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Abstract We present LZIFU (LaZy-IFU), an IDL toolkit for
fitting multiple emission lines simultaneously in integral
field spectroscopy (IFS) data. LZIFU is useful for the in-
vestigation of the dynamical, physical and chemical prop-
erties of gas in galaxies. LZIFU has already been applied
to many world-class IFS instruments and large IFS surveys,
including the Wide Field Spectrograph, the new Multi Unit
Spectroscopic Explorer (MUSE), the Calar Alto Legacy In-
tegral Field Area (CALIFA) survey, the Sydney-Australian-
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astronomical-observatory Multi-object Integral-field spec-
trograph (SAMI) Galaxy Survey. Here we describe in de-
tail the structure of the toolkit, and how the line fluxes and
flux uncertainties are determined, including the possibility
of having multiple distinct kinematic components. We quan-
tify the performance of LZIFU, demonstrating its accuracy
and robustness.We also show examples of applying LZIFU

to CALIFA and SAMI data to construct emission line and
kinematic maps, and investigate complex, skewed line pro-
files presented in IFS data. The code is made available to the
astronomy community through github. LZIFU will be further
developed over time to other IFS instruments, and to provide
even more accurate line and uncertainty estimates.

1 Introduction

Galaxy emission-line spectroscopy has always been a pow-
erful tool for the analysis of the dynamical, physical and
chemical properties of galaxies. Traditionally, spectroscopy
of galaxies has been obtained by dispersing the light either
across a slit (sacrificing one spatial dimension) or from a
fibre (producing a single integrated spectrum). Active de-
velopment of modern integral field spectroscopy (IFS) has
made capturing 3-dimensional structures of galaxies very ef-
ficient, revolutionising the way we observe and study galax-
ies.

The complex and perhaps stochastic nature of differ-
ent physical processes governing galaxy evolution has in-
spired large galaxy surveys. In recent decades, large fi-
bre and slit spectroscopic surveys such as the Sloan Digi-
tal Sky Survey (SDSS; York et al. 2000), the 2dF Galaxy
Redshift Survey (Colless 1999), and the Deep Extragalac-
tic Evolutionary Probe 2 survey (DEEP2; Davis et al. 2003)
have drastically improved our understanding of the global
(unresolved) properties of galaxy populations at different
epochs of the Universe. Integral field spectroscopic sur-
veys have recently become feasible, providing access si-
multaneously to both spectral and kinematic information of
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large numbers of galaxies. Two pioneering IFS surveys, the
SAURON survey (Bacon et al. 2001) and its extension the
ATLAS3D survey (Cappellari et al. 2011), studied about
260 early type galaxies in the local Universe (z < 0.01).
Surveys targeting both the blue and red galaxy populations,
such as the Calar Alto Legacy Integral Field Area (CAL-
IFA) survey (Sánchez et al. 2012), the Sydney-Australian-
astronomical-observatory Multi-object Integral-field spec-
trograph (SAMI) Galaxy Survey (Croom et al. 2012; Bryant
et al. 2015), and the Mapping Nearby Galaxies at Apache
Point Observatory survey (MaNGA; Bundy et al. 2015), are
currently underway. These IFS surveys will provide criti-
cal information to bridge the knowledge gaps resulting from
the limited spatial and kinematic information delivered by
previous single-fibre and slit spectroscopic surveys.

The sample sizes and data flows of these modern IFS
surveys are substantial. With each data cube containing
typically one to two thousand spectra, the CALIFA sur-
vey plans to observe about 600 galaxies in the local Uni-
verse (0.005 < z < 0.03); the SAMI Galaxy Survey will
reach a sample size of 3,400 galaxies at z < 0.12; and the
MaNGA survey will build up a sample of 10,000 galaxies at
a similar redshift to the SAMI Galaxy Survey. Future sur-
veys using high-multiplex integral field unit (IFU) instru-
ment such as HECTOR on the Anglo-Australian Telescope
will observe on the order of 100,000 galaxies (Lawrence
et al. 2012; Bland-Hawthorn 2015). Current and forth-
coming wide-field IFU instruments are also delivering large
quantity of high quality data, such as the Wide Field Spec-
trograph (WiFeS) on the Australian National University 2.3-
m telescope (Dopita et al. 2007, 2010), the new Multi Unit
Spectroscopic Explorer (MUSE) on the Very Large Tele-
scope (Bacon et al. 2010), the SITELLE instrument on the
Canada France Hawaii Telescope (Grandmont et al. 2012),
the Keck Cosmic Web Imager at the W. M. Keck Observa-
tory (Martin et al. 2010; Morrissey et al. 2012).

Significant efforts have been placed in developing corre-
sponding tools for analysing large volume of spectroscopic
data. The stellar continuum contains valuable information
about the stellar kinematics, chemistry and star formation
history of galaxies. Packages such as the STEllar Content
via Maximum A Posteriori (STECMAP; Ocvirk et al. 2006)
package, the penalized pixel-fitting (PPXF; Cappellari and
Emsellem 2004) routine and the STARLIGHT package (Cid
Fernandes et al. 2005) can perform spectral template fitting
and extract various stellar properties. For investigating gas
physics, the emission lines fitting tools such as the Gas AND
Absorption Line Fitting code (GANDALF; Sarzi et al. 2006),
the FIT3D package (Sánchez et al. 2006, 2007; and the suc-
cessor PIPE3D; Sánchez et al. 2016a,b), and the Peak ANal-

ysis utility (PAN1; Dimeo 2005) are commonly adopted to
measure emission line fluxes and kinematics.

As the spectral resolution of the instruments continue to
improve, the intrinsic non-Gaussian line profile complicates
the emission line analysis. When the spectral resolution is
high (R > 3000), galaxies with active gas dynamics, such
as winds, outflows or AGN, usually present skewed line pro-
files that require fitting multiple, assumed Gaussian, compo-
nents to separate the different kinematic components over-
lapping in the line-of-sight direction (also referred as “spec-
tral decomposition”). Performing spectral decomposition
on large datasets is non-trivial as significant human input is
usually required. Here, we present our emission line fitting
pipeline LaZy-IFU2 (LZIFU; written in the Interactive Data
Language [IDL]), which is designed to eliminate the need
for individual treatment of each of many thousands of spec-
tra across an IFS galaxy survey (such as CALIFA, SAMI or
MaNGA).

The main objective of LZIFU is to extract 2-dimensional
emission line flux maps and kinematic maps useful for in-
vestigating gas physics in galaxies. LZIFU has already been
adopted in various publications using data from multiple
instruments and surveys, including MUSE (Kreckel et al.
2016), SAMI (e.g. Ho et al. 2014; Richards et al. 2014;
Allen et al. 2015b; Ho et al. 2016), CALIFA (Davies et al.
2014; Ho et al. 2015), WiFeS (Ho et al. 2015; Dopita et al.
2015a,b; Vogt et al. 2015; Medling et al. 2015), and SPI-
RAL on the Anglo-Australian Telescope (McElroy et al.
2015). The following characteristics were considered care-
fully while developing LZIFU. First, the pipeline must per-
form spectral decomposition automatically without needing
repeated human instructions. Second, the pipeline needs to
be scriptable for batch reduction, such that when necessary
the same results can be reproduced by re-executing the same
scripts. Third, the pipeline must be flexible and generalised
so that data from most modern IFS instruments can be ac-
cepted without major restructuring of the inputs. Finally, the
calculation speed must be optimised and the pipeline has to
take advantage of parallel processing because of 1) the huge
data flow from multiplexed IFS surveys, and 2) the possi-
bility of fitting the same datasets multiple times for various
experimental purposes.

The focus of this paper is to present the core structure
of LZIFU (Section 2), and examine the errors produced by
the pipeline (Section 4). We also show examples of ap-
plying LZIFU on the CALIFA survey and SAMI Galaxy
survey (Section 3). Finally, the code will be continuously

1PAN was subsequently adapted and modified by Mark Westmoquette for
astronomical requirements. See http://ifs.wikidot.com/pan.
2The framework of the LZIFU stems from UHSPECFIT, a tool developed at
the University of Hawai’i and employed in several previous spectroscopic
studies on gas abundances and outflows (e.g., Zahid and Bresolin 2011;
Rupke et al. 2010; Rich et al. 2010, 2012; Rupke and Veilleux 2011).

http://ifs.wikidot.com/pan
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maintained and made available to the public through github
(https://github.com/hoiting/LZIFU/releases). We discuss fu-
ture plans for the code in Section 5.

2 LZIFU: The spectral fitting toolkit

2.1 Overview

To arrive at 2D maps of line fluxes, velocity and velocity
dispersion, LZIFU first removes the continuum before mod-
elling user-assigned emission line(s) on a spaxel-to-spaxel
basis. If tailored continuum models already exist, users have
the option of directly subtracting the continuum by feeding
LZIFU the continuum models in Flexible Image Transport
System (FITS) format. The subsequent emission line fit-
ting follows the Levenberg-Marquardt least-square method
to find the most probable models (with maximum likeli-
hood) describing the emission line spectra. Each emission
line can be modelled by up to 3 Gaussians describing (po-
tentially) different kinematic components. The final prod-
ucts delivered by LZIFU are continuum cubes, emission line
cubes, emission line flux (and corresponding error) maps,
and kinematic (and corresponding error) maps stored in
multi-extension FITS files.

For historical reasons, LZIFU was originally designed for
two-sided IFS data with each object having one blue and one
red data cube. The two data cubes can have different spec-
tral resolutions, but are required to cover non-overlapping
spectral ranges. Such an instrumental setup is common in
instrument designs and large area IFS surveys because one
can achieve a trade-off between spectral coverage and spec-
tral resolution, given that the numbers of CCD pixels are
always limited. To generalise the application of LZIFU, the
pipeline was modified later to accept one-sided IFS data by
disabling procedures related to the blue data. Below, we
elaborate on the continuum fitting and emission line fitting
procedures based on two-sided data.

2.2 Continuum fitting

When pre-determined continuum models are not provided
by the users, LZIFU models the continuum using the pe-
nalised pixel-fitting routine (PPXF; Cappellari and Emsellem
2004) that performs fits the underlying absorption contin-
uum using a series of input spectral templates from stars or
modeled simple stellar populations (SSPs) convolved with
a parameterized velocity distribution. The PPXF routine is
wrapped in LZIFU as the default continuum fitting method.
In our implementation, the data and spectral templates are
first aligned and rectified to the same spectral characteristics
(i.e. wavelength coverage, spectral resolution, and channel
width) before fitting the continuum. A combined spectrum

(of the blue and red data) is formed for each spaxel by con-
volving the data to a common spectral resolution, and re-
sampling the data onto a common spectral grid. The data
cube with poorer spectral resolution determines the spec-
tral resolution and channel width of the combined spectrum.
Various SSP templates collected from the literature are in-
cluded in LZIFU as IDL .sav files, so the users can directly
select the preferred library of SSP models. The selected SSP
templates are redshifted, spectrally trimmed, and spectrally
convolved to match the combined spectrum. To fit the under-
lying absorption-line spectrum, PPXF compares linear com-
binations of the SSP models with the combined spectrum in
a least-square sense, during which the stellar velocity dis-
persion, stellar velocity, and reddening are constrained si-
multaneously. Channels contaminated by night sky emis-
sion lines and nebular emission lines from the galaxy are
masked out prior to the fitting. Poorly-subtracted sky emis-
sion lines, with other defect channels, can be masked by pro-
viding external masks that specify the wavelength intervals
to ignore. Users are also required to specify the emission
lines and the width around the emission lines that should be
excluded from the continuum fit. Our custom implementa-
tion of PPXF allows the users to control critical PPXF key-
words directly from a LZIFU setup file. Other hardwired
functionalities of PPXF can be adapted for different applica-
tions by modifying the LZIFU source code. After the best
solution of spectral fitting is found, the continuum models
are reconstructed separately for both sides of the data at their
native resolutions. The advantage of this implementation is
twofold: we utilise the largest possible spectral coverage to
constrain the spectral fitting solution, and the reconstructed
continuum models retain the original spectral resolution of
the data.

Systematic errors in SSP models, residual calibration er-
rors, and potential power law continuum from non-stellar
components often cause spectral fitting routines to fail to
achieve a perfect description of a spectrum, which would be
characterised by a reduced-χ2 (χ2

ν) of approximately 1. To
account for these systematic errors and possible non-stellar
contributions, a polynomial term can be implemented. In
PPXF, additive or multiplicative Legendre polynomials can
be included and fit simultaneously with the spectral tem-
plates. These options are also maintained and passed on
to PPXF. In some situations, the users may wish not to
fit polynomials simultaneously with the spectral templates
to avoid the continuum fit becoming highly degenerate. In
these cases, the continuum subtracted-spectra may not be
flat, which can affect the subsequent line flux measurements.
To further flatten the continuum-subtracted spectra, LZIFU

provides an extra option of fitting Legendre polynomials
separately to the continuum-subtracted blue and red spectra.

https://github.com/hoiting/LZIFU/releases
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Fig. 1 An example of PPXF continuum fitting using data from the SAMI Galaxy Survey. Channels not included in the continuum fitting
are masked by grey bands (i.e., bad pixels, cosmic rays, poorly-subtracted sky emission lines, and nebular emission lines). Continuum
subtracted data (lower blue and red lines) are subsequently used to perform emission line fitting.

Here, the least-square fitting is performed using the BVLS

(bounded-value least-square) algorithm developed by Law-
son and Hanson (1974) and implemented in IDL by Michele
Cappellari.

The principal objective of the custom implementation of
PPXF is to correct for stellar absorption features affecting
predominately the Balmer lines, and to remove the stellar
continuum, such that gas physics can be derived from fit-
ting emission lines to continuum-free spectra. The goal is
not to constrain stellar parameters such as the stellar pop-
ulation, age and metallicity, which are known to be highly
degenerate and require careful investigation of numerous lo-
cal minima in the χ2 space (e.g., Cid Fernandes et al. 2014).

In Figure 1, we show an example of the continuum fit of
one spectrum from the SAMI Galaxy Survey. The blue and
red data have 1σ spectral resolutions of 1.15 and 0.72 Å, re-
spectively; and we use the SSP spectral libraries constructed
by González Delgado et al. (2005) with an additional Legen-
dre polynomial of up to 12 order of Legendre polynomials to
fit the continuum. Channels affected by bad pixels, cosmic
rays, strong sky lines, or nebular emission lines are masked
by grey bands, and are not considered in the continuum fit.

2.3 Emission line fitting

Emission lines are fit in the continuum subtracted spectra.
The lines are assumed to be gaussian in shape and are fit
as Gaussians using the Levenberg-Marquardt least-square
method implemented in IDL (MPFIT; Markwardt 2009).
Users have the option of fitting the emission lines using mul-
tiple Gaussian components, with this currently limited to a
maximum of 3 components. All the lines are fit simultane-
ously with each kinematic component constrained to share

the same velocity and velocity dispersion. When more than
1 component is fit, LZIFU sorts and groups the fitting re-
sults based on either velocity dispersions, velocities or line
fluxes, and produces 2D maps of fluxes, velocity, and veloc-
ity dispersions separately for different components. Which
reference value is adopted to group and sort the different
components is determined by the users, and we encourage
the users to consider carefully what sorting methods are best
for their specific science goals. In the rest of the paper, we
sort and group the components based on velocity dispersion.
That is: the first component (c1) is the Gaussian fit with the
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Fig. 2 A schematic illustrating the definition of the two sets of
parameters (fA12,∆v12,∆σ12) and (fA13,∆v13,∆σ13) control-
ling the initial guesses of the second c2 (intermediate) and the third
c3 (broad) kinematic component relative to the first (narrow) kine-
matic component c1.
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Fig. 3 Demonstration of the importance of using multiple initial guesses to reject local minima. The data (thick black lines; from Ho et al.
2014) are fit with three different initial guesses to perform 3-component fitting to the [N II] λλ6548,83 and Hα lines. The three different
initial guesses are shown in the upper right panel (see Section 2.3.1). The best-fits are shown in the other three panels, with the resulting
reduced-χ2 (χ2

ν ) labeled in each panel. The first and the second initial guesses yield very similar fits and χ2
ν , but the third initial guess

arrives a very different solution with much worse χ2
ν (clearly visible from the residuals shown as thin black lines).

narrowest velocity dispersion, and the second (c2) and third
(c3) components have increasing velocity dispersions.

2.3.1 Establishing initial guesses

Establishing proper initial guesses for the model parame-
ters is critical when using the Levenberg-Marquardt least-
square algorithm, because the initial guesses serve as start-
ing points for the algorithm to explore the n-dimensional χ2

space along its negative gradients.
In LZIFU, initial guesses are established automatically by

means of an internal algorithm (for the first component c1)
and several external parameters determined by the user (for
the second c2 and third c3 components). The internal al-
gorithm searches for peak S/N in the spectrum to determine
the central wavelengths and amplitudes of the first kinematic
components. The redshift of the galaxy input by the user al-
lows LZIFU to estimate the rough locations of the emission
lines. The locations are updated if sensible stellar velocity
and velocity dispersion can be obtained from the stellar con-
tinuum fit. Channels around ±300 km s−1 from the fiducial
location of each emission line are inspected, and the chan-
nel with the highest signal-to-noise ratio (S/N) determines
the amplitude guess of the first Gaussian component. When
fitting multiple emission lines, the line with the best S/N
anchors the initial wavelength guess of the first Gaussian
component. The width of the first Gaussian component is

provided by the user. For the SAMI Galaxy Survey data we
typically adopt a width of 50 km s−1.

When fitting more than one component, how and where
to place the second (and third) kinematic components are de-
termined by a set of parameters specified by the user. We use
three parameters (fA,∆v,∆σ) to describe the relationship
between the second (or third) Gaussian component(s) and
the first component. Figure 2 illustrates the definitions of the
parameters. The two sets of parameters (fA12,∆v12,∆σ12)

and (fA13,∆v13,∆σ13) control the initial guesses of the
second and third component, respectively. The combined
profile (grey curve in Figure 2) is normalised to the peak
value of the data before proceeding to solve the least-square
problem.

Fitting multiple components can sometimes be sensitive
to the choice of initial guesses, particularly when the S/N
is poor or the spectrum is only marginally resolved. As a
result, LZIFU allows multiple initial guesses to be generated
by providing arrays of possible fA, ∆v and ∆σ values. All
possible combinations of initial guesses are solved for least-
square solutions with MPFIT, and the fit with the best mini-
mum χ2

ν is kept as the final solution.
We demonstrate the importance of using multiple initial

guesses to reject local minima in Figure 3. Different initial
guesses are adopted to model the [N II] λλ6548,83 and Hα
lines. The spectrum comes from a galaxy observed by the
SAMI Galaxy Survey and presented in Ho et al. (2014). In
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the upper-left panel, three different initial guesses (color-
coded lines) are generated. The second components are
characterised by fA12 = 1, ∆σ12 = 60 km s−1, and ∆v12
with three possible values of 150, 30, and −150 km s−1.
The initial guesses of the third component are all the same
of fA13 = 0.2, ∆σ13 = 200 km s−1, and ∆v13 =
−10 km s−1. The first component has an initial velocity
dispersion of 50 km s−1. After applying the Levenberg-
Marquardt least-square algorithm, the first and second initial
guesses arrive at solutions virtually indistinguishable with
very similar χ2

ν of 1.51 and 1.52, respectively. The third
initial guess, however, arrives at a very different solution
with much higher χ2

ν of 3.28. A careful visual inspection of
neighbouring spaxels reveals that there are indeed three sep-
arate kinematic components in this galaxy, but as the first
and second kinematic components are spectrally close to
each other in this spaxel, fitting the two narrow peaks with
a single Gaussian yields a local minimum (the bottom right
panel). This local minimum can be rejected by fitting with
different initial guesses.

Our implementation of multiple initial guesses has sev-
eral advantages. Empirical understanding of the physical
characteristics of the second and third components can be in-
corporated directly into guiding the fits by providing proper
sets of parameters (fA, ∆v and ∆σ). In principle, the n-
dimensional χ2 space will be explored thoroughly if a chain
of initial guesses is carefully chosen. Our algorithm trades
computational expense against sensitivity to local minima.
This makes the analysis of extended data sets tractable.

2.3.2 Optional refit with smoothed initial guesses

Optional refits are possible after fitting the data with the de-
fault initial guesses. In the refitting process, results from
the first-pass fit to the full data cube are spatially median-
smoothed to produce initial guesses to refit the data. The
refitting process can be repeated multiple times.

The reasoning behind the refitting process is that flux, ve-
locity and velocity dispersion usually vary smoothly across
the spatial dimensions, a direct result of the intrinsic prop-
erties of galaxies and the finite spatial resolution of the data.
Therefore, the best fits of neighbouring spaxels contain in-
formation useful for establishing a proper initial guess. Our
experience shows that the refitting process is useful for re-
jecting some bad results caused by ill-chosen initial guesses
in the previous fits, and those poor fits triggered by the pres-
ence of local defects in the spectra (poor sky-line subtrac-
tion, uncleaned cosmic ray residuals, etc.) which force the
initial guess solution into a local minima of limited rele-
vance.

2.4 Output

The final products delivered by LZIFU are stored in multi-
extension FITS files. For a more detailed description of the

output data structure, the readers are directed to the readme
file included in the code release package. In brief, LZIFU

generates 3-dimensional model cubes and 2-dimensional
maps from the fitting. The model cubes include both the
continuum models and emission line models. All the model
cubes have the same spatial and spectral dimensions as the
input data cubes. These model cubes are not only useful for
visualising the fits, but also for removing emission lines or
continuum from the data cubes (i.e. for generating line-free
or continuum-free data cubes). Emission line fluxes, veloci-
ties, and velocity dispersions (and corresponding errors) are
stored in 2-dimensional maps. These 2-dimensional maps
have the same spatial dimensions as the input data cubes.
These maps are most useful for subsequent scientific anal-
ysis, e.g. converting line fluxes to star formation rates or
extinction, producing emission line ratio maps, fitting disk
models to the velocity field, etc.

3 Applications on Survey Data

We present three examples of flux and kinematic maps gen-
erated by LZIFU using public data from the CALIFA survey
and the SAMI Galaxy Survey. The examples are chosen to
demonstrate the use of LZIFU in different types of data and
galaxies. The simple single component analysis is useful
for dynamically stable systems or when the spectral resolu-
tion is insufficient to resolve the kinematic structures. The
more complicated double and triple component analyses are
required when the line profiles are skewed due to either com-
plex gas kinematics or beam smearing.

Although the examples below make use of CALIFA and
SAMI data, LZIFU is not limited to these two surveys and
can be adopted for any IFS data with similar characteristics,
i.e. spectral coverage and resolution. Indeed, LZIFU has al-
ready been applied to data from multiple IFU instruments
for various science cases related to gas physics. Data from
the WiFeS instrument on the Australian National Univer-
sity 2.3-m telescope have been tested extensively with LZ-
IFU (Ho et al. 2015; Dopita et al. 2015a,b; Vogt et al. 2015;
Medling et al. 2015). Recently, LZIFU has also been adopted
to analyse data from MUSE (Kreckel et al. 2016; Juneau et
al. in preparation) and SPIRAL on the Anglo-Australian
Telescope (McElroy et al. 2015). The reader is referred to
corresponding publications for more examples.

3.1 Simple single component analysis

We demonstrate 1-component fitting using data from the
CALIFA survey (i.e., the first data release; Husemann et al.
2013). Figure 4 shows the NGC0776 SDSS g,r,i colour
composite image, Hα map, gas velocity map, and two ex-
ample spectra from the integral field data. Here, we adopt
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Fig. 4 Demonstration of applying a 1-component fit to NGC0776 using the first data release of the CALIFA survey. The SDSS g,r,i
composite image, LZIFU Hα and gas velocity images are shown left to right in the top row. The spectra and corresponding best-fit
(continuum + line) models of the two example spaxels marked in the Hα map are shown in the bottom two panels. We use the V1200 data
(blue lines) at wavelengths smaller than 4500Å and the V500 data (red lines) at wavelengths larger than 4500Å.

the MIUSCAT SSP libraries (Vazdekis et al. 2012) of so-
lar metallicity to model the continuum. After subtracting
the continuum, the line profiles appear to be simple across
the entire galaxy and therefore only single component Gaus-
sians are required to model the emission lines. The emission
line maps and kinematic maps delivered by LZIFU are di-
rectly ready for various studies such as gas dynamics and
chemical abundance.

3.2 Double component fitting and beam smearing

Multiple-component fitting is sometimes required when the
spectral resolution is high enough to resolve the intrinsic line
profiles. Fitting multiple Gaussian components to an emis-
sion line can more accurately constrain its total flux (than
fitting a single component Gaussian), and shed light on the
possible complex dynamics of the gas traced by the emis-
sion line. The number of components required to properly
describe the line profile depends on the spectral resolution of
the instrument, the signal-to-noise of the data, and the gas
dynamics. Typically, one performs 1, 2, and 3-component
fitting on every spaxel, and uses both statistical and empiri-
cal tests to determine a posteriori the most appropriate num-
bers of components required to describe the data. The num-

ber of components required frequently changes from spaxel
to spaxel within a single galaxy.

In Figures 5 and 6, we show an example of spectral de-
composition using data from the early data release of the
SAMI Galaxy Survey (Allen et al. 2015a). After subtract-
ing the continuum, the galaxy (GAMA ID: 594906) presents
skewed line profiles changing with position in the galaxy
(Figure 6). We perform 1, 2, and 3-component fitting, and
determine the number of components required based on the
likelihood ratio test and empirical constraints described in
detail in Appendix A. We show flux and velocity maps of
the first and second components in Figure 5. Only a few
spaxels require fitting the third component so we do not
show the corresponding maps. In Figure 5, the first com-
ponent presents a regular rotation pattern tracing the galac-
tic disk. The second component shows a velocity gradient
in the same sense as the first component. Both components
have similar emission line ratios. We believe that the skewed
line profiles are a direct result of beam smearing, which is
known to induce non-Gaussian line profiles particularly at
the centre of the galaxy where the velocity gradient is steep
(e.g., Green et al. 2014). Such non-Gaussian line profiles
will not present in high spatial resolution or low spectral
resolution observations.
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Fig. 5 Demonstration of multiple component fitting for a galaxy
from the early data release of the SAMI Galaxy Survey (Allen et al.
2015a; GAMA ID: 594906). The SDSS g,r,i image in the upper
left panel shows the circular field of view of the SAMI instrument
(red circle; 15′′ in diameter). The Hα flux and gas velocity maps
of the first (narrowest component) c1 and the second component
c2 are shown in the middle and right panels. The sum of Hα for
all components is shown in the bottom left panel (total Hα). Very
few spaxels in this galaxy require the third component so the corre-
sponding maps are not shown. The fits of the three spaxels marked
in the total Hα map are shown in Figure 6.
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Fig. 6 Examples of the [N II] λλ6548,83 + Hα (left column) and
[S II] λλ6716,31 (right column) fits of the three spaxels marked in
Figure 5 (in lower left ‘total Hα’ panel). The continuum-subtracted
data and best-fit models are shown as solid lines. In the lower plot
of each panel, we show the residuals as black lines, and the ±1σ
measurement errors as grey shading.
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Fig. 7 Demonstration of multiple component fitting for a nor-
mal star-forming galaxy presented in Ho et al. (2014, GAMA ID:
209807). The SDSS g,r,i image in the upper left panel shows the
circular field of view of the SAMI instrument (red circle; 15′′ in di-
ameter). The Hα flux and gas velocity maps of the first (narrowest
component) c1, the second component c2, and the third component
c3 are shown in the middle and right panels. The sum of Hα for
all components is shown in the middle left panel (total Hα). The
fits of the three spaxels marked in the total Hα map are shown in
Figure 6.

3.3 Triple component fitting and kinematics

In more complex, dynamically active systems such as galax-
ies hosting galactic winds, AGNs, or mergers, more compo-
nents are required to capture the activities of the gas. We
present an example of multiple-component fitting by Ho
et al. (2014) using data from the SAMI Galaxy Survey. As
in GAMA 594906, Ho et al. (2014) performed 1, 2, and 3-
component fitting, and determined the number of compo-
nents required based on the likelihood ratio test. The nor-
mal star-forming galaxy (GAMA ID: 209807) analysed by
Ho et al. (2014) hosts large scale galactic winds. Figure 7
shows the Hα maps and velocity maps of the three different
kinematic components, and Figure 8 shows some example
spectra requiring different numbers of components. Simi-
larly, the velocity field of the first component shows a regu-
lar rotation pattern tracing the galactic disk. Ho et al. (2014)
showed that the first component has line ratio consistent
with photoionisation originating from star forming regions
on the disk. The third component has line ratios consistent
with pure shock excitation, indicating the presence of fast
winds driven by a central starburst. The second kinematic
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subtracted data and best-fit models are shown as solid lines. In
the lower plot of each panel, we show the residuals as black lines,
and the ±1σ measurement errors as grey shading.

component is excited by both photoionisation and shock ex-
citation. The clear velocity gradient of the third component
nearly aligned with the minor axis of the galaxy (bottom-
right and top-left panel of Figure 7) traces the large scale,
bipolar galactic winds in the galaxy.

4 Error Analysis with Monte Carlo Simulations

LZIFU reports 1σ errors of the measured fluxes, velocities
and velocity dispersions of the emission lines calculated
with the Levenberg-Marquardt least-square method from
MPFIT. To investigate the reliability of these quantities, we
perform simple Monte Carlo (MC) simulations. In these
simulations, we create different MC realisations (i.e. mock
data cubes) by injecting Gaussian noise into model cubes
based on the variance of the data. For each test galaxy (se-
lected from the SAMI Galaxy Survey), 500 sets of mock
data cubes are generated, and the mock data cubes are each
fit with LZIFU. Each fit yields measurements of flux, ve-
locity, and velocity dispersion maps and their corresponding
error maps. To quantify the reliability of LZIFU errors, we
compare the 1σ spread of the 500 measurements to the me-
dian of their errors.

Two types of simulations are performed. Firstly, we in-
ject noise into the best-fit emission line models to test only

the emission line fitting codes. The mock data cubes are
continuum-free so no continuum subtraction is performed.
Secondly, we inject noise into cubes of emission models
plus continuum models. The purpose of this test is to ex-
plore errors caused by modelling and subtracting the con-
tinuum. The goal of these simulations is to study whether
LZIFU can faithfully propagate the random errors in mock
data cubes to the final measured quantities.

4.1 Line-fitting simulations

In Figure 9, we compare the errors derived from MC simula-
tions (σMC) to the errors reported by LZIFU (σLZ). In these
MC simulations, we fit 1-component models to three SAMI
galaxies, and we derive σMC using resistant estimates of the
dispersions of the distributions (using the ROBUST SIGMA

routine in IDL). For σLZ , we take the median errors of the
500 MC simulations. We do not include the error in the me-
dian calculation when the S/N of velocity dispersion is less
than 3. In Figure 9, we show spaxels with Hα flux S/N >
3 in the Hα, velocity and velocity dispersion panels, and
spaxels with [O III] λ5007 flux S/N > 3 in the [O III] λ5007
panel. Figure 9 demonstrates that the flux, velocity and ve-
locity dispersion errors reported by LZIFU agree well with
the errors derived from our MC simulations. Typically, the
differences between σLZ and σMC are consistent with zero
(i.e., median ± standard deviation of 2±4%, 1±3%, 3±6%,
and 4±6% for Hα, [O III] λ5007, velocity and velocity dis-
persion, respectively). The results of this test indicate that
the line-fitting codes faithfully propagate errors in the data
cubes to the final measurement errors.

In Figure 10, similar comparisons are conducted for a 2-
component fit using the SAMI wind galaxy studied by Ho
et al. (2014). Only spaxels requiring 2-component fits deter-
mined by the authors are considered. We find that the flux,
velocity and velocity dispersion errors reported by LZIFU

are good representations of the true errors derived from MC
simulations. On average, the differences between σLZ and
σMC for Hα, [O III] λ5007, velocity, and velocity disper-
sion are 13±13%, 2±9%, 9±12%, and 17±11% (median ±
standard deviation), respectively. The differences are larger
than those in the 1-component cases with LZIFU typically
underestimating the errors by 10% to 20%.

The differences between σMC and σLZ arise from the
assumptions involved in deriving errors of the fit parameters
using the least-square technique. The Levenberg-Marquardt
algorithm approximates the χ2 surface at minimum by an
n-dimensional quadratic function (see e.g. Bevington and
Robinson 1992). This approximation is a result of the Tay-
lor expansion at the minimum χ2 where the first order term
is zero; the second order term then becomes important for
evaluating the increase in χ2. With this assumption, fast
computation of the errors of the fit parameters becomes pos-
sible because only the second derivative of the χ2 surface
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Fig. 9 Comparison between errors reported by LZIFU (σLZ ) and errors derived from Monte Carlo simulations (σMC ). The simulations
are performed using 1-component fitting assuming the data have no continuum. Details about the simulations are provided in Section 4.1.
Different color points correspond to three different galaxies selected from the SAMI Galaxy Survey, with their GAMA IDs shown in the
legend. The fractional differences between σLZ and σMC are 2 ± 4%, 1 ± 3%, 3 ± 6%, and 4 ± 6% (median ± standard deviation) for
Hα, [O III] λ5007, velocity and velocity dispersion, respectively.

at its minimum is required. The second derivative is directly
linked to the Jacobian of the model, which is trivial to calcu-
late. While the approximation works well in linear models,
the non-linearity of our Gaussian line model can cause the
assumption to break down. For example, the Jacobian ma-
trix of velocity dispersion approaches zero at zero velocity
dispersion, implying that the χ2 surface approaches a flat
surface and the 1σ error of velocity dispersion is infinity.
When a Jacobian approaches zero, higher (> third) order
Taylor terms become important. Unfortunately, higher order
terms are non-trivial to calculate. Exploring the χ2 space by
random walk using techniques such as the MCMC method
should be adopted if precise estimates of errors (i.e. better
than ∼ 10%) are required. The Levenberg-Marquardt tech-
nique adopted here provides errors accurate to a few tens
percent level in a computationally-economical way.

4.2 Continuum- and line-fitting simulations

While the line-fitting algorithm can robustly estimate the
flux, velocity, and velocity dispersion errors, these errors do
not contain errors of modelling (and subtracting) the con-
tinuum. To investigate the impact of modelling continuum
on the measured emission line fluxes, we perform MC sim-
ulations by injecting noise into the best-fit models that com-
prise both continuum and emission line models. We first fit

the real data from three SAMI galaxies to obtain their best-
fit continuum and line models. For the PPXF continuum fit,
we adopt the theoretical SSP libraries from González Del-
gado et al. (2005). After noise is injected into the models to
produce mock data cubes, the same stellar libraries are used
to fit the realisations.

In the top row of Figure 11, we compare the errors of
the line fluxes as in the line-fitting simulations. The frac-
tional differences between σMC and σLZ are 7 ± 4%, 6 ±
4%, and 2 ± 3% (median ± standard deviation) for Hα,
Hβ and [O III] λ5007, respectively. Comparing these re-
sults with those performed without considering the contin-
uum (see Figure 9), the fractional difference of errors for
[O III] λ5007 is comparable to the line-fitting simulations,
but those for Hα and Hβ (i.e., Balmer lines) are about a fac-
tor of 2 – 3 larger.

The fundamental reason behind this discrepancy is that
the errors in the best-fit continuum models are unknown, so
the errors are not propagated to the continuum-subtracted
spectrum. Essentially, the best-fit continuum models are
assumed to be noise-free. While this assumption could be
true for some emission lines, those lines at similar wave-
lengths to strong stellar absorption features can be affected
by the continuum errors. As equivalent widths of Balmer
lines are strong functions of stellar age (and weakly depen-
dent on metallicity), when a different set of solutions (age
and metallicity) is derived from the SSP fit to each realisa-
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Fig. 10 Comparison between errors reported by LZIFU (σLZ ) and errors derived from Monte Carlo simulations (σMC ). The simulations
are performed on spaxels in Ho et al. (2014) that require 2-component fitting. There is no continuum in the simulations. Details are
provided in Section 4.1. On average, the fractional differences between σLZ and σMC for Hα, [O III] λ5007, velocity, and velocity
dispersion are 13 ± 13%, 2 ± 9%, 9 ± 12%, and 17 ± 11% (median ± standard deviation), respectively.

tion, different Balmer corrections (for absorption of Balmer
lines from stellar atmosphere) to the emission-line result in
different Balmer emission-line fluxes.

To confirm the role that stellar Balmer correction plays
in the line flux errors, we compare the fractional differ-
ences between σMC and σLZ to the importance of errors
in the Balmer correction relative to the line flux errors (i.e.
σBC/σLZ) as shown in the bottom row of Figure 11. Here,
we define σBC as the standard deviation of the Balmer cor-
rections in the 500 MC simulations. The Balmer corrections
are calculated over the on-line/off-line windows defined in
González Delgado et al. (2005). When σBC/σLZ is large,
the differences of Balmer correction in different realisations
are substantial compared to the nominal flux errors (σLZ) so
one would expect that the nominal flux errors (σLZ) under-
estimate the real errors (σMC). We observe this behaviour
in the bottom row of Figure 11. Both Hα and Hβ show posi-
tive correlations between the fractional differences in errors
(y-axis) and the importance of Balmer correction (x-axis),
confirming that the continuum fitting largely causes the dis-
crepancies in the errors.

Obtaining proper errors for the continuum models has
been a long-standing problem in spectral fitting (e.g., Kol-
eva et al. 2008, 2009; Tojeiro et al. 2007; MacArthur et al.
2009; Walcher et al. 2011; Yoachim et al. 2012; Cid Fer-
nandes et al. 2014). The difficulties come from the fact that
continuum fitting is a non-linear multi-variable least-square
problem with typically multiple local minima χ2. Quantify-

ing the errors requires performing MC simulations that can
be computationally very expensive and perhaps only feasi-
ble on small-scale simulations applied to a handful of galax-
ies. In the context of constraining the contamination from
Balmer correction, the degree of contamination is likely to
depend on the spectral coverage and the spectral resolution
of the data, because those factors determines the accuracy of
the stellar ages and stellar metallicities from SSP fitting.

In all our MC simulations, the underlying models of the
mock data are known a priori so we are only studying the
propagation of statistical errors. We did not consider sys-
tematic errors, such as non-Gaussian line profiles and var-
ious uncertainties associated with the synthesis of the SSP
spectral models (e.g., stellar evolutionary track, binary star,
TP-AGB star, etc.), and therefore the discrepancies between
nominal and real errors are lower limits. Systematic errors
can be important in many applications of spectral fitting,
particularly the errors between different SSP models. Cid
Fernandes et al. (2014) analysed the uncertainties of stel-
lar mass, age, metallicity, and extinction derived with data
from the CALIFA survey using the STARLIGHT spectral fit-
ting package. They found that the dominant uncertainties
come from the choice of SSP models. For emission line fit-
ting, the equivalent widths of Balmer lines between different
models can disagree on the level of a few tens of percent (see
figure 1 in Groves et al. 2012), which can cause systematic
errors on the weak, high order Balmer lines. These errors
are particularly important when the continuum is strong rel-
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Fig. 11 Comparison between errors reported by LZIFU (σLZ ) and errors derived from Monte Carlo simulations (σMC ). The simulations
include both line and continuum fitting. The emission lines are 1-component and we assume no systematic errors in the continuum models.
Details about the simulations are provided in Section 4.2. Different color points correspond to different galaxies from the SAMI Galaxy
Survey, as shown in the legend their GAMA IDs. In the top three panels, we compare the differences between σMC and σLZ with line
fluxes; the fractional differences between σMC and σLZ are 7± 4%, 6± 4%, and 2± 3% (median ± standard deviation) for Hα, Hβ and
[O III] λ5007, respectively. In the bottom two panels, we compare the fractional differences between σMC and σLZ to the importance of
errors in Balmer correction relative to line flux errors, i.e. σBC/σLZ . The positive correlations demonstrate that continuum fitting could
impact the Balmer line errors when σBC/σLZ is large.

ative to the emission lines. Dedicated studies are required
to explore the different systematic effects involved in fitting
the continuum.

5 Summary and Conclusion

We have presented LZIFU, an IDL toolkit for fitting multiple
emission lines and constructing emission line flux maps and
kinematic maps from IFS data. We outlined the structure
of LZIFU, and described in detail how the code performs
spectral fitting and decomposition. We have also conducted
simulations to examine the errors estimated by LZIFU and
discussed the its limitations.

We have demonstrated how LZIFU can be adopted to
analyse data from the CALIFA survey and the SAMI Galaxy
Survey. In some applications, single component fitting is ad-
equate to capture the dominant kinematic component (typ-
ically from H II regions tracing disk rotation) and can pro-
duce flux and kinematic maps useful for various studies of
gas physics. In cases where the line profiles are more so-
phisticated due to either active physical environments (e.g.,
AGN or galactic wind) or observational effects (e.g., beam

smearing), multiple component fitting can better constrain
the total line fluxes and provide more insight into the vari-
ous physical processes. Although only examples from CAL-
IFA and SAMI were presented in the paper, LZIFU is by no
mean limited to these two datasets. Data from world-class
IFS instruments with distinct structures (i.e. fibre-based,
image-splitting), sizes and spatial resolutions have already
been processed by LZIFU, including MUSE, WiFeS and SPI-
RAL. The LZIFU products and scientific results extracted
from these can be found in Ho et al. (2015); Dopita et al.
(2015b); McElroy et al. (2015); Vogt et al. (2015); Kreckel
et al. (2016). Further data from these instruments, and sur-
veys from other IFS instruments are currently being anal-
ysed, with a wealth of scientific results from LZIFU products
expected to be published in the coming years.

While this paper outlines the official release version of
LZIFU, future improvements to the pipeline will be imple-
mented. For example, in a soon-to-be available upgrade
we will include the option of fitting binned data. Spa-
tially binning data can significantly improve the detection
of faint emission lines at large galactic radii. Different bin-
ning schemes such as contour binning (Sanders 2006) and
Voronoi tessellations (Cappellari and Copin 2003) have es-
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tablished the usefulness of binning imaging and IFS data.
On longer timescales, we plan to incorporate a full Bayesian
analysis such that the parameter space can be explored more
thoroughly and more accurate errors can be reported. It is
also possible to analyse mock 3D data cubes from numerical
simulations parallel to observational data cubes to directly
compare similar parameter maps.
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A Selecting the number of components required

The number of components required to describe a given
spectrum is determined by three factors: 1) the spectral res-
olution of the instrument, 2) the intrinsic kinematic structure
of the line emitting gas, and 3) the S/N of the data. The stan-
dard statistical test for model comparison (for the frequen-
tist) is the likelihood ratio test (LRT; see also Section 4.2 in
Ho et al. 2014). In spectral decomposition where the differ-
ent models are nested, the (natural) logarithmic maximum
likelihood ratio of the two models (n- and [n+1]-component
models),

Λ = −2 ln
max(Ln)

max(Ln+1)
= χ2

n − χ2
n+1, (A1)

is an objective gauge of how much improvement in maxi-
mum likelihood, max(Ln) and max(Ln+1), the more so-
phisticated model can offer. Here, χ2

n and χ2
n+1 are χ2 val-

ues of the best fit models with νn and νn+1 degrees of free-
dom, respectively. Λ follows a χ2 distribution of (νn−νn+1)
degrees of freedom, and therefore the null hypothesis that
the n-component model is better than the (n+1)-component
model can be tested by comparing the measured Λ with the
critical Λ corresponding to the probability p-value.

Another common statistical test for model comparison
is the F-test using the F-distribution. An F-distribution is
formed when one takes the ratio of two random variates, U1

and U2, that are χ2 distributed. That is,

X ≡ U1/ν1
U2/ν2

(A2)

follows a F-distribution of (ν1, ν2) degree of freedom when
1) U1 and U2 are χ2 distributed with ν1 and ν2 degrees of
freedom, respectively; and 2) U1 and U2 are independent.
The F-test applied in many astrophysical experiments uses
the fact that when Λ follows a χ2 distribution of (νn−νn+1)

degrees of freedom, and the index F̃ , defined as

F̃ ≡ (χ2
n − χ2

n+1)/(νn − νn+1)

χ2
n+1/νn+1

=
Λ/(νn − νn+1)

χ2
n+1/νn+1

, (A3)

follows a F-distribution of (νn − νn+1, νn+1) degrees of
freedom. This is because in the denominator, χ2

n+1 also fol-
lows a χ2 distribution of νn+1 degrees of freedom. Once
the distribution of F̃ is predicted, a statistical significance
p-value can be calculated and applied as in the LRT. It is not
obvious that the numerator and denominator are indepen-
dent in the case of nested models, particularly with multiple-
Gaussian models for emission line fitting.

Protassov et al. (2002) point out that the use of the LRT
and F-test are not statistically justified in many line-fitting
applications because of the boundary conditions of non-
negative line fluxes imposed on the models. The likelihood

ratio therefore does not necessarily follow the same asymp-
totic behaviour predicted by the χ2 distribution. To test
whether the LRT and F-test can be used on our spectral de-
composition, we perform simple Monte Carlo simulations
to probe the real distribution of Λ and F̃ for our applica-
tion. The simulations are designed to study only the statis-
tical aspects of the problem. We first randomly select three
spaxels from the SAMI galaxy presented in (Ho et al. 2014;
GAMA ID: 209807), one in each region requiring different
numbers of components (see their figure 4). We inject noise
into the best-fit emission line models based on the variance
of the real data. The three perturbed spectra are fed to LZ-
IFU to perform 1, 2, and 3-component fits in the same way
as processing real data. Since the fake spectra are already
continuum-free, we do not perform continuum fitting and
subtraction. Each spectrum is perturbed 500 times and fit
1,500 times (i.e. 1, 2, and 3-component fit); and we record
the χ2 and degrees of freedom of each fit. We compare the
distributions of Λ and F̃ from the Monte Carlo simulations
to the expected χ2 and F- distributions. Given that we know
a priori the number of components required, we then assess
how well the statistical tests perform.

Figure 12 shows the probability density distributions of Λ

of the models being 1-component (first row), 2-component
(second row), and 3-component (third row). Both the distri-
bution of the 500 Monte Carlo realisations and the theoreti-
cal χ2 distribution are shown. The vertical dashed lines indi-
cate the positions of the p-value of 0.01 determined from the
theoretical distributions. The number labeled next to each
dashed line indicates the actual p-value determined from the
Monte Carlo results. In other words, the dashed lines mark
the critical Λ below which the more sophisticated model
should be rejected at a significance level of 0.01, whereas
numbers indicate those derived from the actual distributions
determined from the simulations. Similar comparisons for
the F-test are shown in Figure 13.

In panels (a), (b), (d), (f), (h) and (i) of Figures 12 and 13,
the model fits with the real numbers of components (“real
answers”) are involved in the comparisons. These distribu-
tions demonstrate that both the LRT and the F-test are appro-
priate tests for spectral decomposition. At the significance
cut of 0.01, panels (a), (b), and (f) give comparable signifi-
cant levels (≈ 0.004–0.014) at the left tails of the distribu-
tions. Panel (d) and (i) give higher false classification rates
(≈ 10%) at the right tails of the actual distributions (rather
than 1%), and panel (h) shows a perfect classification rate.
The results between LRT and F-test are consistent.

In panels (c), (e) and (g) of Figures 12 and 13, the model
fits with the real numbers of components are not involved in
the comparisons, i.e. one uses the wrong models to test the
data. Situations like this are unavoidable since one does not
know a priori the true numbers of components. It is worth
pointing out that in (g), where the underlying model (“real
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Fig. 12 Distributions of Λ (see Equation A1) from Monte Carlo realisations (histograms) and idealised χ2 distributions (curves) predicted
by the likelihood ratio test. The different panels compare the different underlying models (top to bottom: true numbers of components are
1, 2, and 3) with 500 Λ computed from fitting each realisation with 1, 2, and 3-component models (as labeled on the x-axes). The vertical
dashed lines indicate the positions of p-value of 0.01 determined from the theoretical distributions, and the number labeled next to each
dashed line indicates the actual p-value determined from the Monte Carlo realisations. In the 1-component case (top row), the simpler
model is preferred in each case. In the 2-component case (middle row), the distributions favour models more complex than 1-component
(left + centre panels), but simpler than 3 (right panel). In the 3-component spaxel (bottom row), the more complex model is preferred.
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Fig. 13 Same as Figure 12 but for F-test. The curves are F-distributions from the F-test (Equation A3).



16

Start 1-comp. better 
than 2-comp.?

1-comp. better 
than 3-comp.?

2-comp. better 
than 3-comp.?

Yes

No

Adopt 3-comp.

Adopt 1-comp.

Adopt 2-comp.

Yes

Yes

No

No

Fig. 14 Flowchart for classifying the number of components re-
quired for a spectrum. Each spectrum is fit with 1, 2, and 3-
component Ganssians, and decisions (diamonds) are made by per-
forming the likelihood ratio test or F-test.

answer”) has 3 components, the statistical tests strongly pre-
fer the more sophisticated 2-component fits. In (c), where
the underlying model has only 1 component, the statisti-
cal tests strongly prefer the simpler 2-component fits. In
(e), where the underlying model has 2 components and the
statistical tests are choosing between 1-component and 3-
component, the theoretical p-value does not provide useful
assessment.

To quantify the overall performance of the statistical
tests, we use the flowchart in Figure 14. For a given
spectrum, we first choose between the 1-component and 2-
component fits, and then compare the preferred fit with the
3-component fit. We classify the 500 Monte Carlo realisa-
tions on the three spaxels and we find that, with the LRT, the
successful rates for classifying 1-component, 2-component,
and 3-component fits are 99%, 90% and 91%, respectively.
With the F-test, similar results are found of 99%, 89% and
89%, respectively.

Although the Monte Carlo results imply that these sta-
tistical tests provide robust classification, in practice it is
extremely difficult to have accurate estimates of the vari-
ance, which means the χ2 values may be problematic. Apart
from the difficulties in propagating Poisson noise stringently
from raw data to reduced data cubes, continuum modelling
always carries some statistical and systematic uncertainties
that are difficult to quantify and propagate. Strong sky lines
could also cause the wrong estimate of variance in sky-
dominated channels and/or strong residuals due to imper-
fect sky subtraction. These factors limit the reliability of
these statistical tests, and therefore these tests should be
used with great care. Additional means of quality control are
always recommended, such as visual inspection and consis-
tency checks of physical parameters.

Our experience shows that in the regime where residu-
als from systematic effects are smaller than the noise lev-
els, the statistical tests classify spectra in good agreement
with human judgement. However, in the regime where the

noise levels are much lower than systematic effects, more
sophisticated models are always preferred by the statistical
tests and the classifications may not be physical. For exam-
ple, when the S/N is excellent and the surrounding channels
are slightly positive in the continuum-subtracted spectrum
due to errors in the continuum fit, an additional low am-
plitude, broad kinematic component is always preferred by
the statistics. The small positive residuals contribute signif-
icantly to χ2 due to the low noise levels, but the additional
broad component usually does not carry significant physi-
cal meaning. Adding empirical, physically motivated con-
straints to the decision metrics can help alleviate the prob-
lem (see Hampton et al. in preparation for using machine
learning to determine the number of components). In the
examples shown in Figures 5 and 6, we adopt the flowchart
in Figure 14 using the LRT and additionally require that, for
more sophisticated models to be selected, 1) the peak flux
densities of the broad kinematic components (c2, c3) has to
exceed at least 15% of the narrow component (c1) in Hα,
and 2) the broadest kinematic component (c3) cannot have
less Hα flux than the narrow component (c1).
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Cid Fernandes, R., González Delgado, R.M., Garcı́a Benito, R.,
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Lorenzo, B., González Delgado, R., Gruel, N., Haines, T.,
Hao, C., Husemann, B., Iglésias-Páramo, J., Jahnke, K., John-
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bar, Y., Barrera-Ballesteros, J.: Rev. Mexicana Astron. Astrofis.
52, 21 (2016a). 1509.08552
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