.0 + K(z), (12)

where Dc is the comoving distance, K(z) is the K-correction adopted
by Schneider et al. (2007),

K(z) = −2.5(1 + αν) log10(1 + z), (13)
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Figure 3. Hammer–Aitoff sky projection of one of the mock quasar sam-
ples. The angular distribution in this figure includes the angular selection
function of the survey. We display only half of the quasars, selected at ran-
dom, in this figure. The overall distribution is similar to the observed quasar
sample. Compare with Fig. 1. The effect of the angular selection function
can be noticed in the lack of quasars in the bottom right corner of the sample
distribution.

and αν is the power-law index for SDSS-DR7 quasars, which is
found to be αν = −0.5. The radial selection function is then repro-
duced by applying the magnitude limit of the SDSS-DR7 sample
(mi < 19.1 mag). The resulting redshift distribution follows very
well the original radial selection function (see Fig. 5).

3.3.2 Angular selection function

We used the same limits in right ascension and declination for
the mock catalogue as in the comparison sample. These take out
most of the highly incomplete regions at the boundaries of the
observational survey, but the completeness inside this region can
vary from point to point, sometimes very strongly, and there are
regions with almost no data, mainly because of very bright stars
or highly obscured regions. The change in the completeness of the
survey with sky position is called the angular selection function.
We used the angular selection maps of the SDSS produced by
Blanton et al. (2005) using the MANGLE polygon format (Hamilton
& Tegmark 2004; Swanson et al. 2008). We apply the MANGLE polyid
command (Swanson et al. 2008) to obtain the completeness weights
of each mock quasar and then we randomly sample mock quasars
with a probability equal to the completeness associated with each
mock quasar. The completeness in the angular selection map is
defined as the fraction of targets from the photometric survey with
measured redshifts. This filtering effectively reproduces the angular
selection of the comparison sample, as seen in Fig. 3 compared to
its equivalent for the comparison quasar sample (Fig. 1).

3.3.3 Fibre collisions

Fibre collisions cause a bias in the quasar sampling in SDSS-QSO
DR7 due to the thickness of the fibre cladding, so no two fibres on
the same spectroscopic plate can be placed within 55 arcsec of each
other (York et al. 2000), corresponding to a spatial separation of
≈0.9 h−1 Mpc at the typical quasar redshift of z = 1.4. Therefore,
the expected number of quasars per halo in the SDSS-QSO sample is
one quasar per halo. This effect was considered in the original survey
design of the sky sampling, and many regions were observed more
than once. However, this repeated sampling was not uniform in the
survey area and the procedure was performed for all objects, not just
quasars, so in practice the resampling does not correct efficiently the
fibre collision bias in the quasar sample. Therefore, there are very

few pairs closer than 55 arcsec. In our quasar sample, the number
of quasars closer to each other than 55 arcsec is 18, just 0.2 per cent
of the total number of quasar in this sample (10 804 quasars). As
most of these quasar ‘pairs’ are due to line-of-sight projection, we
simulate this selection effect by randomly sampling only one quasar
in each halo, because the probability of observing quasar pairs in the
same halo is negligible. The mean number of quasar in our mocks
closer than 55 arcsec after this sampling is 17.53, with a standard
deviation of 5.8. Thus, our mocks are statistically compatible with
observations. These statistics suggest that the observed number of
quasar pairs closer than the fibre collision limit in the DR7 catalogue
is consistent with line-of-sight projection.

3.3.4 Redshift distortions

Observational redshifts are affected by redshift distortions, also
called ‘Fingers-of-God’ effect, due to the peculiar velocities of
quasars. As our mock catalogues include peculiar velocities, we
can directly compute the observational redshift. We use the non-
relativistic formula

zobs = zcos + vpec

c
(1 + zcos) , (14)

where zobs is the mock observational redshift of the mock quasar, zcos

is the redshift of the quasar computed from its comoving distance
and vpec is the peculiar velocity assigned to the mock quasar.

3.3.5 Observational errors

Observational errors can produce many systematic effects in the
observational sample that need to be reproduced in the mock cata-
logues, so that is possible to make sensible comparison. The main
variables affected by errors are the redshift and the apparent mag-
nitude. We simulate these errors in our mocks by adding a normally
distributed random variable with a scatter equal to the estimated
error in the variables. The estimated observational redshift uncer-
tainty is approximately 0.003 (Hewett & Wild 2010), whereas the
estimated error in absolute magnitudes for SDSS-DR7 quasars is
0.03 magnitudes (Schneider et al. 2007).

3.4 Final construction and testing

The model just described is inherently probabilistic and therefore it
can produce many independent random realizations from the same
halo catalogue. This is desirable as it allows us to understand the
effect of sampling noise in the LQG catalogue. We run the model
10 times for each of the 11 mock volumes constructed from the
HR2 simulation, producing a total of 110 mock quasar catalogues.

We test the accuracy of the reproduction of the observational clus-
tering properties and selection effects in these mock catalogues. The
resulting absolute magnitude distribution is shown in Fig. 4, which
shows the absolute magnitude distribution for real and mock sam-
ples. As expected, by construction the resulting absolute magnitudes
is statistically consistent with observations and, therefore, we suc-
cessfully reproduced the observed radial selection function in our
mocks. The redshift distribution is also successfully reproduced, as
shown in Fig. 5.

To test if the mock quasar catalogues are reproducing the clus-
tering properties of the observational sample, we estimate the two-
point correlation function of real and mock quasar catalogues and
compare them. We estimate the correlation function in redshift space
to include the effect of redshift distortions present in the sample. We
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Figure 4. Absolute magnitude distributions of SDSS-DR7 quasar (blue)
and one of our mock quasar catalogues (red). Both distributions agree well
with each other, although there is a small excess of quasars at high luminosity,
but this has not affected the following analyses.

Figure 5. Redshift distribution of quasars in the observational catalogue
and in a single mock catalogue. The range of the observational sample is
extended to redshifts between 1.0 and 1.8 to provide a better visualization of
the general trend. The error bars are Poisson errors for each bin count. The
mock redshift distribution shows a good agreement with the observational
redshift distribution. Other mock catalogues can present some underpredic-
tion at high redshift but they are still consistent within the typical error.

use the standard Landy–Szalay estimator (Landy & Szalay 1993)
for the estimation of the two-point correlation function. The estima-
tion of the two-point correlation function requires the construction
of a random catalogue to perform the Monte Carlo estimation. The
angular coordinates of the random points are obtained using the
MANGLE ransack command (Swanson et al. 2008) using the same
angular selection mask that is used in the mock catalogues. This
mask indicates the completeness – the fraction of photometric tar-
gets successfully include in the redshift catalogue – in each region of
the original survey. The radial coordinate is sampled from the nor-
malized radial selection function. The final random catalogues are
designed so that the total number of random points is approximately
20 times larger than the total number of quasars in the sample. This
higher number of points reduces the sampling error of the estima-

Figure 6. The two-point correlation function of SDSS-QSO DR7 and mean
correlation function of the mock quasar catalogues. The error bars for SDSS
quasars and mocks are the standard deviation from the correlation function
computed using all the mocks, therefore including both Poisson or shot
noise and cosmic variance. The lower panel shows the standardized residuals
(difference between mock and observed correlation functions in each bin
divided by the pooled standard error in the mocks σ ξ ). All residuals are
within two standard errors, indicating that both samples are statistically
consistent with the same population hypothesis at 95 per cent confidence
level.

tion of the correlation function. The result is shown in Fig. 6. The
error bars of both observation and mocks correlation functions are
estimated from the standard deviation of the estimates in each bin
for the full set of mocks. Using the mock errors for observation
error gives a better estimate of the true error as the usual Poisson
errors underestimate the true error because they do not take into
consideration the cosmic variance. From Fig. 6, it is clear that the
observed and the mock catalogues are consistent with the observed
correlation function of DR7 quasars, within the estimated errors.
The mocks are consistent even at scales below 10 Mpc, when the
non-linear evolution begins to be important and the details of the
HOD are crucial. The observed deviation in observations at large
scales is mostly due to the smaller number of pairs in those bins
and the closeness to the scale of the volume of the sample. Never-
theless, these deviations are within the estimated errors and we find
individual mocks with very similar behaviour. The bottom panel of
the figure shows the standardized residual, the difference between
the observed correlation and the expected correlation in the mocks
divided by the pooled standard deviation, i.e. the square root of the
sum of the variances of observations and mocks. These show a good
agreement between observations and mocks.

We perform a goodness-of-fit test using the statistic X2 =∑N
i=0(ξi,DR7 − ξi,mock)2/σ 2

ξ,mock, where N is the number of bins used
in the estimation of the correlation function, ξ , and σ ξ is the standard
deviation of ξ in each bin. This statistic is asymptotically distributed
as a χ2 distribution with 13 degrees of freedom. We perform a Pear-
son χ2 test to test the null hypothesis that both samples come from
the same parent population. The observed statistic is X2 = 11.30,
which is equivalent to a reduced chi-squared statistic X2

ν = 0.87
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Figure 7. RA–Dec. plot of the LQG member quasars for a single mock
LQG catalogue. The distribution of quasars in each LQG is similar to the
distribution of observational LQGs (see Fig. 2).

for 13 degrees of freedom (X2
ν = X2/ν, where ν is the number of

degrees of freedom of the statistic). The p-value for this statistic is
over 0.59, and therefore it is not possible to reject the hypothesis
that both samples come from the same parent population with any
reasonable significance level, i.e. the mocks and observations are
statistically compatible. Therefore, we conclude that the parame-
ters of the fiducial model are in good agreement with the observed
large-scale distribution of quasars in the observational sample.

4 M O C K L A R G E QUA S A R G RO U P S

We construct the mock LQG catalogues by applying the same pro-
cedure described in Section 2 to each mock quasar catalogue. We
obtained 110 mock LQG catalogues in this way. The mean number
of significant LQGs in the mocks is 57.6 ± 0.6 and the standard
deviation in the number of significant LQGs is 6.1 ± 0.4. The to-
tal number of significant LQGs across all the mocks is 6339. An
example of these mock catalogues is shown in Fig. 7. We use the
summary statistics discussed in Section 2 to study the properties of
the mock LQGs. The number of members, named quasar number,
and characteristic size are particularly important for the study of the
largest LQG in the volume as the largest LQG is the maximum in
these quantities.

4.1 Mock large quasar groups properties

The size of an LQG is measured using what we call the characteristic
size (Dch), the cube root of the volume estimated with the CHMS
method (VCHMS, CHMS). The characteristic size of mock and SDSS
samples is shown in Fig. 8. The figure shows the histogram and the
kernel density estimation using a Gaussian kernel. The mock sample
in this plot is the stacked sample from all 110 mock volumes. Using
this procedure, it is possible to include the effects of cosmic variance
and HOD sampling. As the error bars for the stacked sample are
very small because of the substantially larger number of LQGs, we
do not show the error bars in Fig. 8. The consistency between both
distributions is driven mainly by the error bars of the SDSS LQGs.
This is also the case for the other properties. Both distributions are
very similar, but there is a slight excess of density at higher sizes in
the observations that shift the mean. This shift can be better observed
in the kernel density plot. We test if the two samples are consistent
with the hypothesis that they come from the same distribution using
the two-sample Kolmogorov–Smirnov test (KS test). The p-value

Figure 8. Left-hand panel: histograms of the characteristic size distribution for the observational and stacked mock catalogues. Each bin of the observational
sample has an error bar showing the Poisson estimate of the error. Both samples are similar, although the observational sample mode seems to be shifted
to higher size. Nevertheless, this deviation is compatible with the same parent population hypothesis as tested using a two-sample KS test (p-value 0.52).
The size of the Huge-LQG, as detected in the original catalogue, is shown with a vertical blue line in the left-hand panel. In the current sample, the size is
somewhat smaller due to the loss of a few members caused by the reduced redshift range, but it is still very close to the original detection. It can be seen that
the probability of the Huge-LQG is quite low in the mock catalogues. Right-hand panel: kernel density estimation of the characteristic size distribution for the
observational sample and stacked mock catalogues. It provides the same information as the histogram but it does not suffer from the bin location arbitrariness.
The bandwidth of 26.70 Mpc was chosen using Scott’s rule-of-thumb (Scott 2015).
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Figure 9. Left-hand panel: histograms of quasar number for the observational sample and stacked mock catalogues. Each bin of the observational sample has
an error bar showing the Poisson estimate of the error. Both samples have similar distributions. The observational distribution shows more discrete noise in
each bin, but this is a consequence of the small number of LQG in each bin. The samples are consistent with the hypothesis of the same parent population
tested using the two-sample KS test (p-value 0.73). The quasar number of the Huge-LQG in the original sample is shown with a vertical line. Again, it is a
rare observation according to the stacked mock LQG sample. Right-hand panel: kernel density estimation of quasar number distribution for the observational
sample and stacked mock catalogues. We used a Gaussian kernel with a bandwidth of 3.15, chosen using Scott’s rule-of-thumb (Scott 2015). The distributions
of each sample are very close, except for a drop in the probability density at quasar number higher than 45, which is likely due to the low probability of LQG
at the tail of the distribution.

for the KS statistic is 0.52 and, therefore, the samples are consistent
with the null hypothesis that they come from the same distribution.
However, the KS test is known to be insensitive to discrepancies in
the tails of the distribution. In this case, alternative tests, like the
Cramer or the Anderson–Darling tests, are more powerful. Using
the Anderson–Darling 2-sample test (Scholz & Stephens 1987), we
also obtain a p-value of 0.52, indicating that tail discrepancies are
not affecting the KS test result.

The size of the Huge-LQG in the original catalogue is marked
by a blue vertical line in Fig. 8. It is clear from the plot that this
group is also rare in the mock LQG catalogues. Using the empirical
distribution, it is estimated that the probability of finding a group as
large or larger than the Huge-LQG is P(D > 495) = 0.003.

However, this probability cannot be used as a sort of p-value,
because it does not take into consideration the size of the sample
volume. The volume of the sample defines the size of the LQG
sample and if the volume is large enough even unlikely LQG sizes
can be sampled with probability one. A better way to assess if the
Huge-LQG is an outlier is by using the probability distribution of
the largest structure in the sample, i.e. the maximum characteristic
size in the volume of the comparison LQG sample. The study of
the probability maximum and minimum of a sample is known as
extreme value statistics and it is widely used to assess the probability
distribution of extreme measurements. We summarize the main
aspects of the extreme value statistics theory in Section 5 and we
apply it to characteristic size and quasar number.

Quasar number is another property in which the Huge-LQG is
extreme. This is not a surprise, as both characteristic size and quasar
number are related together through the LQG mean quasar density
(a larger LQG must have a large number in order to have a similar
mean quasar number density). Fig. 9 shows the quasar number
distribution of the SDSS and mock LQGs. The quasar number of
the Huge-LQG is also shown. The distribution shows an important
peak at ≈20 and an exponential decline at large quasar number. The
observational sample presents some deviation that is most likely

caused by the small number of LQGs in the tail. We apply the
two-sample KS test between observation and mocks and it results
in a p-value of 0.73, and therefore we cannot reject the hypothesis
that both samples come from the same parent distribution. Using the
Anderson–Darling 2-sample test (Scholz & Stephens 1987), which
is more sensitive to differences in the tail of the distributions, we
obtain a p-value of 0.55, again agreeing with the KS test.

As in the case of size, the probability of observing an LQG with
more quasars that Huge-LQG is P(Nq > 73) = 0.003. Therefore,
the number of quasar member does not give new information in
addition to the characteristic size.

Mean overdensity is an important property of the LQG as it
is independent of quasar number and size, which are mainly de-
termined by the approximate threshold density set by the linking
length used. The distribution of mean overdensity of the mock
LQGs is compatible with SDSS-LQG sample, as can be seen in
Fig. 10. A KS test results in a p-value of 0.62, therefore both dis-
tributions are compatible. It is worth mentioning that in the largest
overdensity in the SDSS-LQG catalogue is 7.9, which is approxi-
mately 20 times denser than the Huge-LQG (δq = 0.4), therefore
we are not performing any extreme value analysis in this quan-
tity. The largest overdensities in the mock LQGs are similar to the
one in SDSS-LQG with a mean of 6.9 ± 0.2 and standard devi-
ation of 2.0 ± 0.1. The largest mean overdensity in the mocks is
14.8.

5 EXTREME VA LUE A NA LY SI S

Extreme value statistics is the study of the distribution of rare events
that are produced by the tails of a distribution (Coles 2001; Castillo
et al. 2004; Beirlant et al. 2006). There are two main approaches
available. One approach is the study of the maxima and minima
of a sample or data block (a period, for example) as the statistic
under repeated sampling. This approach is called the block maxima
(or minima) method (BM). The analysis of block minima is easily
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Figure 10. Left-hand panel: histogram of overdensity for the observational sample and stacked mock catalogues. The error bars show the Poisson estimate
of the error in each bin for the observational sample. Both distributions are very similar and they are compatible with the same parent population hypothesis
(under a KS test with p-value 0.62). The Huge-LQG as a whole is not especially overdense (δq = 0.4). Its subsets are more overdense (δq = 1.2 and 1.54), but
it is still not as overdense as the densest LQG in the sample (δq = 7.9), which are usually compact structures with low membership and size. At the right is the
kernel density estimation of the overdensity distribution for the observational sample and stacked mock catalogues. We used a Gaussian kernel with bandwidth
of 0.36 selected using Scott’s rule-of-thumb (Scott 2015). Observational and mock samples show good agreement.

performed by using the inverse of the data variable. Another ap-
proach is based on the estimation of the asymptotic probability
distribution of the tail of the distribution, i.e. the probability of ob-
serving events larger (or smaller) than a certain threshold, which
is called the peak over threshold (POT) method. The BM method
is easy to implement but tends to disregard a large amount of col-
lected data. The POT method allows more data to be included in
the analysis, which improves the accuracy of the estimation of the
asymptotic distribution, but it introduces an ad hoc parameter, the
threshold limit, which needs to be selected a priori and thus intro-
duces biases in the estimation of the tail distribution. In comparison,
the BM method results in a less accurate but less biased estimation
of the probability distribution. The probability distribution of the
largest LQG is the distribution of the maxima (size, number) in a
data block (sample volume) and therefore we will restrict ourselves
to the BM approach.

In extreme value statistics, parametric estimation is highly rele-
vant as non-parametric estimation is inherently biased because the
empirical distribution has a zero probability of observing events
larger than the largest maximum in a series of samples. For this
reason, it is desirable to have a parametric distribution that is able
to describe the distribution of the maxima or the tail of the distri-
bution, which gives more accurate inferences about the expected
excess probabilities. Fortunately, in the cases where the distribution
is unknown, there are analogues of the Central Limit Theorem for
extreme values that provide an asymptotic form of the distribution
for large samples. If the underlying distribution of the maximum
respects some general regularity conditions (the distribution is con-
tinuous and twice differentiable and its tail behaves asymptotically
as a power law or exponential), then the maximum tends to an
asymptotic distribution for large samples, the generalized extreme
value distribution (GEV; Gumbel 1958). (In the POT, the conditional
distribution of events over the threshold tends to the Generalized
Pareto Distribution. Additionally, POT can be modelled using the
theory of random point processes.)

The GEV distribution is given by

F (xmax < z) = G(z) = exp

[
−

{
1 + γ

(
z − μ

σ

)}−1/γ

+

]
, (15)

where {x}+ = max (x, 0), σ > 0 is the scale parameter, and −∞ <

μ, γ < ∞ are the location parameter and extreme value index. The
GEV is a generalization of the three families of distributions for
extreme values depending on the sign of the shape parameter, the
extreme value index γ . The heavy-tailed Fréchet distribution results
from γ > 0 and the upper-bounded Weibull distribution from γ <

0. The special case of γ = 0 is treated by taking the limit as γ −→ 0
resulting in the Gumbel distribution (Coles 2001),

G0(z) = exp

[
− exp

{
−

(
z − μ

σ

)}]
, (16)

where −∞ < z < ∞. The Gumbel distribution is especially im-
portant as it is the domain of convergence of many standard dis-
tributions, such as the normal and lognormal distributions. The
conditions for the existence of the asymptotic limit are very general
and most standard continuous distributions, i.e. normal, lognormal,
cauchy, etc., converge to the GEV.

In practice, however, we do not know if the underlying distribu-
tion respects all of the assumptions of the theorems. Also, the con-
vergence with sample size to the asymptotic distribution can be too
slow and the maximum distribution can differ from the GEV. There-
fore, the GEV is generally used as a fitting model and its adequacy
is decided using some form of model selection and goodness-of-fit
test.

Useful concepts in the interpretation of extremes or rare events
are the return periods or recurrence intervals, and the return levels. A
return period or recurrence interval (area or volume) is the expected
number of data blocks observed before observing a maximum that
exceeds a threshold zp, called the return level, with exceedance
probability p. Because, the probability of observing a maximum
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that exceeds the threshold zp (success) after n − 1 failures follows
a geometric distribution, the return period is 1/p. Therefore, the
recurrence interval is the interval such that the considered event is
expected to be exceeded at least once. For example, a exceedance
probability of p = 0.01 corresponds to a return period or recurrence
interval of 100 in the block units. The return level zp is computed
from the quantile corresponding to F(zp) = 1 − p, where F is the
cumulative distribution of the random variable. The formula for the
quantiles zp of the GEV G (equation 15) is given by

zp =
⎧⎨
⎩μ + σ

γ

[
yγ

p − 1
]
, for γ �= 0,

μ + σ ln yp, for γ = 0.
(17)

where yp = −1/ln (1 − p), with p the exceedance probability or in-
verse return period. In practice, we can either (i) fix the return level
and its exceedance probability and compute the corresponding re-
currence interval, or (ii) fix the recurrence interval (return period)
and compute the corresponding return level. In this work, as the
basic data block is the survey volume, we use the term recurrence
volume. Because the size and membership of the Huge-LQG de-
fines a natural return level, we compute the recurrence volume as
estimated from our mock LQG simulations.

5.1 Estimation of GEV parameters

The estimation of the parameters of the GEV distribution can be
accomplished by available standard point estimation methods for
distributions, e.g. maximum-likelihood estimation (MLE), general-
ized method of moments, Bayesian estimation, etc. Additionally,
there are some special estimation methods based on the quantiles
of the distribution (see referenced books for more detail). In this
work, we use MLE for the estimation of the parameters of the GEV
distribution. This approach is equivalent to a Bayesian Maximum a
posteriori estimate with a flat prior and the Laplace or Normal ap-
proximation for the estimation of the posterior distribution. We find
the MLE using the Levenberg–Marquardt algorithm for minimiza-
tion of the negative log-likelihood. Let z1, . . . , zm be the maxima of
m independent samples with sample size n, then the log-likelihood
for the GEV distribution is

l(μ, σ, γ |z1, . . . , zm) = −
m∑

i=1

{
1 + γ

(
zi − μ

σ

)}−1/γ

+

− (1 + 1/γ )
m∑

i=1

ln

{
1 + γ

(
zi − μ

σ

)}
+

− m ln σ, (18)

and the log-likelihood of the Gumbel distribution is

l(μ, σ, γ |z1, . . . , zm) = −
m∑

i=1

exp

{
−

(
zi − μ

σ

)}

−
m∑

i=1

(
zi − μ

σ

)
− m ln σ. (19)

It is recommended to perform some kind of model selection test
for the specific case of the Gumbel distribution as the estimation of
the parameters of the GEV will most likely have non-zero extreme
value index γ , given that the probability of a single point in the
sampling distribution of the estimator of a continuous parameter is
zero. We perform a model-selection test for a Gumbel distribution,
as this has a reduced parameter space, which increases the accuracy
of the parameter estimation. We used the likelihood-ratio test, a
standard frequentist hypothesis test and model selection based in

the Akaike Information Criterion defined as AIC = −2 ln Lmax

+ 2k, where ln Lmax is the log-likelihood at the MLE and k is
the number of parameters, and the Bayesian Information Criterion
defined similarly as BIC = −2 ln Lmax + k ln N, where N is the
sample size. Using this form for the information criteria one must
choose the model with the smaller information criterion.

5.2 Extreme value analysis of the Huge-LQG

We construct the BM from the mock LQG catalogues by finding the
LQG with the maximum property in each mock LQG catalogue. We
are using each mock catalogue regardless of which partition of the
original cosmological simulation the mock catalogue comes from
or which realization of the HOD model is used. In this way, the
BM sample includes the effect of cosmic variance and duty cycle
random sampling, which is necessary to avoid any bias. We consider
the two extreme properties of LQGs: characteristic size and quasar
number.

We used the empirical distribution of the size maxima of the mock
LQG to provide an initial non-parametric estimation of the size
maxima distribution. The probability of observing an LQG with size
maxima larger than Huge-LQG (495 Mpc) is P(Dmax > 495 Mpc) =
0.227. Therefore, it is possible to say that the Huge-LQG size is not
an unlikely maximum in the size-maxima distribution. However,
the empirical distribution is a biased estimator of the extreme value
distribution (EVD) and the tail might be affected by small sample
statistics. A fit to the EVD will produce a better estimation of the
p-value of the sample. Fig. 11 shows the distribution of maxima
size from the mock LQG using a histogram and a density kernel
estimate, respectively.

We fit the GEV and Gumbel distributions to the size maxima
using MLE (see Table 2). The standard errors are estimated from the
inverse of the observed Fisher information. The GEV 1σ confidence
region of γ includes zero and therefore we should accept the Gumbel
distribution under a Wald test. We performed a likelihood-ratio test
with the null hypothesis that the sample comes from a Gumbel
distribution and the alternative hypothesis that it comes from a
GEV. The test statistic is within the 5 per cent significance level
acceptance region of the null hypothesis, thus we should accept
the Gumbel distribution as the fitting distribution. The AIC and
BIC for the Gumbel are both smaller indicating support for this
model. However, the difference is very small in absolute terms. In a
Bayesian approach, the difference of BIC, BIC = BIC1 − BIC0,
is asymptotically equivalent to −2 times the logarithm of the Bayes
factor. The BIC difference in this case is 4.144, which is considered
positive evidence in support of the Gumbel model according to the
scale of Kass & Raftery (1995).

It is interesting to compare the fitted distribution to the histogram
and the probability density obtained by kernel density estimation
(see Fig. 11). Overall, the fitted Gumbel distribution is a good model
for mock size maxima. There is, however, a secondary peak in the
histogram for LQGs close to the Huge-LQG size, although this is
not significant as the error bars show. When observed in the kernel
density estimate, the secondary peak is also observed. This suggests
a possible preference for this kind of LQG as maximum, but it is
not possible to confirm this claim using the current data.

The probability of an LQG larger than Huge-LQG, i.e. the
exceedance probability, is P (Dmax > Dmax

ch = 495 Mpc) = 1 −
G(Dmax

ch ) = 0.19, similar to the estimation using the empirical dis-
tribution. We can estimate the recurrence volume using the inverse
of this exceedance probability (1/p) that gives as the result 5.3 ± 1
volumes, where the error is estimated using Monte Carlo simulation
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Compatibility of the LQGs 2279

Figure 11. Left-hand panel: the histogram of the maximum characteristic size distribution. The error bars in the histogram show the Poisson estimate of the
error in each bin. The best fit of the EVD of the maximum size of the mock sample is shown in the figure with a blue dashed line. The EVD provides a
good fit to the mock maximum distribution. The Huge-LQG observed value for the characteristic size in the original catalogue is shown with a red vertical
line. The p-value is very high (0.19), and therefore the Huge-LQG size is a common value. Right-hand panel: the kernel density estimation of the maximum
characteristic size distribution. We used a Gaussian kernel with a bandwidth of 20.22 Mpc selected using Scott’s rule-of-thumb (Scott 2015). The smoothed
distribution of the mock maxima in size shows excellent agreement with the fitted EVD. There is some oscillation in the large-size tail, but these are consistent
within the errors.

Table 2. MLE for GEV and Gumbel distributions for the
characteristic size.

Parameter estimates for GEV
Location μ 430.3 ± 4.5 Mpc
Scale σ 41.8 ± 3.3 Mpc
Extreme value index γ −0.06 ± 0.07
AIC 1168.156
BIC 1176.257

Parameter estimates for Gumbel

Location μ 429.0 ± 4 Mpc
Scale σ 41 ± 3 Mpc
AIC 1166.712
BIC 1172.113

Likelihood-ratio test

Deviance (−2 ln (L0/L1)) 0.5569
Asymptotic p-value 0.4555

from the best-fitting distribution (also called parametric bootstrap-
ping). Therefore, the Huge-LQG is a common size maximum in
our mock catalogue and it is compatible with the concordance cos-
mology provided that there is not a similar or larger structure in a
survey five times larger.

The quasar number is another property in which the Huge-LQG
is extreme, so despite this property being correlated with the size,
it is worth testing if quasar number maxima gives the same in-
formation as size. We construct a mock quasar number maxima
sample in the same way as for characteristic size and we perform
MLE fitting using GEV and Gumbel distributions. Again, the quasar
number maxima is compatible with a Gumbel distribution under a
likelihood-ratio test and Wald test (confidence region defined by the
standard error includes zero) and the AIC and BIC of the Gumbel are
smaller than for the GEV. A difference in BIC of 4.6 indicates pos-
itive evidence for the Gumbel distribution (Kass & Raftery 1995).
Therefore, we choose the Gumbel distribution as the best model.

The resulting MLE for the Gumbel distribution is shown in Fig. 12,
and the MLE point estimates are shown in Table 3.

The probability of observing an LQG with a quasar number
larger than Huge-LQG (Nq = 73) is P (Nmax

q = Nmax
q,SDSS = 73) =

1 − G(Nmax
q,SDSS) = 0.18, which is consistent with the estimation

from maximum characteristic size. This implies a recurrence vol-
ume of 5.6 volumes. In this sense, the quasar number maxima
give the same information about the likelihood of this structure as
the characteristic size. A secondary peak at the Huge-LQG quasar
number is observed (see Fig. 12), similar to the one observed
in the maximum in characteristic size. The Gumbel distribution
is still consistent with the mock distribution given the estimated
uncertainties.

6 C O N C L U S I O N S

The comparison of the mock LQGs with observational SDSS LQGs
shows that the distribution of different properties is compatible
with the hypothesis of the same population. Therefore, the LQG
population in the observational LQG sample is consistent with the
expected LQGs in the concordance cosmological model. The Huge-
LQG, which was considered a probable outlier of the LQG size and
quasar number distribution, is indeed a very rare object in the mocks
with approximately 0.3 per cent probability to observe an object
larger than this (1 in 330 approximately). However, the extreme
value analysis of the mocks shows that the probability of observing
an LQG larger than the Huge-LQG (either in size or quasar number)
in the sample volume is ∼20 per cent, and therefore the Huge-LQG
is not an unlikely maximum. Therefore, we conclude that the Huge-
LQG is compatible with the standard cosmology (i.e. as predicted
by our quasar model), provided that there is not a similar or larger
structure in a survey five times larger containing the current sampled
volume.

Our conclusion relies on the adopted model of quasar occupa-
tion, which makes some important simplifications on the quasar
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Figure 12. Left-hand panel: histogram of the maximum quasar number distribution. The error bars in the histogram show the Poisson estimate of the error in
each bin. The best fit of the EVD to the maximum quasar number in the mock sample is shown in the figure with a blue dashed line. The EVD provides a good
fit to the mock maximum distribution. The Huge-LQG observed quasar number in the original catalogue is shown with a red vertical line. The p-value is very
high (0.18), and therefore the Huge-LQG quasar number is a common value. Right-hand panel: the kernel density estimation of the maximum quasar number
distribution. We used a Gaussian kernel with a bandwidth of 6.15 selected using the Scott’s rule-of-thumb (Scott 2015). The EVD best fit is also shown (blue
dashed curve). The Huge-LQG quasar number (red vertical line) is shown for comparison.

Table 3. MLE for GEV and Gumbel distributions for the
quasar number.

Parameter estimates for GEV
Location μ 53.9 ± 1.3
Scale σ 12.0 ± 1.0
Extreme value index γ −0.03 ± 0.08
AIC 897.9785
BIC 906.0799

Parameter estimates for Gumbel

Location μ 53.7 ± 1.2
Scale σ 11.9 ± 0.9
AIC 896.0828
BIC 901.4837

Likelihood-ratio test

Deviance (−2 ln (L0/L1)) 0.1043
Asymptotic p-value 0.7467

duty cycle. We find that quasar model is accurate enough for our
analysis given the good agreement between the mock and observed
LQGs, giving support to the adopted approximations. Nevertheless,
our statistics have an important level of uncertainty, mainly caused
by Poisson or shot noise caused in turn by the small number den-
sities in the quasar sample. These errors can mask the difference
between the theoretical predictions and observations. Therefore,
further progress on the analysis of the quasar distribution requires
the reduction of these uncertainties, and specifically a larger number
of quasars, which requires a new generation of larger and deeper
quasars surveys. Also, the formulation of more robust group find-
ers and geometry statistics could be valuable for a more powerful
evaluation of the predictions of the cosmological model.
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