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The use of electroencephalogram (EEG), an electrophysiological monitoring method for

recording the brain activity, for authentication has attracted the interest of researchers for over a

decade. In addition to exhibiting qualities of biometric-based authentication, they are revocable,

impossible to mimic, and resistant to coercion attacks. However, EEG signals carry a wealth of

information about an individual and can reveal private information about the user. This brings

significant privacy issues to EEG-based authentication systems as they have access to raw EEG

signals. This thesis proposes a privacy-preserving EEG-based authentication system that preserves

the privacy of the user by not revealing the raw EEG signals while allowing the system to authenti-

cate the user accurately. In that, perceptual hashing is utilized and instead of raw EEG signals, their

perceptually hashed values are used in the authentication process. In addition to describing the au-

thentication process, algorithms to compute the perceptual hash are developed based on two feature

extraction techniques. Experimental results show that an authentication system using perceptual

hashing can achieve performance comparable to a system that has access to raw EEG signals if

enough EEG channels are used in the process. This thesis also presents a security analysis to show

that perceptual hashing can prevent information leakage.
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CHAPTER 1

INTRODUCTION

1.1. Motivation and Objective

Authentication is the process of verifying whether the claim made by an entity about his

or her identity is true or false. Authentication is necessary in developing access controls, which

either grant or deny an entity, access to a system based on whether the verification has succeeded

or failed. Examples could be accessing your laptop, mobile or email or connecting to a private

network of an organization. Users have an identity and an associated password which the user can

use to access a system. Typically, such passwords are text-based and can be easily forgotten or

stolen. An alternative to text-based passwords is the use of biometrics, including, but not limited

to, fingerprints, iris, speech, face and gait. Another biometric that has attracted the interest of

researchers in the area of biometric authentication is electroencephalogram (EEG) which records

the electrical activity of the brain and also exhibits biometric qualities. Additionally, clinicians

have seen patterns and characteristics in these recordings that can act as identifiers and are unique

to patients [48].

In addition to uniqueness, using EEG as a biometric has several advantages which make it

a good candidate for authentication:

(1) As it results from some mental activity, it is confidential.

(2) Even for similar mental tasks done by different people they are different. Thus, they are

hard to mimic [63].

(3) Stealing them through coercion is also difficult as that could affect the resulting EEG

recordings [21] [41].

(4) Non-invasive EEG based Brain Computer Interfaces (BCI) that can be used to monitor

the brain activity are inexpensive and available off-the-shelf.

Different works, over the past decade, have shown that EEGs can be used for authentication

[51, 48, 60, 34, 14, 40, 28, 65]. However, they are prone to serious privacy issues. Primarily, the

EEG signal of a user is private and can reveal information about him or her. Researchers found
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that the EEG signals captured using consumer-grade EEG-based BCI devices can reveal private

information such as bank cards, PIN numbers, the area of living and the user’s knowledge of the

known persons [35]. Furthermore, researchers were able to perform a more covert attack called a

subliminal attack [22]. In that, the duration of the visual stimulus is so short that the user is unable

to perceive the stimulus consciously. However, the resulting EEG signals can be analyzed by an

attacker to learn private information about him or her. Moreover, with some feature extraction

techniques like Fast Fourier Transform [19] and Wavelet Transform [61], one can reconstruct the

original signal from the extracted features [1]. Thus, sharing the raw EEG signal or the feature

vector can also result in leakage of private information. Additionally, in any biometric authen-

tication system, there are two phases: Enrollment and Authentication. In the enrollment phase,

the user enrolls his or her biometric. We extract a template from this biometric that is unique to

the user, store it in the database and discard the biometric. During the authentication phase, the

user again presents his or her biometric. Again, a template is extracted and matched against the

template in the database. Authentication succeeds if the match is successful and it fails otherwise.

Unlike in the case of a text-based password, where one can easily replace a stolen password, a

stolen biometric cannot be revoked. Thus, if an attacker can compromise the database that stores

the biometric template the users may permanently lose their biometric identity.

A popular way to protect text-based passwords is to use hash functions. A hash function

is a function that maps an input of size m (the data that you are trying to protect) to an output of

size n (the hash). The field of cryptography widely utilizes hash functions [55] and they are often

used to check the integrity of the original data. These are also known to be one-way, i.e., going

back to original data from the hash is computationally hard. However, these functions are very

sensitive to the input, i.e., even a small change in the input (a single bit flip) results in a significant

change in the output. Hence, using a cryptographic hash function for our approach is unsuitable

as two EEG signals of the same person will not be identical. As an alternate method to this, we

propose the use of content based hashing or perceptual hashing, i.e., to compute the hash based

on the data or content, which in our case is the user’s EEG signal [27]. So as long as two inputs

have similar content, they generate similar hashes. Although two EEG signals of the same person
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are not identical, we hypothesize that they would have similar content and would generate similar

perceptual hashes. Hence, we use these perceptual hashes to perform authentication. However,

this alone does not solve all the privacy issues. A compromised perceptual hash will not reveal

private information about the user, but it can still result in a loss of the user’s biometric identity.

One way of solving this problem is to create a revocable biometric identifier (BIDs) [18] which

is a repeatable binary sequence derived from the user’s biometric. Similarly, we can also use a

biometric key (BK) which is a cryptographic key derived from the biometric. A BID or a BK

should possess the following essential characteristics:

(1) It should not leak any information about the original biometric.

(2) For a biometric captured from the same user, one must be able to generate the same BID,

i.e. the BID should be repeatable. This is imperative in our case as EEG signals of the

same person captured at different times will not be identical.

(3) It should not be same for two different people.

In this work, we aim to develop a privacy-preserving authentication system using EEG

and perceptual hashing while addressing the above challenges. We adopt the approach proposed

in [24] and develop our proposed authentication system based on perceptual hashing with this

framework.The contributions of our work are listed as below:

(1) To the best of our knowledge, this is the first work on privacy preserving EEG-based

authentication.

(2) To the best of our knowledge, this is the first work that explores perceptual hashing of

EEGs to perform authentication and preserve the user’s privacy.

(3) We compute the perceptual hash using two feature extraction techniques and explore two

methods for generating the hash.

(4) We use support vector machine (SVM) and k-Nearest Neighbor (k-NN) classifiers to

perform authentication. Additionally. we perform extensive tests to find the best hyper-

parameters to train the SVM classifier and evaluate our approach on three data sets.

(5) We compare the performance of the classifiers and also study the impact of perceptual

hashing on authentication, classifier training time, protocol execution time, and bandwidth
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consumption.

1.2. Thesis Organization

The organization of this thesis is as follows: In Chapter 2, we discuss in detail about EEG,

and then talk about existing work in the area of EEG-based authentication. In Chapter 3, we first

give an overview of the proposed approach and then discuss its components in detail. Later, in that

chapter we describe in detail protocols for enrollment and authentication in two types of authenti-

cation models: IDP-centric and User-centric. In Chapter 4, we discuss the datasets, experimental

design and our results. In Chapter 5, we perform a security analysis of our work and finally, we

conclude our work and discuss future directions in Chapter 6.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1. Electroencephalograms (EEG)

EEG signals record the electrical activity of the brain, and we can divide them into different

bands based on frequency as: (1) Delta (δ) range < 4Hz, (2) Theta (θ) range 4− 7Hz, (3) Alpha

(α) range 8− 15Hz, (4) Beta (β) range 16− 31Hz, (5) Gamma (γ) range ≥ 32Hz.

(a) NeuroSky MindWave Mobile
single-channel headset [11]

(b) EMOTIV EPOC+ 14-channel headset [7]

FIGURE 2.1. Consumer grade BCI devices

(a) Full 64 electrode setup [8] (b) Geodesic sensor net [9]

FIGURE 2.2. BCI devices with more EEG electrodes

Typically, these are recorded using non-invasive EEG-based brain computer interface (BCI)

devices having dry or wet electrodes placed on the scalp. Also, EEG signals have small signal

amplitudes (µV ). BCI devices with a different number of EEG channels are available and can
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have a single EEG channel to 256 EEG channels. An EEG channel is an electrode that captures

brain signals. Today, many inexpensive and off-the-shelf BCI devices are available. Figure 2.1

shows NeuroSky [10] MindWave Mobile headset, which has a single EEG channel and EMOTIV

[6] EPOC+ headset, with 14 EEG channels. Similarly, Figure 2.2 shows BCI devices with 64 and

256 electrodes. Figure 2.3, shows the 64 electrodes map as per the international 10-10 system [5].

In our work, we make use of Visually Evoked Potentials (VEP) signals to perform authentication.

These are a particular type of EEG signals that are evoked by some visual stimulus.

FIGURE 2.3. 64 electrodes map as per the international 10-10 system
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2.2. Related Work

Some of the early works that explore EEG as a biometric include [51], [48] and [45]. Poulos

et al. [51] using Autoregressive (AR) models, estimate AR parameters from the α band in the

EEG signals. They use these estimates as features and perform classification using Linear Vector

Quantizer network with 72-80% success. Paranjape et al. [48] work with a single EEG channel.

They first examine the EEG signals using AR models and then apply Discriminant Analysis to

the AR coefficients. They were able to achieve a success of 80%. Palaniappan et al. [45] study

EEG signals (VEP signals) from 61 electrodes for 20 subjects with an average classification of

approximately 94%. They extract the gamma band power features and employ Simplified Fuzzy

ARTMAP neural networks to identify different individuals. These works were followed by many

others in the following years [60], [47], [34], [40], [53], [13], [28], [62]. Ashby et al. [14] in their

work propose a low-cost EEG-based authentication system using AR models for feature extraction

and linear Support Vector Machine for classification. They make use of an inexpensive EEG

Headset (EMOTIV EPOC) with 14 channels. Zúquete et al. [65] in their work use VEP signals to

perform biometric authentication. They compute differential signals of 8 EEG channels and use the

energy of these signals as biometric features. They perform authentication using k-NN, Support

Vector Data Description (SVDD), and two combinations of k-NN and SVDD. However, all these

works focus on improving the accuracy of the system. We aim to perform the authentication

using EEG while preserving the privacy of the user and the biometric. We leverage the work of

[65] on differentials signals and apply Perceptual Hashing to protect the privacy of the signals.

Additionally, we incorporate a privacy preserving protocol to perform authentication.

Perceptual Hashing has been around for a while and can apply to any multimedia like im-

age, audio or video. It is a content-based hashing technique and has found applications in areas

like content identification and content retrieval. Hashing algorithms for audio content identification

have been discussed in [25], [37], [44] and for database searching in [20], [30], [58]. It can also

been used for image retrieval, image authentication and copy detection in [29], [32], [43]. Simi-

larly, Perceptual Hashing algorithms for video identification have been discussed in [42] and [64].

In our approach, we compute a hash of the features extracted from the EEG signals. Gunasinghe et
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al. [24] in their work develop a biometric authentication system using iris. They compute a percep-

tual hash of iris images using a type-II Discrete Cosine Transform (DCT) based hashing technique.

After preprocessing and resizing the iris image, they compute the DCT coefficients. Then, they

extract 64 low-frequency coefficients in the form of an 8x8 matrix (the first eight columns and first

eight rows). They convert this matrix to a row vector by concatenating each row. Finally, they

compute the hash by comparing each element to the median of the vector. The Perceptual Hashing

technique that we use in our work is very similar to this but with two important differences: (1) We

compute the hash based on the features extracted using Parseval’s Spectral Power Ratio Theorem

and Power Spectral Density instead of DCT; (2) We additionally support dividing the feature vector

into segments for calculating the perceptual hash.

We need to create a BID or a BK from the EEG signal of the user that is repeatable and

revocable. Palaniappan et al. [46] investigate a thought based system for generating a personal

identification number. They use a single electrode from a P300 based BCI device for this purpose.

Another important requirement is that the identifier should be repeatable and revocable. Ratha et

al. [52] in their work present a system to generate cancelable biometrics. They vary the distortions

on the biometric features to provide various versions of a biometric template. Recently, Bajwa et

al. [15] explored the use of EEG for generating cancelable biometric keys. They extract feature

vectors from the user’s EEG signals captured while performing a chosen mental activity. These

feature vectors are then binarized using the authentic regions of the user to generate the key. The

authentic regions of the EEG features are established by the user for the chosen activity during

the enrollment phase. To change the key, the user has to choose a different mental activity. In

our work, we adopt the BID generation technique used in [24]. In that, an identity provider (IDP)

generates a repeatable BID using the output of a customized SVM classifier and a secret derived

from the user’s password. The IDP hides the BID in a token which one can revoke by changing the

password. However, they provide the biometric (iris) to the IDP. In our approach, we present only

the perceptual hash of the EEG signals to the IDP.
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CHAPTER 3

METHODS

3.1. Architecture Overview

Signal Acquisition Feature Extraction Perceptual Hash

Classification
Biometric Identifier &

Identity Token Generation
Enrollment /

Authentication

FIGURE 3.1. Architecture overview

Figure 3.1 shows various components in our approach, and we will discuss them in detail in

the following sections. The architecture involves three entities or parties viz., the Identity Provider

(IDP), the User (U) and the Server (S). The goal of the system is to authenticate U so that he or she

can access the services provided by S. The IDP is a trusted party and is responsible for enrolling

the user and generating a BID and identity token for the user. Depending upon the authentication

model, the IDP may or may not be involved in the authentication process.

• Signal Acquisition: The first step in any EEG-based authentication system is acquiring

the EEG signals and is done using BCI devices. Today, many commercial BCI devices

like NeuroSky and Emotiv are available that can be used to acquire the signals. However,

instead of collecting our data (EEG Signals), we make use of publicly available datasets

(see Section 4.1). We then select appropriate channels and compose the required signal.

We discuss these in Section 3.2 and Section 3.3 respectively.

• Feature Extraction: The next step in our approach is to extract features from the EEG

signals. We employ two techniques for this purpose viz., Parseval’s spectral power ratio

theorem and Power Spectral Density. We discuss these techniques in Sections 3.4.1 and

9



3.4.2 respectively.

• Perceptual Hash: We next apply Perceptual Hashing to the extracted feature vectors. This

step transforms the feature vectors to a sequence of 1s and 0s. We discuss this in detail in

Section 3.5.

• Classification: Two EEG signals of even the same person are not identical. Hence, to

identify people using the EEG signals, we employ machine learning techniques, SVM

and k-NN, for this purpose. We discuss these techniques in Sections 3.6.2 and 3.6.1.

• Biometric Identifier and Identity Token Generation: The output of the classification step

gives us a class label for the perceptual hash. We use this class label to generate a Bio-

metric Identifier (BID) and discuss that process in Section 3.7.4. We generate an identity

token for the user and hide the BID in it. We discuss the process of generating the token

in Section 3.7.5

• Enrollment/Authentication: We adopt the proposed approach in [24] to implement the

enrollment and authentication phases. The BID and Identity Token generation component

is also a part of the adopted approach. During enrollment, we generate a token for the

user who can use the token to sign-up with a server. Later, the user uses the token to

complete authentication. There are two models in our approach: IDP-centric model and

User-centric model. We discuss both enrollment and authentication phases in each model

in Sections 3.8.1 and 3.8.2

3.2. EEG Channel Selection

In our approach, we make use of VEP signals, i.e., the EEG signals generated in response

to some visual stimulus. Throughout our discussion in this thesis, we use these terms interchange-

ably. The gamma band (around 40 Hz) is related to attention and processing visual information

[39]. Thus, we choose only the γ band in our approach and look at the 30-50 Hz frequency band.

Another important step in using EEG signals for performing authentication is selecting the appro-

priate EEG channels, which by itself is an entirely different research topic. Hence, we leverage

existing work to achieve this task. We primarily consider 8 EEG channels in the occipital region

as they record stronger electrical activity in the γ band in response to visual stimuli [33] [59] [23].
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In addition to these EEG channels, we also consider other channels from other regions for per-

forming some experiments. Table 3.1 gives information about the various EEG channels we have

considered in our approach.

# EEG Channels

8 PO3, PO4, POz, PO7, PO8, O1, O2, Oz

14 AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4

17 PO3, PO4, POz, PO7, PO8, O1, O2, Oz, P1, P2, P3, P4, P5, P6, P7, P8, Pz

26 PO3, PO4, POz, PO7, PO8, O1, O2, Oz, CP1, CP2, CP3, CP4, CP5, CP6, CPz,

TP7, TP8, P1, P2, P3, P4, P5, P6, P7, P8, Pz

TABLE 3.1. Selected EEG channels

3.3. Signal Composition

We consider multiple EEG channels to perform authentication and hence, represent them as

a two-dimensional (2D) array where each channel is a column in the array. Let C denote all these

channels. Note that we have an EEG Signal from each EEG channel. Additionally, we include

differential signals as used in [65] and obtain them by subtracting corresponding elements in each

pair of columns. Thus, total number of columns CT = C+

(
C

2

)
. The number of rows in the array

will depend on the sampling rate.

EEG Signals︷ ︸︸ ︷ Differential Signals︷ ︸︸ ︷
C1 C2 C3 C1− C2 C1− C3 C2− C3
C11 C21 C31 C11 − C21 C11 − C31 C21 − C31 N samples
C12 C22 C32 C12 − C22 C12 − C32 C22 − C32

...
...

...
...

...
...

C1N C2N C3N C1N − C2N C1N − C3N C2N − C3N
TABLE 3.2. Signal Composition

The purpose of using differential signals is to provide to the classifiers information about

the phase of EEG signals instead of just providing information about their amplitudes (energies).

Phase shifts between subtracted EEG signals with equal frequency and amplitude generate non-null

signals with the energy as a function of the phase shift. Thus, the energy of differential channels

can denote phase shifts between the EEG channels and we can provide more information to the

11



classifiers about each subject [65]. Table 3.2 shows the signal composition for three EEG channels

having N samples. As you can see from the table, for three EEG channels, there are
(
3

2

)
= 3

differential columns, i.e., a total of six columns and N rows. Based on our discussion in Section

3.2, the number of columns in the signal will vary upon the number of channels selected. Refer to

Table 3.3 for more details.

EEG Signals (C) Differential Signals (
(
C

2

)
) Total Signals (CT = C +

(
C

2

)
)

8 28 36

14 91 105

17 136 153

26 325 351

TABLE 3.3. Calculation of Total EEG Signals

3.4. Feature Extraction

We employ two techniques to extract features from the raw EEG signals viz., Parseval’s

spectral power ratio theorem and Power Spectral Density.

3.4.1. Parseval’s Spectral Power Ratio Theorem (PSPRT)

This technique computes the energy of the signal using the following equation:

E(S) =
1

N

N∑
n=1

s2n (1)

Here, E(S) denotes the energy of signal S. The signal has N samples and sn is the nth

sample. We apply Equation 1 to each column, i.e., all EEG signals and differential signals (see

Section 3.3). This results in a feature array (feature vector) F with a single row. To normalize the

feature array, we divide each element by the maximum element in the array.

F (i) =
F (i)

max(F )
i = 1, 2, . . . , CT

The total number of columns in the feature array after feature extraction is still CT . Table

3.4 shows how many features PSPRT yields for the set of selected channels. You can refer to Table

3.3 to see how we calculate the total number of signals.

12



EEG Channels (C) Total Signals (CT ) Total Features

8 36 36

14 105 105

17 153 153

26 351 351

TABLE 3.4. Number of features yielded by PSPRT

3.4.2. Power Spectral Density (PSD)

We compute the PSD estimate PSD(S) of the signal S (refer to Table 3.2) using pwelch

in MATLAB [36]:

PSD(S) = pwelch(S,window, noverlap, nfft) (2)

pwelch computes the PSD estimate of each EEG signal, i.e., column in S by dividing the

signal into segments. Each segment has window number of samples. Two consecutive segments

will have noverlap number of overlapping samples. nfft gives the number of Discrete Fourier

Transform points to use in the computing the PSD estimate. PSD(S) has the same number of

columns as in S. We then extract the γ band between 30-50 Hz and finally normalize each row

of PSD(S) using normr in MATLAB. Since we extract only the γ band, the number of rows in

the feature array reduces to 20. Then we transpose each column in the feature array into a row

vector and concatenate all these row vectors. Finally, we have a feature array with a single row and

20 × CT columns. Table 3.5 shows how many features are present in the final feature vector for

the set of selected channels using PSD as a feature extraction technique.

EEG Channels (C) Total Signals (CT ) Total Features (20× CT )

8 36 720

14 105 2100

17 153 3060

26 351 7020

TABLE 3.5. Number of features yielded by PSD
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3.5. Perceptual Hash

A perceptual hash of any multimedia file is a representation that is generated based on the

content of that file [27]. In the context of any image, its gray-scale and color representation will

have similar perceptual hashes because both of them have similar content. The same applies to

audio and video files as long as they have similar content.

We first extract a feature vector from the raw EEG signal as discussed in Sections 3.4.1 and

3.4.2 and then, compute a perceptual hash of this feature vector. EEG signals of the same person,

captured at different times, are not identical to each other. However, they should be similar or

else using them for authentication will not be possible. Hence, we argue that they should generate

similar perceptual hashes.

The raw EEG signal of an individual is private and sharing it as is can result in information

leakage, and sometimes it is possible to reconstruct the original signal using the extracted features.

Achieving this would be hard with our choice of features extraction techniques, but with techniques

like Fast Fourier Transform and Discreet Wavelet Transform, it is feasible to reconstruct the origi-

nal signal. Hence, we consider the feature vector to be private as well. Additionally, the perceptual

hash is a sequence containing just 0s and 1s instead of having the actual feature values. Thus, by

using the hash instead of the feature vector, we expect to protect the privacy of the biometric.

Algorithm 1 Compute Perceptual Hash

Input: F {Feature Vector}, segmentSize {Size of each segment}
Output: PH {Perceptual Hash of the Feature Vector}

1: segments⇐ Divide F into segments of size segmentSize
//Compute Perceptual Hash H for each segment

2: for each segment in segments do
3: median⇐ Compute median of segment
4: for i = 0 to segment.length do

5: H(i)⇐

{
1, segment[i] ≥ median

0, segment[i] < median

6: end for
7: PH ⇐ PH | H for segment {Append H for segment}
8: end for
9: return Perceptual Hash PH

Refer to Algorithm 1, which shows the steps taken to compute the Perceptual Hash for a
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given feature vector. We first divide the feature vector into segments having segmentSize number

of features (Line 1). However, depending on the total number of features, the last segment could

have fewer features. For each segment, we compute the median. We then compare the value of

each feature in the segment with the median to compute the perceptual hash (Line 2 - Line 6).

Finally, we append the perceptual hash of each segment to get the hash of the feature vector (Line

7). We choose two values of segmentSize:

(1) 100% features i.e., consider the entire feature vector as a single segment.

(2) At least 50% features i.e., divide the feature vector into two segments with the first seg-

ment having at least 50% of the features.

3.6. Classification

To perform authentication, we need to predict the class label (subject) based on the Per-

ceptual Hash. For this purpose, we employ two classifiers viz., k-Nearest Neighbor (k-NN) and

Support Vector Machine, which we discuss next.

3.6.1. k-Nearest Neighbor

k-Nearest Neighbor (k-NN) classification is a technique that looks at existing data records

with known class labels to predict the class label of a new data record with an unknown class

label. The k-NN classifier computes the distance between the new data record and all existing data

records to find out k nearest neighbors or closest matching data records. It then decides the class

label of the new record based on a majority vote. The value of k is usually chosen to be an odd

number to avoid ties. We use the IBk classifier provided by Weka [26] in our approach.

3.6.2. Support Vector Machine

For any given training set in which records belong to one of two categories, a Support

Vector Machine (SVM) classification algorithm builds a model that classifies new data records

with an unknown class label as one of those two categories. An SVM classifier does this by

constructing an optimal hyperplane in a high-dimensional space. Since data records in the training

set may not be linearly separable in their original finite-dimensional space, the SVM classifier

maps the original space to a higher dimensional space where linearly separating these data records
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could be easier. The mapping from the original dimensional space to a higher dimensional space

is done using kernel functions. In our approach, we use Poly Kernel and Radial Basis Function

(RBF) Kernel provided by Weka [26].

3.7. Components in Enrollment/Authentication

The approach that we adopt from [24] has the following components:

3.7.1. Pedersen Commitment

We make use of the Pedersen Commitment scheme [49] to hide the BID of a user in the

identity token, and this token is used by the user to complete the authentication process. The fact

that solving discrete logarithms is a hard problem makes this commitment scheme secure. We

adopt this technique from [24]. In such a scheme, there are two entities: Committer and Verifier,

and the following steps:

(1) Let p and q be two large prime numbers such that q divides p− 1. We choose p as a 1024

bit integer and q as 160 bit integer. Z∗
p is the multiplicative group of order p and Gq is

a unique subgroup of Z∗
p of order q. Let g denote the generator of Gq. During system

initialization, a trusted party chooses this generator. It also chooses h such that loggh is a

secret. This can be done by choosing a secret x and computing h = gx mod p. Note that

both g and h are elements of Gq. Moreover, the parameters < p, q, g, h > are publicly

available.

(2) A Committer who wants to commit to a secret value s ∈ Zq chooses another random

secret r ∈ Zq and computes the commitment C(s, r) as follows:

C(s, r) = gshr mod p

(3) Finally, and if required, the Committer can reveal s and r. Using these values, the Verifier

can open the commitment to verify if it is authentic.

It is important to note that C(s, r) does not reveal any information about s and that unless

one can find loggh, the commitment cannot be opened with any s′ 6= s [49]. In our case, BID of
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the user is one of the secrets which we need to hide. We achieve this by using these properties of

this commitment scheme.

3.7.2. Zero Knowledge Proof of Knowledge Protocol

A Zero Knowledge Proof of Knowledge (ZKPK) Protocol is a protocol that lets one entity

(the Prover), who has some secret, prove to another entity (the Verifier) he or she has knowledge of

the secret. However, while doing so, the Verifier should not gain any information about the Prover’s

secret. We adopt the approach for implementing the ZKPK protocol from [24]. We saw in Section

3.7.1 how we can hide the secrets s and r in a commitment. In our approach, we use Protocol 1

that lets the user prove he or she is the owner of the identity token without actually revealing the

values of secrets hidden in it. The protocol has the following three important properties:

(1) Completeness: The protocol succeeds with a very high probability if the Committer and

the Verifier are honest.

(2) Soundness: The protocol prevents the Committer from proving a false statement.

(3) Zero-Knowledge: The proof does not leak any information about the secrets hidden in the

commitment.

Let P denote the user and V denote the Verifier.

Protocol 1 Zero Knowledge Proof of Knowledge Protocol

1: P ⇒ V : P randomly chooses y, t ∈ Zq, computes d = gyht and sends it to V
2: P ⇐ V : V randomly chooses e ∈ Zq and sends it to P
3: P ⇒ V : P computes u = y + es and v = t+ er and sends them to V
4: V : V accepts if guhv = dCe

3.7.3. Password-based Key Derivation

We hide two secrets s and r in the Pedersen Commitment. However, even in practical

scenarios, users find it difficult to remember a single password and to expect the users to remember

two passwords can affect the usability of the system. Hence, we derive the required secrets from

a single password as done in [24]. It is worthwhile to mention that generating the necessary

secrets also addresses security issues related to storing the secrets and secrets not being uniformly
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distributed in the keyspace.

secret = PBKDF2(PKCS#5, Password, Salt, keyLength)

PBKDF2 is password-based key derivation function 2 that we use to derive the required

secrets. It uses PKCS#5 as the pseudo-random function. Password is the user-chosen password

and Salt is the salt value. keyLength controls the length of the secret generated. In our case, it is

288 bits. We extract the first 128 bits from this secret as secret1, and the remaining 160 bits is the

second secret secret2. We append secret1 to the classification output, a 32-bit integer, to form the

160-bit as secret s. This secret is the BID of the user. secret2, which already has 160 bits, as the

second required secret r. Thus, s, r ∈ Zq and can be used in the Pedersen commitment.

3.7.4. BID Generation

Algorithm 2 shows the steps involved in generating the BID, which we adopt from [24].

We first predict the class label class, a 32-bit integer, for the perceptual hash provided by the user

(Line 1). Then, using the password chosen by the user, we derive two secrets (Section 3.7.3).

Finally, the BID is generated by appending the secret secret1 to class (Line 2). secret1 is a 128-

bit integer and hence, the resulting BID is a 160-bit integer. Thus, the BID ∈ Zq as discussed in

Section 3.7.1 and is used to generate the identity token.

Algorithm 2 Generate BID

Input: PH {Perceptual Hash of the Feature Vector}, secret1 {128-bit secret derived from user’s
password. Refer to Section 3.7.3}

Output: BID {generated BID}
1: class⇐ Predict the class label for the given PH {class is a 32-bit integer}
2: BID ⇐ class+ secret1 {Append secret1 to class}
3: return BID

3.7.5. Identity Token Generation

Algorithm 3 shows the steps involved in generating the identity token IDToken for the

user. We adopt it from [24]. It takes BID, secret2, expires, from and to parameters as input.

The BID is the user’s identity and is generated using algorithm 2. secret2 is the 160-bit secret
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we derive from the user’s password (see Section 3.7.3). expires indicates when the identity token

expires. The from and to fields indicate the sender and the receiver respectively.

Algorithm 3 Generate Identity Token

Input: BID {User’s BID}, secret2 {160-bit secret derived from user’s password. Refer to Sec-
tion 3.7.3}, expires {Indicating when the token should expire}, from, to

Output: IDToken {generated Identity Token}
1: s⇐ BID
2: r ⇐ secret2
3: IDToken⇐ Generate a blank token

//Set the fields in the token
4: IDToken.commitment⇐ gshr mod p {Compute and set the commitment in the token}
5: IDToken.expires⇐ expires {Set when the token expires}
6: IDToken.from⇐ from
7: IDToken.to⇐ to
8: IDP digitally signs IDToken
9: return IDToken

First, we create the Pedersen Commitment on BID, secret2 ∈ Zq (Section 3.7.1) using

the publicly available parameters < p, q, g, h > and set in the token (Line 4). Then the remaining

fields in the token are set (Line 5 - Line 7). Finally, the IDP signs the token (Line 8). The from

and to fields have been added to the identity token to prevent Mafia fraud attacks on the ZKPK

identity verification protocols [24]. Please note that the from field in the token can be a random

value or a pseudonym of the user and prevents an adversary from identifying the user. The to field

can also be misused by a malicious Server to impersonate the user. To avoid this, we can create a

commitment on the Server’s name and set this commitment in the to field. This method is secure

as only the user has the secrets required to open the commitment.

3.8. Authentication Models

There are two types of biometrics-based identity management architectures viz., IDP-

centric and User-centric. In the IDP-centric model, the user requires the IDP each time it wants to

authenticate to a server. Whereas, the User-centric model eliminates the need of the IDP during

authentication. In this section, we discuss the enrollment and authentication phases in both these

models.
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3.8.1. IDP-centric Authentication Model

The protocols we this use in this model are similar to the protocols utilized in the user-

centric model that we adopt from [24]. However, we tweak these protocols to suit the IDP-centric

model.

Protocol 2 shows the Enrollment phase in this model. The user acquires the EEG signal,

extracts the feature vector and computes the perceptual hash (Line 1 - Line 2). The user also

chooses a password (Line 3) and provides the perceptual hash along with the password, from and

to fields to the IDP (Line 4). The IDP generates a salt for this user and stores it (Line 5). Using

the password and the salt, the IDP derives the required secrets: secret1 and secret2 (Line 6). It

then predicts a class label for the perceptual hash and generates the BID (Line 7). It creates a

commitment on the BID and secret2. Then, it sets the commitment in the identity token IDToken

and stores IDToken (Line 8). Finally, it sends this token to the user (Line 9).

Protocol 2 Enrollment with IDP (IDP-centric Model)
1: U : Captures the EEG signal and extracts the feature vector
2: Computes the perceptual hash for the feature vector (Section 3.5)
3: Chooses a password
4: U ⇒ IDP : Sends the perceptual hash, the chosen password, from and to fields to the IDP
5: IDP : Generates a Salt and stores it
6: Derives secret1 and secret2 using the password and salt (Section 3.7.3)
7: Predicts the class for the given perceptual hash and generates BID (Section 3.7.4)
8: Creates the commitment and identity token IDToken (Section 3.7.5). Store token.
9: IDP ⇒ U : IDP sends IDToken to the user

Once the user receives the identity token, he or she can use it to sign-up with the Server

using Protocol 3. The user completes the required formalities based on the Server’s policies for

sign-up, and finally, presents the identity token to the Server (Line 1). The Server first verifies the

signature of the IDP on the token to make sure that nobody has tampered with the token. Then,

it verifies that the token is still valid by checking the expires field (Line 2). If both of these

conditions are satisfied, the Server completes the sign-up process and stores the token for future

use (Line 3).

Protocol 4 shows steps involved in the Authentication phase. Again, the User acquires the

EEG signals, extracts the feature vector and computes the perceptual hash (Line 1 - Line 2). It

20



Protocol 3 User sign-up with S
1: U ⇒ S : User presents the identity token to the S
2: S : Verifies IDP signature and expires field in the token to ensure the token is valid
3: Stores the token

then sends this perceptual hash, password and the other required fields to the IDP and requests

for the identity token (Line 3). The IDP retrieves the user’s salt and derives the required secrets

(Line 4 - Line 5). It then predicts the class for the perceptual hash, generates the BID, creates the

commitment and stores the commitment in the token (Line 6 - Line 7). Before sending the token to

the user, the IDP needs to verify if the user is authentic. To do that, it compares the token with the

token generated during enrollment. As the commitment created depends on the perceptual hash

and the password, the IDP can directly compare the commitment in both the tokens to decide if

the user is authentic or not. Upon successful verification, the IDP sends the generated token to

the user. The user then initiates the authentication request and sends the token to the Server (Line

9). Like before, the Server verifies the IDP signature and expires field to ensure that the token is

valid (Line 11). Upon successful validation, the User and the Server run the ZKPK Protocol. If the

ZKPK Protocol succeeds, then so does the authentication process (Line 12 - Line 15).

Protocol 4 Authenticating the User (IDP-centric Model)
1: U : Captures the EEG signal and extracts the feature vector
2: Computes the perceptual hash for the feature vector (Section 3.5)
3: U ⇒ IDP : Sends the perceptual hash, the password, from and to fields to the IDP
4: IDP : Retrieve’s the User’s Salt
5: Derives secret1 and secret2 using the password and salt (Section 3.7.3)
6: Predicts the class for the given perceptual hash and generates BID (Section 3.7.4)
7: Generates the commitment and identity token IDToken (Section 3.7.5)
8: if IDToken matches token generated during enrollment then
9: IDP ⇒ U : IDP sends IDToken to the user

10: U ⇒ S : User initiates the authentication request and sends IDToken to S
11: S : Verifies IDP signature and expires field in the token to ensure the token is valid
12: if IDP signature and expires verified successfully then
13: S and U execute ZKPK Protocol (Section 3.7.2)
14: Authentication successful if ZKPK Procotol succeeds
15: end if
16: end if
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3.8.2. User-centric Authentication Model

The IDP-centric model that we saw in the previous section has an important privacy issue.

As it is evident from the discussion therein, the user will have to request for an identity token

from the IDP every time it wants to authenticate a Server. Thus, the IDP will be aware of all the

user’s transactions and can derive private information about him or her. The User-centric model

overcomes this problem by eliminating the need of the IDP during authentication. We adopt one

such approach from [24] and tweak it so that the user gives only the perceptual hash of the feature

vectors to the IDP instead of the biometric or the feature vector.

In this model when the user enrolls with the IDP, in addition to the identity token, he or she

gets the value of the salt, a customized classification model, and a client authentication application.

It would be worthwhile to discuss the need for these three things before looking at the protocols.

• Client authentication application: This application is a standalone application which takes

care of generating the token and completing authentication phase without the intervention

of the IDP. Thus, the user can complete the authentication phase without involving the

IDP. Now, the IDP is no longer aware of the User’s transactions and will be unable to

learn any private information about the user from them.

• Salt: We discussed in Section 3.7.3 how we derive secrets from the user’s password.

These secrets are required to generate the BID and identity token (see Sections 3.7.4 and

3.7.5) during both the enrollment and authentication phases. However, in this model, the

client authentication application handles the authentication phase and requires the salt to

generate BID by deriving the secrets.

• Customized classification model: The IDP trains a classification model, and for each

user, it customizes this model before predicting a class for the perceptual hash. The

client authentication application requires this classification model to generate the BID

(see Section 3.7.4) and identity token during the authentication phase. However, giving

the original model as is could compromise the information about the other classes (users)

of IDP. A malicious user who somehow manages to get access to the classification model

on the client can try to learn information about other classes (users). To prevent this, the

22



IDP customizes the classification model by replacing the original classes with random

32-bit integers. Since the customization is different for each user, a malicious user will be

unable to learn any information about other users by analyzing the model.

Protocol 5 Enrollment with IDP (User-centric Model)
1: U : Captures the EEG signal and extracts the feature vector
2: Computes the perceptual hash for the feature vector (Section 3.5)
3: Chooses a password
4: U ⇒ IDP : Sends the perceptual hash, the chosen password, from and to fields to the IDP
5: IDP : Generates a Salt
6: Derives secret1 and secret2 using the password and salt (Section 3.7.3)
7: Predicts the class for the given perceptual hash and generates BID (Section 3.7.4)
8: Creates the commitment and identity token IDToken (Section 3.7.5)
9: IDP ⇒ U : IDP sends IDToken, Salt, Customized classification model and Client authenti-

cation application to the user

Protocol 5 shows the Enrollment phase in this model. As can be seen, it is almost identical

to Enrollment phase in the IDP-centric model (see Protocol 2). In the IDP-centric model, we

use both k-NN and SVM for predicting the class. However, in this authentication model, we can

only use SVM. k-NN requires all the instances (records of the other users) to predict the class

label. For a customized k-NN classifier to work on the user’s device or computer, we will need

to send records of the each user to every other user. This is not feasible as the IDP cannot risk

compromising the privacy of the other class labels, and also the user might have limited processing

and storage resources. At the end of the enrollment phase, in addition to the identity token, the IDP

sends the generated salt, customized classification model and the client authentication application

to the user. Since the client authentication application generates the token for authentication, the

IDP no longer needs to store this token. Upon receiving the identity token, the user follows the

Protocol 3 discussed in Section 3.8.1 to complete the sign-up at the Server.

Protocol 6 shows steps involved in the Authentication phase. Again, the User acquires

the EEG signals, extracts the feature vector and computes the perceptual hash (Line 1 - Line 2).

The client authentication application derives the required secrets using the user’s password and

salt (Line 3). It then uses the customized classification model to predict the class for the given

perceptual hash. Next, it generates the BID, creates the commitment and stores the commitment in
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Protocol 6 Authenticating the User (User-centric Model)
1: U : Captures the EEG signal and extracts the feature vector
2: Computes the perceptual hash for the feature vector (Section 3.5)
3: Using password and salt (received from IDP), derives secret1 and secret2 (Section 3.7.3)
4: Predicts the class for the given perceptual hash and generates BID (Section 3.7.4)
5: Generates the commitment and identity token IDToken (Section 3.7.5)
6: U ⇒ S : User initiates the authentication request and sends IDToken to S
7: S : Verifies IDP signature and expires field in the token to ensure the token is valid
8: if IDP signature and expires verified successfully then
9: S and U execute ZKPK Protocol (Section 3.7.2)

10: Authentication successful if ZKPK Procotol succeeds
11: end if

the token (Line 4 - Line 5). Afterwards, it initiates an authentication request and sends the token to

the Server (Line 9). The Server verifies the IDP signature and expires field to ensure that the token

is valid (Line 11). If the token is valid, the User and the Server run the ZKPK Protocol to complete

the authentication process. The authentication is successful if the ZKPK Protocol succeeds (Line

12 - Line 15).
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CHAPTER 4

EXPERIMENTS AND RESULTS

In this chapter, we first discuss the datasets used to evaluate our approach followed by the

experimental design, and finally, the results of the experiments.

4.1. Datasets

To evaluate our approach for authentication using EEG signals, we use three publicly avail-

able datasets: EEG Alcohol, EEG Motor/Imagery, and EEG SSVEP Dataset III. All the signal

processing is done using MATLAB [36].

4.1.1. EEG Alcohol Dataset

The EEG Alcohol [17] dataset, available at the UCI Machine Learning Repository [31],

was the result of an extensive study to examine genetic predisposition to alcoholism using EEG.

The EEG signals were collected using a device with 64 electrodes placed on the subject’s scalp

and sampled at 256 Hz (3.9 msec epoch) for 1 second. There are two categories of subjects viz.,

alcoholic and control. For collecting the data, each subject was exposed to a single stimulus (S1)

or two stimuli (S1 and S2) using pictures of objects from the 1980 Snodgrass and Vanderwart

picture set [57]. In the case of two stimuli, the pictures shown are in a matched condition (S1 =

S2) or a non-matched condition (S1 6= S2). The dataset has 122 subjects and 120 trials for each

subject based on different stimuli. To evaluate our approach we consider a subset of this dataset

consisting of 70 subjects. Table A.1 lists the subjects present in our subset.

4.1.2. EEG Motor/Imagery Dataset

The EEG Motor/Imagery [54] dataset is available at PhysioNet [50] and has over 1500

one and two minute EEG recordings from 109 subjects. The recording of EEG signals is from

64-channels using the BCI2000 system [12] while each subject performs different motor/imagery

tasks. Each subject performs two one-minute baseline runs (one with eyes open and one with eyes

closed) and three two-minute runs of each of four tasks described below.
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(1) In task 1, a target appears on either the left or the right side of the screen. The subject

responds by opening and closing the corresponding fist until the target disappears. Then

the subject relaxes.

(2) In task 2, a target appears on either the left or the right side of the screen. The subject

responds by imagining opening and closing the corresponding fist until the target disap-

pears. Then the subject relaxes.

(3) In task 3, a target appears on either the top or the bottom of the screen. If the target is at

the top of the screen, the subject responds by opening and closing both fists. If the target

is at the bottom, the subject responds by opening and closing both feet until the target

disappears. Then the subject relaxes.

(4) In task 4, a target appears on either the top or the bottom of the screen. If the target is at

the top of the screen, the subject responds by imagining opening and closing both fists.

If the target is at the bottom, the subject responds by imagining opening and closing both

feet until the target disappears. Then the subject relaxes.

In all, each subject performs 14 experimental runs. The EEG signals are sampled at 160 Hz.

We can summarize the 14 experimental runs as below:

(1) Baseline - with eyes open

(2) Baseline - with eyes closed

(3) Task 1 (opening and closing left or right fist)

(4) Task 2 (imagining opening and closing left or right fist)

(5) Task 3 (opening and closing both fists or both feet)

(6) Task 4 (imagining opening and closing both fists or both feet)

(7) Task 1

(8) Task 2

(9) Task 3

(10) Task 4

(11) Task 1

(12) Task 2
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(13) Task 3

(14) Task 4

The data is available in EDF+ format, and we use rdsamp in the PhysioToolkit [50] soft-

ware to extract the data in text format. Each original data file has a corresponding annotation file

with the extension .event and each annotation has one of three codes viz., T0, T1 or T2:

• T0 corresponds to rest.

• T1 corresponds to onset of motion (real or imagined) of left fist (in runs 3, 4, 7, 8, 11, and

12) and both fists (in runs 5, 6, 9, 10, 13 and 14).

• T2 corresponds to onset of motion (real or imagined) of right fist (in runs 3, 4, 7, 8, 11,

and 12) and both feet (in runs 5, 6, 9, 10, 13 and 14).

The annotation file has useful information like the event code, the time and sample when

the event started and the event’s duration. We convert its data into text format using rdedfann.

Moreover, we extract each event T0, T1 and T0 as a separate record. Events T1 and T2 relate to

a real or imagined motion which is in response to some visual stimulus whereas T0 relates to the

rest state. Since, we are interested in VEP signals (EEG signals in response to a visual stimulus),

we only consider events T1 and T2. Also, to evaluate our approach, we randomly select a subset

of the dataset consisting of 27 subjects. Table A.2 lists the subjects present in our subset.

4.1.3. EEG SSVEP Dataset III

The MAMEM SSVEP Dataset III [2] has EEG signals acquired from 11 subjects using

14 channels while the subjects were executing a Steady State VEP (SSVEP)-based experimental

protocol. The EEG signals are captured using the Emotiv [6] EPOC deadset with a sampling rate

of 128 Hz. The stimuli of the experiment are five simultaneously flickering violet boxes on a

computer screen with each box flickering at a different frequency (6.66, 7.5, 8.57, 10.0, 12.0 Hz).

In a trial, the subject focuses on a flickering box indicated by a yellow arrow for 5 seconds and

then rests for next 5 seconds. The experiment for each subject is initiated by an adaptation period

of 100 seconds which has 10 trials. This is followed by 5 identical sessions having two parts and

overall 25 trials. The first part has 12 trials whereas the second part has 13 trials and both parts
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are separated by a 30 second interval. From this data, we extract the 5 seconds intervals where the

user focuses on the stimulus and consider this a one signal. Thus, we have 135 signals for each

subject (10 signals from adaptation + 5 sessions * 25 signals from each session).

Dataset Subjects Total Signals Signals per Subject

EEG Alcohol 70 4827 ≈69 (largely vary per subject)

EEG Motor/Imagery 27 4881 ≈180

EEG SSVEP III 11 1485 135

TABLE 4.1. Summary of EEG datasets

4.1.4. Preprocessing

EEG signals may contain artifacts, i.e., the electrical activity resulting from activities such

as eye motion, eye blinking, etc. To detect and eliminate these artifacts, we employ an amplitude

threshold filtering technique. We discard VEP signals having magnitude over 50 µV as they are

assumed to be contaminated [56] [65]. We remove artifacts only from the EEG Alcohol dataset.

Next, to extract the γ band from the EEG signals, we further process the artifact-free signals

following the steps in [65]. We use a 10th order Butterworth digital filter to filter the signals with a

30-50 Hz passband. To cancel the non-linearity of this filter, we use forward and reverse filtering.

Finally, we discard the first and last 20 samples as they do not represent an appropriately filtered

signal. In the EEG Alcohol dataset, after preprocessing and dropping 40 samples (first and last 20),

each signal has 216 samples. Also, depending on the number of EEG channels selected initially,

we will have CT signals (see Table 3.3). We have a total of 4827 signals for 70 subjects in this

dataset. The number of signals per subject varies largely. In the EEG Motor/Imagery dataset, as

per the annotation file, each event lasts for 4.1 seconds. Since the sampling rate is 160, we consider

640 samples (i.e., samples for 4 seconds). After preprocessing, each signal has 600 samples as we

discard 40 samples (first and last 20). Also, depending upon the number of EEG channels selected

initially, we will have CT signals (see Table 3.3 or section 3.3). In this dataset, we have a total of

4881 signals from 27 subjects. Unlike the EEG Alcohol dataset, the number of signals per subject

is rather uniform. All but three subjects have 180 signals each, and the average is still ≈180

signals per subject. Similarly, in the SSVEP Dataset III, each signal has 640 samples (5 seconds
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* 128 samples/second) that are reduced to 600 after preprocessing. Also, since each subject has

135 signals, and there are 11 subjects, we have a total of 1485 signals in this dataset. Table 4.1

summarizes the details about the EEG Alcohol, EEG Motor/Imagery and SSVEP Dataset III.

4.2. Experimental Design

We implement the User, IDP and Server programs in JAVA SE 1.8 using an open source

crypto library Qilin [38] and assume all communication happens over secure communication chan-

nels. We conduct the experiments on a desktop machine with Intel Core(TM) i7-4770 CPU @

3.40 GHz processor, 16 GB RAM and Windows 7 Professional 64 bit. We use Weka 3.6 [26]

implementations of SMO-SVM and IBk (k-NN) for training and 10-fold cross validation (strat-

ified sampling) for evaluation. In each iteration, we use 8 folds as train set and 1 fold each as

validation and test set. For k-NN, we experiment with k = 1 and use the default settings in Weka.

For SVM, we experiment with Poly kernel and RBF kernel. For Poly kernel, we vary the expo-

nent E = [1, 2]. For RBF kernel, we vary γ = [0.01, 0.1, 0.05, 1.0]. For both kernels, we vary

C = [0.01, 0.1, 1.0, 5.0, 10.0]. We choose the hyper-parameters that give the best performance on

the validation set and report their results on the test set. We present F1 score (F1) and Accuracy

(Acc.) to measure the performance of the classifiers and False Acceptance Rate (FAR) and False

Rejection Rate (FRR) to gauge the performance of the authentication system.

Recall gives the proportion of samples or records that were classified as class x, among all

samples or records that truly belong to class x. It is calculated as TP
TP+FN

where TP is True Posi-

tive, and FN is False Negative. Precision is the proportion of the records which actually have class

x among all those records that were classified as class x. The F-Measure or F1 score is a measure

that takes into account both precision and recall and is computed as 2×(Prec.)×(Rec.)
(Prec.)+(Rec.)

[4]. FAR and

FRR are commonly used metrics to compare the performance of a biometric authentication sys-

tem. FAR is the measure of the likelihood that the biometric authentication system will incorrectly

accept an unauthorized user’s access attempt [16]. We calculate FAR as Impostors Accepted
Total Impostors

. FRR

is the measure of the likelihood that the biometric authentication system will incorrectly reject an

authorized user’s access attempt [3]. We calculate FRR as Genuines Rejected
Genuine Users

.
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4.2.1. FAR and FRR Calculation

We compute the values for FAR and FRR for each class and then calculate the weighted

average to get the FAR and FRR values for the authentication system, from the confusion matrix

generated by Weka. We show these calculations for a small dataset having four classes (a, b, c and

d) and 248 instances in Table 4.2. In the table, the first five rows and five columns represent the

confusion matrix. For each class:

(1) The sum of the row elements gives the total instances of that class Total. These are also

the genuine users (G) of that class. Ex. For class a, Total = G = (24+12+0+0) = 36.

(2) The diagonal elements denote the number of instances that are genuine and accepted

(GA). Ex. For class a, GA = 24.

(3) The sum of row elements except the diagonal element indicates the instances that are

genuine but were rejected (GR). Ex. For class a, GR = (12 + 0 + 0) = 12.

(4) The sum of column elements except the diagonal element denotes the instances that are

impostors but were accepted (IA). Ex. For class a, IA = (8 + 1 + 0) = 9.

(5) Instances of all the other classes will be impostors and their sum will be Total Impostors

(I). Ex. For class a, impostors will be the sum of all instances of class b, c and d i.e.,

I = (55 + 55 + 102) = 212.

(6) We calculate the FAR as IA
I

and FRR as GR
G

. Ex. For class a, FAR = 9
212

= 0.0425,

and FRR = 12
36

= 0.3333.

(7) We then calculate the weighted FAR, Wt FAR = FAR × ( Total Instances of Class
Total Instances in Dataset

) =

0.0425×( 36
248

) = 0.0062 and weighted FRR,WtFRR = FRR×( Total Instances of Class
Total Instances in Dataset

) =

0.3333× ( 36
248

) = 0.0484.

Once we have the weighted FAR and FRR values for each class, we sum the respective

values to compute the FAR and FRR for the authentication system. For the authentication system,

FAR = (0.0062 + 0.0391 + 0.0057 + 0) = 0.0509, and FRR = (0.0484 + 0.0524 + 0.0887 +

0.0040) = 0.1935.
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a b c d ← Classified as Total I GA GR IA FAR FRR Wt FAR Wt FRR

24 12 0 0 a 36 212 24 12 9 0.0425 0.3333 0.0062 0.0484

8 42 5 0 b 55 193 42 13 34 0.1762 0.2364 0.0391 0.0524

1 21 33 0 c 55 193 33 22 5 0.0259 0.4 0.0057 0.0887

0 1 0 101 d 102 146 101 1 0 0 0.0098 0 0.0040

TABLE 4.2. Calculation of FAR and FRR

4.2.2. Experiments on Feature Extraction Techniques

We carry out different experiments for each feature extraction technique to improve the

overall accuracy of our approach. For both the features extraction techniques, i.e., PSPRT and

PSD, we experiment by selecting 8 and 17 EEG channels. In some cases, we also experiment with

26 EEG channels when extracting features using PSPRT only. As using 26 EEG channels, PSD

would yield a feature vector with 7020 features and would increase the complexity of training the

classifiers. However, as we have EEG signals from 14 channels in the SSVEP Dataset III, we

experiment only with 14 channels. As discussed in Section 3.4.2, we can vary the window and

overlap while calculating the PSD’s features using pwelch. In the Table 4.3, we show the different

combinations we experiment with on both the datasets. The entries are in the form [window,

overlap] and samples column indicates the number of samples present in the EEG signal (see

preprocessing in Section 4.1.4).

Dataset Samples Combinations

EEG Alcohol 216 [54, 27], [54, 0], [108, 54], [108, 0]

EEG Motor/Imagery 600 [300, 150], [300, 75], [300, 0], [150, 75], [150, 0], [75, 40], [75, 0]

EEG SSVEP III 600 [300, 150], [300, 75], [300, 0], [150, 75], [150, 0], [75, 40], [75, 0]

TABLE 4.3. Combinations of window and overlap for calculating PSD’s features

4.2.3. Experiments on Perceptual Hashing

Once we have the feature vector, we compute the perceptual hash. Now, as discussed in

Section 3.5, we compute the perceptual hashes in two ways:

(1) Using the entire feature vector as a segment
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(2) Dividing the feature vector into two segments with at least 50% features in the first seg-

ment.

In the latter case, the number of samples depends on the number of EEG channels chosen and the

feature extraction technique (see Table 3.3). Following are the sets of segment values we choose

for our experiments. Note that (x, y) indicates x samples in the first segment and y samples in the

second segment:

• 8 EEG Channels: PSPRT - (18, 18), PSD - (360, 360)

• 14 EEG Channels: PSPRT - (50, 55), PSD - (1050, 1050)

• 17 EEG Channels: PSPRT - (80, 73), PSD - (1530, 1530)

• 26 EEG Channels: PSPRT - (180, 171)

4.2.4. Experiments on the Overall Architecture

We first look at how perceptual hashing impacts the classifier training time and later look

at how perceptual hashing affects the protocol execution time and bandwidth consumption in both

the models, i.e., IDP-centric model and User-centric model.

4.2.5. Baseline

We perform different experiments to see the impact of perceptual hashing on the perfor-

mance of the system, training time of the classifiers, protocol execution time and bandwidth con-

sumption. To be able to study the effect of perceptual hashing on these, we run each experiment

without perceptually hashing the feature vectors and use those results as baselines.

4.2.6. Terminology

We use the following terms in the tables and discussions of our results:

• FV: Feature vector extracted from EEG signals.

• HFV100: Hash of the FV computed by considering the entire FV as a single segment.

• HFV50: Hash of the FV computed by dividing FV into two segments with the first seg-

ment having at least 50% of the features.

• Ch.: Number of EEG channels.

• H-Params: Hyper-parameters.
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• P, E e, C c: Poly kernel, Exponent and C-parameter.

• R, C c, γ g: RBF kernel, C-parameter and γ.

4.3. Results

4.3.1. Impact of Perceptual Hashing on Authentication

First, we discuss the effect of perceptual hashing PSPRT’s features that we use for training

the SVM and k-NN classifiers on both the datasets. Followed by this we study the effect of per-

ceptual hashing PSD’s features that we use for training both classifier on both the datasets.

Ch. Features H-Params FAR FRR F1 Acc. (%)

EEG Alcohol Dataset

8
FV P, E 1, C 10.0 0.001 0.0723 0.928 92.77

HFV100 P, E 2, C 0.01 0.0061 0.376 0.614 62.40
HFV50 R, C 1.0, γ 0.1 0.0068 0.4052 0.583 59.48

17
FV P, E 1, C 10.0 0.0005 0.0342 0.966 96.58

HFV100 R, C 1.0, γ 0.05 0.0011 0.0849 0.917 91.51
HFV50 R, C 1.0, γ 0.01 0.0013 0.0885 0.912 91.15

26
FV R, C 1.0, γ 0.1 0.0003 0.0186 0.981 98.14

HFV100 P, E 1, C 0.01 0.0004 0.0298 0.97 97.02

HFV50 P, E 1, C 0.01 0.0004 0.0271 0.973 97.29

EEG Motor/Imagery Dataset

8
FV R, C 10.0, γ 1.0 0.0008 0.0213 0.979 97.87

HFV100 R, C 5.0, γ 0.1 0.0152 0.393 0.6 60.7

HFV50 R, C 0.1, γ 0.01 0.0153 0.3915 0.598 60.85

17
FV R, C 10.0, γ 0.01 0.0005 0.0117 0.988 98.67

HFV100 R, C 10.0, γ 0.01 0.0013 0.0332 0.967 96.68

HF50 R, C 10.0, γ 0.01 0.0013 0.0328 0.967 96.72

26
FV R, C 10.0, γ 0.05 0.0003 0.0084 0.992 99.16

HFV100 R, C 10.0, γ 0.05 0.0013 0.0332 0.967 96.68

HFV50 R, C 10.0, γ 0.05 0.0013 0.0322 0.968 96.78

EEG SSVEP Dataset III

14
FV R, C 10.0, γ 0.05 0.0037 0.037 0.963 96.30

HFV100 R, C 10.0, γ 0.05 0.0098 0.0976 0.903 90.24

HF50 R, C 10.0, γ 0.05 0.009 0.0896 0.911 91.04
TABLE 4.4. Impact of perceptual hashing PSPRT’s features on authentication (SVM)
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Impact of perceptually hashing PSPRT’s features: Table 4.4 shows the impact of perceptual hash-

ing on authentication using SVM. On the EEG Alcohol dataset, for 8 EEG channels, the accuracy

drops significantly (by about 30%) when we train the classifier on the perceptual hashes of the

feature vectors (HFV100 and HFV50), and on the EEG Motor/Imagery dataset, the accuracy drops

by around 37%. Note that PSPRT yields a feature vector having just 36 features. Perhaps, per-

ceptually hashing this feature vector results in the loss of the pattern that distinguishes one subject

from the other. Accuracy on HFV100 is better than HFV50 for the EEG alcohol dataset, but the

accuracy on them is more or less similar for the EEG Motor/Imagery dataset. To verify that our

reasoning for the drop in the accuracy was in fact due to fewer features, we ran some experiments

with 17 EEG channels, and in this case, we have 153 features (see Table 3.4). As you can see

from the Table 4.4, the accuracy now drops by about 5% when we perceptually hash the signal.

On the EEG Motor/Imagery dataset, the drop in accuracy is almost 2%. With 26 EEG channels,

this drop reduces to around 1% on the EEG Alcohol dataset. However, on the EEG Motor/Imagery

dataset, we do not observe any significant improvement as compared to the accuracy on HFV of 17

EEG channels. On the SSVEP Dataset III, with just 14 channels, the accuracy drops only by about

6% when we perceptually hash the EEG signals. Additionally, it can be seen that increasing the

channels improves the accuracy of the classifier on both FV and HFV. Thus, it can be said that our

reasoning for the drop in accuracy is plausible. In the following discussion, as will be seen, this

applies to k-NN as well. With more EEG channels (14, 17 and 26), performance on HFV100 and

HFV50 is more or less similar. Additionally, as we increase the channels, FAR and FRR decrease,

which indicates the authentication system is performing better.

We next compare the performance of k-NN on both the datasets. Please refer to Table 4.5.

Just like SVM, even k-NN performs poorly when it is trained on HFV from 8 EEG channels. With

14 EEG channels, on the EEG SSVEP Dataset III, we see an improvement in the performance of

the classifiers when trained on perceptual hashes. Additionally, as we increase the EEG channels,

the drop in the accuracy reduces. This observation is constant over both the datasets. However,

on the EEG Motor/Imagery Dataset, the accuracy of the classifier trained on HFV reduces as we

increase the channels from 17 to 26. The reason behind this is not clear, but we can say that with
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Ch. Features FAR FRR F1 Acc. (%)

EEG Alcohol Dataset

8
FV 0.0029 0.186 0.811 81.4

HFV100 0.0072 0.4313 0.524 54.07

HFV50 0.0076 0.4485 0.54 55.15

17
FV 0.0012 0.0704 0.929 92.96

HFV100 0.0023 0.1452 0.853 85.48
HFV50 0.0024 0.1496 0.848 85.04

26
FV 0.0006 0.0358 0.964 96.42

HFV100 0.0011 0.0671 0.932 93.29

HFV50 0.001 0.0634 0.936 93.66

EEG Motor/Imagery Dataset

8
FV 0.0028 0.0711 0.929 92.89

HFV100 0.0158 0.4067 0.59 59.33

HFV50 0.0156 0.4001 0.595 59.99

17
FV 0.001 0.0256 0.974 97.44

HFV100 0.0022 0.0574 0.943 94.26
HFV50 0.0023 0.0598 0.94 94.02

26
FV 0.0009 0.0236 0.976 97.64

HFV100 0.0025 0.0645 0.935 93.55

HFV50 0.0024 0.0615 0.938 93.85

EEG SSVEP Dataset III

14
FV 0.0085 0.0848 0.916 91.52

HFV100 0.0178 0.1785 0.817 82.15

HF50 0.0156 0.1562 0.84 84.38
TABLE 4.5. Impact of perceptual hashing PSPRT’s features on authentication (k-NN)

PSPRT as a feature extraction technique, we do not see a significant improvement in the perfor-

mance of the classifier and the authentication system as we increase the channels from 17 to 26.

Also, for k-NN, we do not see any significant difference between accuracy of the classifiers trained

on HFV100 and HFV50 on the EEG Alcohol and EEG Motor/Imagery datasets. However, on the

EEG SSVEP Dataset III, the performance on HFV50 is better than HFV100.

Impact of perceptually hashing PSD features: Now let us examine the effect of perceptual hashing

PSD’s features to train the classifiers on both the datasets. As already discussed, we experiment

with 8, 14 and 17 EEG channels only. To compute the PSD features we can vary the window and
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overlap parameters passed to pwelch (see Section 3.4.2). We looked at the performance of the

classifiers on all the datasets by varying these parameters and chose the one that gives us the best

performance. Refer to Table 4.3 for these combinations.
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FIGURE 4.1. Accuracy of classifiers trained on PSD’s features computed from dif-
ferent window and overlap - EEG Alcohol

Classifier Measures [54, 27] [54, 0] [108, 54] [108, 0]

SVM
Acc. (%) 82.12 77.52 81.83 76.96

F1 0.822 0.776 0.822 0.775

k-NN
Acc. (%) 68.95 59.86 60.78 52.47

F1 0.683 0.59 0.594 0.511

TABLE 4.6. Performance of PSD’s features on different combinations of window
and overlap - EEG Alcohol

On the EEG Alcohol dataset, both the classifiers perform the best when trained on the HFV

of PSD features computed with a window of 54 and overlap of 27. Figure 4.1(a)-(b) shows the

performance of SVM and k-NN, respectively, on different combinations of window and overlap.

Even the F1 score for this combination was the best among other combinations (Refer to Table

4.6).

Choosing the best combination on the EEG Motor/Imagery dataset was not that straight

forward. Figure 4.2(a)-(b) show the accuracy of SVM and k-NN, respectively, on different com-

binations. Whereas Table 4.8 compares the F1 scores of the classifiers trained on HFV of PSD’s
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FIGURE 4.2. Accuracy of classifiers trained on PSD’s features computed from dif-
ferent window and overlap - EEG Motor/Imagery

Classifier Measures [300, 150] [300, 75] [300, 0] [150, 75] [150, 0] [75, 40] [75, 0]

SVM Acc. (%) 84.33 80.39 79.45 87.07 83.55 86.19 82.16
F1 0.843 0.804 0.79 0.871 0.836 0.863 0.822

k-NN Acc. (%) 41.59 35.01 37.06 54.01 46.08 62.22 53.47
F1 0.416 0.351 0.371 0.539 0.461 0.624 0.537

TABLE 4.7. Performance of PSD’s features on different combinations of window
and overlap - EEG Motor/Imagery

features of these combinations. As can be seen, the F1 score of SVM trained on the HFV of the

combination [150, 75] is slightly better than [75, 40]. However, we chose [75, 40] for two reasons:

(1) Accuracy of the SVM when trained on the FV i.e., PSD’s features of this combinations has

an accuracy of 96.93% and an F1 score of 0.969, which is better than all other combinations we

experimented with; (2) F1 score of k-NN when trained on the HFV of this combination’s PSD’s

features is the best. On the SSVEP Dataset III, it can be clearly seen from Figure 4.3(a)-(b) that

the HFV of the combination of [75, 40] outperforms the others. Next, we will discuss in detail the

results of these combinations i.e., window of 54 and overlap of 27 on the EEG Alcohol dataset,

and window of 75 and overlap of 40 on the EEG Motor/Imagery dataset and SSVEP Datatset

III. Also, since these combinations performed the best on 8 EEG channels, we use them for our

experiments on 17 EEG channels on the EEG Alcohol and EEG Motor/Imagery datasets.

Table 4.9 presents the performance of SVM trained on PSD’s features (FV) and their per-
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FIGURE 4.3. Accuracy of classifiers trained on PSD’s features computed from dif-
ferent window and overlap - EEG SSVEP Dataset III

Classifier Measures [300, 150] [300, 75] [300, 0] [150, 75] [150, 0] [75, 40] [75, 0]

SVM
Acc. (%) 91.38 88.22 89.43 92.93 90.84 94.95 92.32

F1 0.915 0.884 0.896 0.93 0.909 0.95 0.924

k-NN
Acc. (%) 62.56 55.49 56.43 75.96 70.84 83.30 77.98

F1 0.598 0.523 0.536 0.743 0.689 0.824 0.765

TABLE 4.8. Performance of PSD’s features on different combinations of window
and overlap - EEG SSVEP Dataset III

ceptual hashes (HFV) on both the datasets. For 8 EEG channels, even here the accuracy drops

when SVM is trained on HFVs. On the EEG Alcohol dataset, the accuracy drops by about 10%,

and on the EEG Motor/Imagery dataset, the accuracy drops by around 9%. However, the drop in

the accuracy is not as severe as the drop we saw in the case of HFVs of PSPRT’s features. With

PSD, there are 720 features after feature extraction, which is far greater than 36 features in the case

of PSPRT (see Table 3.3). Thus, even after perceptually hashing them, the hashes still retain some

unique pattern that helps in identifying a subject. With 17 channels the accuracy of the classifier

when they are trained on HFV again improves. As can be seen from Table 4.9, on the EEG Alcohol

dataset, the drop in accuracy is about 2.5% (95.83% on FV and 93.47% on HFV). Interestingly,

on the EEG Motor/Imagery dataset, the accuracy on the FV (98.98%) and the HFV50 (98.46%) is

very close at it drops by 0.52%. Similarly, on the EEG SSVEP Dataset III, with just 14 channels,
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the accuracy on HFV and FV is more or less similar. Furthermore, except in the case of 8 EEG

channels on the EEG Alcohol dataset, where performance on HFV100 is better than HFV50, in all

other cases their performance is comparable.

Ch. Features H-Params FAR FRR F1 Acc. (%)

EEG Alcohol Dataset (window = 54, overlap = 27)

8
FV P, E 1, C 0.1 0.0013 0.0899 0.91 91.01

HFV100 P, E 1, C 0.01 0.0026 0.1788 0.822 82.12
HFV50 P, E 1, C 0.01 0.0027 0.1894 0.812 81.06

17
FV R, C 10.0, γ 0.01 0.0006 0.0417 0.959 95.83

HFV100 P, E 2, C 0.1 0.0007 0.0663 0.938 93.37

HFV50 P, E 2, C 10.0 0.0007 0.0653 0.939 93.47

EEG Motor/Imagery Dataset (window = 75, overlap = 40)

8
FV R, C 5.0, γ 0.05 0.0012 0.0307 0.969 96.93

HFV100 R, C 10.0, γ 0.01 0.0054 0.1405 0.86 85.95

HFV50 R, C 10.0, γ 0.01 0.0053 0.1381 0.863 86.19

17
FV R, C 10.0, γ 0.01 0.0004 0.0102 0.99 98.98

HFV100 P, E 2, C 10.0 0.0007 0.017 0.983 98.3

HFV50 P, E 2, C 10.0 0.0006 0.0154 0.985 98.46

EEG SSVEP Dataset III (window = 75, overlap = 40)

14
FV P, E 2, C 0.01 0.0049 0.0492 0.95 95.08

HFV100 P, E 2, C 10.0 0.0051 0.0505 0.95 94.95
HFV50 P, E 2, C 10.0 0.0055 0.0545 0.946 94.55

TABLE 4.9. Impact of perceptual hashing PSD’s features on authentication (SVM)

Finally, we discuss the performance of k-NN when it is trained on the HFVs of PSD’s

features. Please refer to Table 4.10. For 8 EEG channels, on the EEG Alcohol dataset, we get an

accuracy of 78.39% when the classifier is trained on FV. Although this combination of window

and overlap gives the best result amongst the combination we experimented with, it is still poor.

The accuracy further worsens (to 68.95%) when we train k-NN on the HFVs. Similarly, on the

EEG Motor/Imagery dataset, the accuracy is 88.24% on FV, but drops to 62.22% on HFVs. Again,

with 17 EEG channels, the performance of this classifier improves on both the datasets. However,

the drop in the accuracy after perceptually hashing the signals is still significant as compared to the

drop in accuracy of SVM when it is trained on HFV of 17 EEG channels. Also, the performance

on HFV100 is better than HFV50 in two cases viz., 8 EEG channels on EEG Alcohol dataset and
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Ch. Features FAR FRR F1 Acc. (%)

EEG Alcohol Dataset (window = 54, overlap = 27)

8
FV 0.0034 0.2161 0.781 78.39

HFV100 0.0047 0.3105 0.683 68.95
HFV50 0.0052 0.3437 0.647 65.63

17
FV 0.0014 0.0897 0.91 91.03

HFV100 0.002 0.1298 0.868 87.02

HFV50 0.0019 0.1277 0.869 87.23

EEG Motor/Imagery Dataset (window = 75, overlap = 40)

8
FV 0.0046 0.1176 0.883 88.24

HFV100 0.0149 0.3835 0.62 61.65

HFV50 0.0146 0.3778 0.624 62.22

17
FV 0.0015 0.0389 0.961 96.11

HFV100 0.0039 0.1024 0.889 89.76
HFV50 0.0043 0.1115 0.899 88.85

EEG SSVEP Dataset III (window = 75, overlap = 40)

14
FV 0.0084 0.0835 0.916 91.65

HFV100 0.0174 0.1737 0.814 82.63

HFV50 0.0167 0.167 0.824 83.3
TABLE 4.10. Impact of perceptual hashing PSD’s features on authentication (k-NN)

17 EEG channels on the EEG Motor/Imagery dataset. In the remaining two cases the performance

on them is more or less similar.

Thus, we see that as we increase the EEG channels, the performance of the system also

increases. Both the accuracy and the F1 score of the classifiers trained on FV and HFV become

comparable. Moreover, FAR and FRR also reduce as we increase the channels. Note that the

increase in the EEG channels results in an increase in the number of features. Ex. For 17 EEG

channels, PSPRT yields just 153 features whereas PSD yields 3060 features. Although the increase

in the number of features does not affect the authentication phase, it does impact the classifier train-

ing time, which we discuss in Section 4.3.2. Also, the performance of the classifiers on HFV100

and HFV50 is comparable in most of the cases.

Comparison of SVM and k-NN on PSPRT and PSD: It would be interesting to see how the clas-

sifiers perform when trained on our feature extraction techniques. This comparison also helps us
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compare the feature extraction techniques. We first compare the performance of the classifiers and

later compare the feature extraction techniques based on the performance of the classifiers. Also,

we look at the accuracy and F1 score of the classifiers trained on FV and HFV. Since, we have two

hashes, i.e., HFV100 and HFV50, we choose the one that gives the best performance.
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FIGURE 4.4. Comparison of SVM and k-NN on PSPRT and PSD (8 channels)
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FIGURE 4.5. Comparison of SVM and k-NN on PSPRT and PSD (17 channels)

When we consider 8 EEG channels, the accuracy of SVM on both the datasets is far su-

perior to k-NN on both the datasets (see Figure 4.4(a)-(b)). However, when we consider 17 EEG

41



channels, although the accuracy achieved by SVM is greater that k-NN on both the datasets, the

difference is not as large as the difference we saw with 8 EEG channels (see Figures 4.5(a)-(b)).

Similarly, on the SSVEP Dataset III, SVM clearly outperforms k-NN (see Figure 4.6(a)). Note

that, we are more concerned with the performance of the classifiers when they are trained on the

perceptual hashes, and hence, we conclude that SVM is more suitable for our approach.
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FIGURE 4.6. Comparison of SVM and k-NN on PSPRT and PSD (14 channels)

Next, we compare the feature extraction techniques using the performance of the classi-

fiers. Figure 4.4(a)-(b) shows this comparison, for 8 EEG channel data, on the EEG Alcohol and

EEG Motor/Imagery dataset, respectively. As can be seen, for both the datasets, the classifiers

perform better when they are trained on the FV extracted using PSPRT. However, the performance

of the classifiers deteriorates when they are trained on the HFV of PSPRT’s features. However,

the decline in the accuracy of classifiers trained on HFVs of PSD’s features is lower as compared

to HFV of PSPRT’s features. Since we are concerned about the accuracy when the classifiers

are trained on perceptual hashes, we conclude that PSD performs better than PSPRT for 8 EEG

channels. Figure 4.5(a)-(b) show the comparison on the EEG Alcohol and EEG Motor/Imagery

dataset, respectively, when we consider data from 17 EEG channels. As can be seen from the

figures, the performance of the classifier on HFV of PSPRT’s features and HFV of PSD’s features

is more or less similar. However, the performance of SVM is slightly better on both the datasets
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when it is trained on the HFV of PSD’s features. Hence, yet again, PSD is better suited for our

approach. Refer Figure 4.6(a) for a similar comparison on the EEG SSVEP Dataset III. As it can

be seen, SVM trained on HFV of PSD’s features clearly outperforms the SVM trained on HFV of

PSPRT’s features. However, although the performance of k-NN trained on the PSPRT’s features

performs marginally better than the k-NN trained on PSD’s features, k-NN still performs poorly

as compared to SVM. Therefore, on the basis of these experiments, SVM trained on the perceptual

hashes of PSD features gives the best performance.

4.3.2. Impact of Perceptual Hashing on Classifier Training Time

Table 4.11 shows the time it takes to train the SVM classifier on features of PSPRT and

PSD on all the datasets. Since, we have two hashes, i.e., HFV100 and HFV50, we present the

training time for the classifier and the corresponding kernel that has the best performance. As can

be seen from the table, for both PSPRT and PSD, training the classifier on HFV takes more time

than training it on FV. However, on the EEG Motor/Imagery dataset, the training time on FV of

PSD’s features from 17 EEG channels is 53.51 seconds whereas the training time on HFV is 53.94

seconds. The SVM classifier tries to achieve maximum separation between the hyperplanes. In

all previous cases, making this separation might have been difficult, which directly impacts the

training time. However, in this case, making the separation might not have been as difficult. Also,

it takes less time to train SVM on features extracted using PSPRT than it takes to train on features

extracted using PSD. For 8 EEG channels, note that PSPRT yields only 36 features as opposed to

720 features yielded by PSD. Similarly, when we consider 17 EEG channels, with PSPRT we just

have 153 features while PSD yields 3060 features. Since PSD has more features as compared to

PSPRT, training the SVM on the features of PSD takes longer. Finally, note that the time taken

to train the SVM classifier on the EEG SSVEP Dataset III is the least as it is a small dataset as

compared to the other datasets.

For k-NN, however, the training time was always under 1 second irrespective of the fea-

ture extraction technique. Moreover, training the classifier directly on the feature vectors or their

perceptual hashes also did not impact the training time as it was still under 1 second in both these

cases. A possible reason for this could be the relatively small size of the datasets.
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Ch. Features
Feature Extraction Technique

PSPRT PSD

EEG Alcohol Dataset

8
FV 4.33 sec (Poly) 8.1 sec (Poly)

HFV 6.29 sec (Poly) 10.06 sec (Poly)

17
FV 4.62 sec (Poly) 56.06 sec (RBF)

HFV 12.75 sec (RBF) 67.17 sec (Poly)

EEG Motor/Imagery Dataset

8
FV 2.84 sec (RBF) 14.91 sec (RBF)

HFV 5.8 sec (RBF) 28.18 sec (RBF)

17
FV 3.37 sec (RBF) 53.51 sec (RBF)

HFV 9.37 sec (RBF) 53.94 sec (Poly)

EEG SSVEP Dataset III

14
FV 0.49 sec (RBF) 2.79 sec (Poly)

HFV 0.79 sec (RBF) 4.38 sec (Poly)

TABLE 4.11. Impact of perceptual hashing on SVM training time

Overall, it can be seen that perceptually hashing the feature vectors increases the classifier

training time for SVM, but the training time of k-NN is unaffected. Although the training time

increases (for SVM), as will be seen in the following section, this increase does not impact our

overall system as the training phase of the classifier completes before the user enrolls with the IDP.

4.3.3. Impact of Perceptual Hashing on Protocol Execution and Bandwidth Consumption

In this section, we study the impact of perceptual hashing on the protocol execution time

and the amount of data transferred. We look at these for both models in our approach viz., IDP-

centric model and User-centric model (see Sections 3.8.1 and 3.8.2). In both the models, the

enrollment phase is like a set-up phase which takes place before the authentication phase and

hence, we do not discuss the execution time or data transferred during that phase. The execution

times are in milliseconds (ms) and data transferred in Mega Bytes (MB).

Table 4.12 summarizes the execution times for and data transferred during the authenti-

cation protocol 4 in the IDP-centric authentication model. When we train both the classifiers,

SVM and k-NN, on features extracted using PSPRT, the execution time varies between 146 ms

and 213 ms on the EEG Alcohol dataset. Similarly, it ranges from 149 ms and 178 ms for the
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EEG Motor/Imagery dataset and between 151 ms and 156 ms on the EEG SSVEP Dataset III.

These numbers are very close. Also, irrespective of whether we train the classifiers directly on

the features (FV), their perceptual hashes (HFV) or the number of EEG channels we consider, the

protocol execution time is more or less stable. We have the same observation when features are

extracted using PSD. The execution time varies between 175 ms and 242 ms for the EEG Alcohol

dataset and 172 ms, 223 ms for the EEG Motor/Imagery dataset, and between 166 ms and 200

ms for the EEG SSVEP Dataset III. Thus, the execution time of the authentication protocol in this

model is not affected by perceptual hashing.

Ch. Classifier Features
PSPRT PSD

Time (ms) Data (MB) Time (ms) Data (MB)

EEG Alcohol Dataset

8

SVM
FV 150 11.15 242 73.42

HFV 160 11.24 195 73.5

k-NN
FV 146 11.04 186 73.51

HFV 153 11.06 175 73.73

17

SVM
FV 167 21.85 190 288.70

HFV 213 21.71 190 288.69

k-NN
FV 163 21.75 189 288.73

HFV 164 21.71 188 288.67

EEG Motor/Imagery Dataset

8

SVM
FV 149 9.84 206 72.02

HFV 153 9.96 227 72.03

k-NN
FV 156 9.91 172 72.24

HFV 157 9.76 175 72.03

17

SVM
FV 169 20.33 176 287.28

HFV 172 20.42 218 287.27

k-NN
FV 163 20.41 183 287.32

HFV 178 20.48 223 287.40

EEG SSVEP Dataset III

14

SVM
FV 156 15.74 200 199.84

HFV 154 15.78 180 199.91

k-NN
FV 151 15.75 166 199.81

HFV 148 15.83 172 199.79

TABLE 4.12. Impact of perceptual hashing on protocol execution time and data
transferred during the authentication phase (IDP-centric Model)
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Now, let us look at the impact of perceptual hashing on the amount of data transferred

during the authentication protocol in the IDP-centric model. Following are some important obser-

vations regarding the data transferred from Table 4.12:

(1) The amount of data transferred changes as the number of EEG channels change. The user

sends the perceptual hash of the EEG signal to the IDP to get the token. Now, as the EEG

channels increase so do the features that are sent to the IDP, and this explains why there

is an increase in data transferred. On the EEG Alcohol dataset, when we extract features

using PSPRT, about 11MB of data is transferred for data from 8 EEG channels. However,

this changes to around 22 MB when we consider data from 17 channels. Similarly, on

the EEG Motor/Imagery dataset, data transferred is, approximately, 10 MB for 8 EEG

channels and 20MB for 17 channels. On the EEG SSVEP Dataset III, the data transferred

is around 16 MB for 14 EEG channels which is between the data transferred for 8 EEG

channels and 17 EEG channels. We have similar observations when PSD is used for

feature extraction.

(2) The amount of data transferred changes as the feature extraction technique changes. On

the EEG Alcohol dataset, using PSPRT for feature extraction, data transfer of around 11

MB takes place when we consider 8 EEG channels. However, that changes to about 73

MB when we use PSD for feature extraction for the same number of channels. This

increase is because PSPRT results in just 36 features for 8 EEG channels where are PSD

results in 720 features. We have a similar observation when we consider data from 17

EEG channels, i.e., approximately 22 MB (for PSPRT) and 289 MB (for PSD) for data

is transferred. We have a similar observation on the EEG Motor/Imagery dataset.

(3) Perceptual hashing a feature vector should reduce the amount of data transferred: Per-

ceptual hashing a feature vector transforms it into a binary sequence (see Algorithm 1).

Thus, perceptually hashing a feature vector should reduce the amount of data transferred.

However, irrespective of whether the feature vectors are perceptually hashed or not, the

amount of data transferred is similar as long as we use the same number of channels and

employ the same feature extraction technique. The reason for this is that we leverage
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existing classes in Weka [26] to represent a feature vector or an instance. Weka considers

any feature that has numeric value to be of type numeric. After feature extraction, the

feature vectors have real values and perceptually hashing these feature vectors converts

them into binary. But, these are still numbers and are considered to be of type numeric by

the Weka classes. Having a custom implementation to represent the perceptually hashed

feature vectors will certainly reduce the amount of data transferred.

Ch. Features
PSPRT PSD

Time (ms) Data (MB) Time (ms) Data (MB)

EEG Alcohol Dataset

8
FV 127 3.20 185 3.35

HFV 125 3.09 130 3.13

17
FV 112 3.12 144 3.14

HFV 167 3.17 139 3.33

EEG Motor/Imagery Dataset

8
FV 113 3.11 168 3.09

HFV 124 3.22 204 3.32

17
FV 139 3.16 132 3.20

HFV 137 3.19 125 3.23

EEG SSVEP Dataset III

14
FV 104 3.11 122 3.17

HFV 116 3.1 127 3.12

TABLE 4.13. Impact of perceptual hashing on protocol execution time and data
transferred during the authentication phase (User-centric Model)

Next, we discuss the execution time for and data transferred during the authentication pro-

tocol in the User-centric authentication model (see Table 4.13). These details are for the SVM

classifier as we can only employ SVM and not k-NN in this model (see section 3.8.2). Even in

this model, whether the feature vectors are perceptually hashed or not, does not affect the proto-

col execution time. Additionally, neither the feature extraction technique nor the number of EEG

channels we consider has an impact on the execution time. Also, the execution time for the au-

thentication protocol in this model is consistently lower than the execution time in the IDP-centric

model. Similarly, the data transferred in this model is also lower than the data transferred in the

IDP-centric model. We expected both these things because, unlike in the IDP-centric model, the
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client authentication application generates the token required for authentication without the inter-

vention of the IDP. So, the user does not need to send the perceptual hash to the IDP, which reduces

the protocol execution time and amount of data transferred (see Protocol 6).

Thus, based on our experiments, it can be seen that perceptual hashing does not affect the

protocol execution of or the data transferred during the authentication phase, and a better imple-

mentation of representing the perceptual hash can certainly reduce the bytes transferred during the

protocol execution.
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CHAPTER 5

SECURITY ANALYSIS

5.1. Threat Model

We consider the semi-honest or honest-but-curious threat model. In this threat model, the

involved parties follow the established protocol but may try to learn from the data. Ex. The IDP is

a trusted entity and will never deviate from the protocol. However, given the raw EEG signals, it

might want to learn some private information about the user.

5.2. Privacy of EEG Signals

Since we adopt the authentication model proposed in [24], we also inherit its benefits like

confidentiality of the perceptual hash, BID and IDToken, repeatability of BID and revocability of

IDToken. We will discuss these and a few others in Sections 5.3, 5.4, and 5.5. However, we are

also concerned about the privacy of the EEG signal and the user. In our approach, the IDP receives

only the perceptual hash and not the EEG signal or the feature vector. This way we ensure the

confidentiality of the EEG signals and its feature vectors. However, the perceptual hash can also

leak private information. Now, each sample in the perceptual hash is either 1 or 0 and is based

on the median of the feature vector. After analyzing the perceptual hashes for the proportion of

1s and 0s, we observe that the perceptual hash of each EEG signal has about 50% of 1s and 0s.

Thus, the perceptual hash can be considered as any random binary sequence. Moreover, the feature

extraction technique or the number of segments (in our case a single segment or two segments) we

consider to compute the perceptual hash does not affect the proportion of 1s and 0s in the hash.

Thus, we believe that the perceptual hash will prevent information leakage.

5.3. Confidentiality of Sensitive Information

The authentication system involves other sensitive information like Perceptual Hashes,

BID, and the IDToken. We use the perceptual hash to predict the class label and then use this

to generate the BID. Once we have the BID, the hash is no longer required and hence, we discard

it. Similarly, BID is only required to generate the IDToken, and after we have the token, we even
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discard the BID. This way we maintain the confidentiality of the perceptual hash and BID. We

derive the secrets required for generating the BID and the Pedersen commitment on-the-fly using

the user’s password and salt. Thus, as long as the password is kept secret, these secrets remain

hidden. Additionally, the use of the ZKPK protocol also helps keep the secrets hidden during the

authentication phase. Moreover, a replay attack on the token does not affect the system as new

values of y and t are generated to complete the proof of knowledge (see Section 3.7.2).

In the IDP-centric model, as we also employ the k−NN classifier to predict the class label,

we need to store the perceptual hashes in a database. The storage of perceptual hashes poses a

risk of permanent loss of the user’s biometric identity in case an attacker can compromise the

database. However, in that event, only the perceptual hash of the features extracted from an EEG

signal will be lost. Since this hash is not invertible, the feature vector and the original EEG signals

remain confidential. Additionally, the loss of identity can be overcome changing the algorithm to

compute the perceptual hash. Furthermore, for the authentication to be successful, an impostor

will also need to know the password. Nevertheless, this is an undesirable situation as it involves a

compromise of the perceptual hash and can be considered to be a weakness in this model. Another

flaw in this model is that each time the user wants to access a server it needs the IDToken from

the IDP to complete the authentication phase. Thus, the IDP gets an opportunity to learn about the

user from the transaction pattern. We overcome these weaknesses in the User-centric model.

In the User-centric model, we do not employ the k-NN classifier as we need to send a

customized model to the user. k-NN is an instance-based classifier and requires the other instances

or data records to predict a class label of an unlabeled record. Sending the other instances to

the user is not feasible due to extremely high security and privacy issues and limited computing

resources available to the user. Since the user has a customized model and the client authentication

application, it does not need the IDP to generate the IDToken. This way the IDP does not have

access to the user’s transaction pattern and cannot learn anything from them.

5.4. Repeatability of BID and Revocability of IDToken

The BID is generated using the predicted class and the secret derived from the user’s pass-

word. Thus, as long as the predicted class and the user’s password are correct, the same BID will
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be generated i.e., the BID will be repeatable.

In the case an attacker compromises the user’s IDToken, the user can simply have the

IDToken revoked by informing the appropriate Server. Then, with the help of the IDP, he or she

can have a new IDT issued by generating a new BID and choosing a new password.

5.5. Protection against Malicious Users and Servers

An external attacker or a malicious Server may try to perform a man-in-the-middle attack

to impersonate the user. In the former case, the attack can be prevented by making use of secure

communication channels. However, secure communication channels are ineffective when a Server

is malicious and is trying to impersonate the user by attacking the zero knowledge proof of the

user’s identity commitment. This is also known as a Mafia Fraud attack, i.e., where the prover

is honest but the verifier is malicious. To prevent this, the user can create a commitment on the

Server’s identity and have the IDP include this commitment in the to field of the IDToken. The

advantage of this is twofold. First, only the user can successfully open the commitment as only he

or she has the required secrets. Second, the IDP is unaware of which Server the user is commu-

nicating with and will be unable to learn anything about the user’s usage pattern. Moreover, the

IDToken has an expires field and is signed by the IDP. A Server first verifies these to ascertain the

validity of the token and only after successful validation proceeds with the ZKPK protocol.

As we already know that in the User-centric model, a customized SVM model is sent to the

user, i.e., original labels are replaced by different random numbers for different users. Although

this model will not be directly available to the users, a malicious user might be successful in

finding it. He or she may then analyze the model and try to learn information about the other class

labels, which can compromise the privacy of the other users of the IDP. However, as this model is

customized, that attacker will not learn any information about the other users.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this work, we have shown that it is possible to apply perceptual hashing to feature vec-

tors extracted from EEG signals and use them to perform authentication. We can achieve this

without having a significant loss in the accuracy, and by considering data from more EEG chan-

nels, we can further reduce this loss. Additionally, the use of perceptual hashing also maintains the

confidentiality of EEG signals and the privacy of the user. Additionally, the performance on the

two types of perceptual hashes that we computed (HFV100 and HFV50) had more or less similar

performance. We also observed that perceptual hashing does increase the classifier time, but it is

not a significant increase and is a one-time activity that does not affect the authentication protocol

execution time. Since the perceptual hash is a binary sequence, one can expect a reduction in the

amount of data transferred during the enrollment and authentication phases. We also incorporated

an approach to perform authentication in a privacy-preserving manner using a biometric identifier

that is repeatable, revocable, and unique to the user based on his or her EEG signal.

In the future, we would like to work on improving the accuracy of the system with a lesser

number of EEG channels while employing the current feature extraction techniques. We would

also like to explore other feature extraction and machine learning techniques to see if we can

achieve a better accuracy than our present system. Additionally, we would like to explore other

perceptual hashing techniques that are not only secure but also improve the accuracy of the system.

Another appealing area for future research is eliminating the need for a password to generate the

BID. Instead, one should be able to compute the BID solely from the EEG signals without affecting

privacy. Finally, we would like to explore other techniques for generating BIDs while meeting the

requirements of repeatability, revocability, and uniqueness.
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APPENDIX

SUBJECTS CHOSEN FROM DATASETS FOR EXPERIMENTS
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Tables A.1 and A.2 indicate the subjects chosen from the EEG Alcohol and EEG Mo-

tor/Imagery datasets, respectively, for our experiments. Please note that these subjects were ran-

domly chosen from the datasets.

co2a0000364 co2a0000365 co2a0000368 co2a0000369 co2a0000370

co2a0000377 co2a0000379 co2a0000384 co2a0000388 co2a0000390

co2a0000394 co2a0000395 co2a0000396 co2a0000402 co2a0000403

co2a0000404 co2a0000407 co2a0000409 co2a0000410 co2a0000414

co2a0000418 co2a0000421 co2a0000433 co2a0000437 co2a0000438

co2a0000439 co2a0000440 co2a0000443 co2a0000445 co2a0000447

co2c0000337 co2c0000338 co2c0000339 co2c0000340 co2c0000341

co2c0000342 co2c0000344 co2c0000345 co2c0000346 co2c0000352

co2c0000364 co2c0000371 co2c0000357 co2c0000378 co2c0000392

co2c0000381 co2c0000383 co2c0000359 co2c0000387 co3a0000448

co2c0000389 co2a0000430 co2a0000428 co2a0000382 co2a0000424

co2c0000394 co2a0000426 co2c0000363 co2c0000397 co2a0000398

co2a0000387 co2c0000367 co2a0000432 co3a0000454 co3a0000453

co2a0000392 co3a0000457 co3a0000458 co3a0000460 co2a0000400
TABLE A.1. Subjects chosen from EEG Alcohol dataset

S004 S011 S013 S019 S021 S022 S024 S026 S027

S028 S030 S031 S033 S038 S043 S044 S050 S034

S054 S063 S065 S069 S072 S086 S087 S089 S088
TABLE A.2. Subjects chosen from EEG Motor/Imagery dataset
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