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Abstract

Enzymes that catalyze carbon–silicon bond formation are unknown in nature, despite the natural 

abundance of both elements. Such enzymes would expand the catalytic repertoire of biology, 

enabling living systems to access chemical space previously only open to synthetic chemistry. We 

have discovered that heme proteins catalyze the formation of organosilicon compounds under 

physiological conditions via carbene insertion into silicon–hydrogen bonds. The reaction proceeds 

both in vitro and in vivo, accommodating a broad range of substrates with high chemo- and 

enantioselectivity. Using directed evolution, we enhanced the catalytic function of cytochrome c 
from Rhodothermus marinus to achieve more than 15-fold higher turnover than state-of-the-art 

synthetic catalysts. This carbon–silicon bond-forming biocatalyst offers an environmentally 

friendly and highly efficient route to producing enantiopure organosilicon molecules.

Silicon constitutes almost 30% of the mass of the Earth’s crust, yet no life form is known to 

have the ability to forge carbon–silicon bonds (1). Despite the absence of organosilicon 

compounds in the biological world, synthetic chemistry has enabled us to appreciate the 

unique and desirable properties that have led to their broad applications in chemistry and 

material science (2, 3). As a biocompatible carbon isostere, silicon can also be used to 

optimize and repurpose the pharmaceutical properties of bioactive molecules (4, 5).

The natural supply of silicon may be abundant, but sustainable methods for synthesizing 

organosilicon compounds are not (6–8). Carbon–silicon bond forming methods that 

introduce silicon motifs to organic molecules enantioselectively rely on multi-step synthetic 

campaigns to prepare and optimize chiral reagents or catalysts; precious metals are also 

sometimes needed to achieve the desired activity (9–15). Synthetic methodologies such as 

carbene insertion into silanes can be rendered enantioselective using chiral transition metal 

complexes based on rhodium (11, 12), iridium (13) and copper (14, 15). These catalysts can 

provide optically pure products, but not without limitations: they require halogenated 
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solvents and sometimes low temperatures to function optimally and have limited turnovers 

(<100) (16).

Because of their ability to accelerate chemical transformations with exquisite specificity and 

selectivity, enzymes are increasingly sought after complements to or even replacements for 

chemical synthesis methods (17, 18). Biocatalysts that are fully genetically encoded and 

assembled inside of cells are readily tunable using molecular biology techniques. They can 

be produced at low cost from renewable resources in microbial systems and perform 

catalysis under mild conditions. Although nature does not use enzymes to form carbon–

silicon bonds, the protein machineries of living systems are often “promiscuous”, that is, 

capable of catalyzing reactions distinct from their biological functions. Evolution, natural or 

in the laboratory, can use these promiscuous functions to generate catalytic novelty (19–21). 

For example, heme proteins can catalyze a variety of non-natural carbene transfer reactions 

in aqueous media, including N–H and S–H insertions, which can be greatly enhanced and 

made exquisitely selective by directed evolution (22–24).

We hypothesized that heme proteins might also catalyze carbene insertion into silicon–

hydrogen bonds. Because iron is not known to catalyze this transformation (25), we first 

examined whether free heme could function as a catalyst in aqueous media. Initial 

experiments showed that the reaction between phenyldimethylsilane and ethyl 2-

diazopropanoate (Me-EDA) in neutral buffer (M9-N minimal medium, pH 7.4) at room 

temperature gave racemic organosilicon product 3 at very low levels, a total turnover number 

(TTN) of 4 (Fig. 1A). No product formation was observed in the absence of heme, and the 

organosilicon product was stable under the reaction conditions.

We next investigated whether heme proteins could catalyze the same carbon–silicon bond-

forming reaction. Screening a panel of cytochrome P450 and myoglobin variants, we 

observed product formation with more turnovers compared to the hemin and hemin with 

bovine serum albumin (BSA) controls, but with negligible enantioinduction (Table S4). 

Interestingly, cytochrome c from Rhodothermus marinus (Rma cyt c), a gram-negative, 

thermohalophilic bacterium from submarine hot springs in Iceland (26), catalyzed the 

reaction with 97% ee, indicating the reaction took place in an environment where the protein 

exerted excellent stereocontrol. Bacterial cytochromes c are well-studied, functionally 

conserved electron-transfer proteins that are not known to have any catalytic function in 

living systems (27). Other bacterial and eukaryotic cytochrome c proteins also catalyzed the 

reaction, but with lower selectivities. We thus chose Rma cyt c as the platform for evolving a 

carbon–silicon bond-forming enzyme.

The crystal structure of wild-type Rma cyt c (PDB ID: 3CP5; 26) reveals that the heme 

prosthetic group resides in a hydrophobic pocket, with the iron axially coordinated to a 

proximal His (H49) and a distal Met (M100), the latter of which is located on a loop (Figs. 

1B and 1C). The distal Met, common in cytochrome c proteins, is coordinately labile (28, 

29). We hypothesized that M100 must be displaced upon iron-carbenoid formation, and that 

mutation of this amino acid could facilitate formation of this adventitious “active site” and 

yield an improved carbon–silicon bond-forming biocatalyst. Therefore, a variant library 

made by site-saturation mutagenesis of M100 was cloned and recombinantly expressed in E. 
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coli. After protein expression, the bacterial cells were heat-treated (75 °C for 10 min) before 

screening in the presence of phenyldimethylsilane (10 mM), Me-EDA (10 mM) and sodium 

dithionite (Na2S2O4 10 mM) as a reducing agent, at room temperature under anaerobic 

conditions. The M100D mutation stood out as highly activating: this first-generation mutant 

provided chiral organosilicon 3 as a single enantiomer in 550 TTN, a 12-fold improvement 

over the wild-type protein (Fig. 1D).

Amino acid residues V75 and M103 reside close (within 7Å) to the iron heme center in 

wild-type Rma cyt c. Sequential site-saturation mutagenesis at these positions in the M100D 

mutant led to the discovery of triple mutant V75T M100D M103E, which catalyzed carbon–

silicon bond formation in >1500 turnovers and >99% ee. This level of activity is more than 

15 times the total turnovers reported for the best synthetic catalysts for this class of reaction 

(16). As stand-alone mutations, both V75T and M103E are activating for wild-type Rma cyt 

c and the beneficial effects increase with each combination (Table S5). Comparison of the 

initial reaction rates established that each round of evolution enhanced the rate: relative to 

the wild-type protein, the evolved triple mutant catalyzes the reaction >7-fold faster, with 

turnover frequency (TOF) of 46 min−1 (Fig. 1E).

Assaying the new enzyme against a panel of silicon and diazo reagents, we found that the 

mutations were broadly activating for enantioselective carbon–silicon bond formation. The 

reaction substrate scope was surveyed using heat-treated lysates of E. coli expressing Rma 
cyt c V75T M100D M103E under saturating conditions for both silane and diazo ester to 

determine TTN. Whereas many natural enzymes excel at catalyzing reactions on only their 

native substrates and little else (especially primary metabolic enzymes), the triple mutant 

catalyzed the formation of twenty silicon-containing products, most of which were obtained 

cleanly as single enantiomers, showcasing the broad substrate scope of this reaction using 

just a single variant of the enzyme (Fig. 2). The reaction accepts both electron-rich and 

electron-deficient silicon reagents, accommodating a variety of functional groups including 

ethers, aryl halides, alkyl halides, esters and amides (5–10). Silicon reagents based on 

naphthalenes or heteroarenes (11–13) as well as vinyldialkyl- and trialkylsilanes could also 

serve as silicon donors (14, 15, 18). In addition, diazo compounds other than Me-EDA could 

be used for carbon–silicon bond formation (16, 17) (16).

The evolved Rma cyt c exhibits high specificity for carbon–silicon bond formation. Even in 

the presence of functional groups that could compete in carbene-transfer reactions, 

enzymatic carbon–silicon bond formation proceeded with excellent chemoselectivity. For 

example, styrenyl olefins, electron-rich double bonds, and terminal alkynes that are prime 

reaction handles for synthetic derivatization are preserved under the reaction conditions, 

with no competing cyclopropanation or cyclopropenation activity observed. As a result, 

organosilicon products 12–13 and 18–20 were afforded with 210 to 5010 turnovers and 

excellent stereoselectivities (98 to >99% ee). Preferential carbon–silicon bond formation 

could also be achieved with substrates bearing free alcohols and primary amines, yielding 

silicon-containing phenol 21 (910 TTN, >99% ee) and aniline 22 (8210 TTN, >99% ee). 

This capability removes the need for functional group protection and/or manipulation, 

offering a streamlined alternative to transition metal catalysis for incorporating silicon into 

small molecules. Indeed, when the same reactants were subjected to rhodium catalysis (1 
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mol% Rh2(OAc)4), O–H and N–H insertions were the predominant reaction pathways, and 

copper catalysis (10 mol% Cu(OTf)2) gave complex mixtures of products (Table S7). 

Tolerance of these highly versatile functionalities in enzymatic carbon–silicon bond-forming 

reactions provides opportunities for their downstream processing through metabolic 

engineering, bioorthogonal chemistry, and other synthetic endeavours.

We next asked whether all Rma cyt c variants would catalyze carbon–silicon bond formation 

selectively over insertion of the carbene into an N–H bond in the same substrate. We re-

visited the evolutionary lineage and tested all four generations of Rma cyt c (wild-type, 

M100D, V75T M100D and V75T M100D M103E) with Me-EDA and 4-

(dimethylsilyl)aniline (23), a reagent that could serve as both nitrogen and silicon donor, to 

probe the proteins’ bond-forming preferences. The wild-type cytochrome c in fact exhibited 

a slight preference for forming amination product 24 over organosilicon product 22. Even 

though silane 23 was not used for screening, and the Rma cyt c therefore never underwent 

direct selection for chemoselectivity, each round of evolution effected a distinct shift from 

amination to carbon–silicon bond forming activity (Fig. 3A). This evolutionary path that 

focused solely on increasing desired product formation culminated in a catalyst that 

channeled the majority of the reactants (97%) through carbon–silicon bond formation (>30-

fold improved with respect to the wild-type), presumably by improving the orientation and 

binding of the silicon donor.

Some fungi, bacteria and algae have demonstrated promiscuous capacities to derivatize 

organosilicon molecules when these substances were made available to them (1). The 

possibility ultimately to establish silicon-based biosynthetic pathways led us to investigate 

whether the evolved Rma cyt c could produce organosilicon products in vivo. E. coli whole 

cells (OD600 = 15) expressing Rma cyt c V75T M100D M103E in glucose-supplemented 

M9-N buffer were given silane 23 (0.1 mmol) and Me-EDA (0.12 mmol) as neat reagents. 

The enzyme in this whole-cell system catalyzed carbon–silicon bond formation with 3410 

turnovers, yielding organosilicon product 22 in 70% isolated yield (>95% yield based on 

recovered silane 23) and 98% ee (Fig. 3B). These in vitro and in vivo examples of carbon–

silicon bond formation using an enzyme and earth-abundant iron affirm the notion that 

nature’s protein repertoire is highly evolvable and poised for adaptation: with only a few 

mutations, existing proteins can be repurposed to efficiently forge chemical bonds not found 

in biology and grant access to areas of chemical space which living systems have not 

explored.
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Fig. 1. Heme protein-catalyzed carbon-silicon bond formation
(A) Carbon–silicon bond formation catalyzed by heme and purified heme proteins. (B) 
Surface representation of the heme-binding pocket of wild-type Rma cyt c (PDB ID: 3CP5). 

(C) “Active site” structure of wild-type Rma cyt c showing a covalently bound heme 

cofactor ligated by axial ligands H49 and M100. Amino acid residues M100, V75 and M103 

residing close to the heme iron were subjected to site-saturation mutagenesis. (D) Directed 

evolution of Rma cyt c for carbon–silicon bond formation (reaction shown in (A)). 

Experiments were performed using lysates of E. coli expressing Rma cyt c variant (OD600 = 
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15; heat-treated at 75 °C for 10 min), 10 mM silane, 10 mM diazo ester, 10 mM Na2S2O4, 5 

vol% MeCN, M9-N buffer (pH 7.4) at room temperature under anaerobic conditions for 1.5 

h. Reactions performed in triplicate. (E) Carbon–silicon bond forming rates over four 

generations of Rma cyt c.
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Fig. 2. Scope of Rma cyt c V75T M100D M103E-catalyzed carbon–silicon bond formation
Standard reaction conditions: lysate of E. coli expressing Rma cyt c V75T M100D M103E 

(OD600 = 1.5; heat-treated at 75 °C for 10 min), 20 mM silane, 10 mM diazo ester, 10 mM 

Na2S2O4, 5 vol% MeCN, M9-N buffer (pH 7.4) at room temperature under anaerobic 

conditions. Reactions performed in triplicate. [a] OD600 = 5 lysate. [b] OD600 = 0.5 lysate. 

[c] OD600 = 15 lysate. [d] 10 mM silane. [e] OD600 = 0.15 lysate.
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Fig. 3. Chemoselectivity and in vivo activity of evolved Rma cyt c
(A) Chemoselectivity for carbene Si–H insertion over N–H insertion increased dramatically 

during directed evolution of Rma cyt c. Standard reaction conditions as described in Fig. 2. 

Reactions performed in duplicate using heat-treated lysates of E. coli expressing Rma cyt c 
with protein concentration normalized across variants. Product distribution was quantified 

after 2 h reaction time (before complete conversion, no double insertion product was 

observed under these conditions). (B) In vivo synthesis of organosilicon compound 22.

Kan et al. Page 12

Science. Author manuscript; available in PMC 2017 November 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	References
	Fig. 1
	Fig. 2
	Fig. 3

