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Discontinuous Galerkin (DG) methods coupled to weighted essentially nonoscillatory (WENO)
algorithms allow high order convergence for smooth problems and for the simulation of discontinuities
and shocks. In this work, we investigate WENO-DG algorithms in the context of numerical general
relativity, in particular for general relativistic hydrodynamics. We implement the standard WENO method
at different orders, a compact (simple) WENO scheme, as well as an alternative subcell evolution
algorithm. To evaluate the performance of the different numerical schemes, we study nonrelativistic,
special relativistic, and general relativistic test beds. We present the first three-dimensional simulations of
general relativistic hydrodynamics, albeit for a fixed spacetime background, within the framework of
WENO-DG methods. The most important test bed is a single Tolman-Oppenheimer-Volkoff star in three
dimensions, showing that long term stable simulations of single isolated neutron stars can be obtained with
WENO-DG methods.
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I. INTRODUCTION

Over the last decade simulations in numerical general
relativity have seen a tremendous improvement in accuracy
and stability and have become an important tool for the
study of high energy and strong gravitational field effects.
To date numerical simulations are the only possibility to
investigate complex astrophysical scenarios such as e.g.
stellar collapse [1] and coalescing binary neutron stars [2].
Although numerical simulations are, in principle, not
restricted by approximations beyond the numerical
approximation, they are limited by the finite accuracy of
the particular discretization method.
Among the different methods to solve partial differential

equations like those of general relativity, the discontinuous
Galerkin (DG) method has emerged in recent years as a
particularly successful general purpose paradigm [3–5]. It
can be argued that the DG method, more explicitly the DG
finite element method or DG spectral element method,
subsumes and combines several of the key advantages of
traditional finite element and finite volume methods, e.g.
[4]. In particular, the discontinuous Galerkin method works
with element-local stencils, which is a great advantage for
parallelization and the construction of complicated grids.
Furthermore, DG methods offer easy access to hp adap-
tivity [6], where both the size of the computational
elements (or cells) and the order of the polynomial
approximation within each element can be adapted to
the problem. For smooth solutions, DG methods approach
the optimal order of exponential convergence of

pseudospectral methods on multiple patches. In fact, certain
DG methods are equivalent to pseudospectral methods with
a specific penalty method for the patch boundaries [7]. For
nonsmooth solutions, low order elements have been com-
bined with various high resolution shock capturing (HRSC)
schemes, for example in the form of weighted essentially
nonoscillatory (WENO)-DG methods [8].
In this work we consider the application of DG methods

to simulations in numerical general relativity coupled to
general relativistic hydrodynamics (GRHD). Concretely,
the goal is to compute the numerical evolution of space-
times containing neutron stars. The governing differential
equations are the time-dependent, nonlinear Einstein field
equations for the spacetime geometry coupled to a rela-
tivistic fluid model. Most relativistic hydrodynamics sim-
ulations are based on the “Valencia formulation,” in which
the matter field evolution is given in a conservative
form [9].
Among the numerous numerical studies carried out in

the field, most have been performed using finite difference
(FD) and finite volume (FV) methods, with significant
success. For the geometry (including black holes), high
order finite differencing is the rule, often fourth to eighth
order finite differences in space for structured adaptive
mesh refinement (AMR), e.g. [10,11]. The matter part
allows the formation of strong relativistic shocks, and a
variety of finite volume (or finite difference) HRSC
schemes have been developed [9,12]. For smooth solutions,
pseudospectral methods have been very successful [13–16].
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Recently, a convergence order of ∼3 was observed for high
order matter formulations in [17–19].
DG methods for numerical relativity offer the usual list

of attractive features. In particular, one goal would be to
combine high order, smooth regions with lower order
regions containing shocks. Compared to AMR with large,
overlapping finite difference stencils, the DG spectral
element method is more easily and more efficiently
parallelizable, while still allowing high order approxima-
tions. However, there remain several open issues with
regard to DG methods in numerical relativity, some of
which are described and addressed in what follows.
The evolution equations of numerical relativity are a

coupled system for the geometry (the metric variables)
and the matter variables. While the matter equations are
naturally given in a flux form [9], this is not the case for
the geometry. Since a typical DG method starts with a
flux-balance law, it is in principle straightforward to
design a method for the matter part. On the other hand,
for the geometric part one should either recast the
equations in a hyperbolic flux form, or suggest less
standard methods.
There have been essentially only four major efforts to

employ DG methods for general relativity and/or GRHD.
In [20], Zumbusch gives the first and so far only example
for a complete DG method for the (3þ 1)-dimensional
(short 3D) Einstein equations in vacuum. Discussed is a
spacetime DG scheme mostly in the context of linearized
equations and in a specific gauge, but the scheme also
handles nonlinearities. So far there has not been an
astrophysics application, say involving black holes or
neutron stars. In [21], Brown et al. discuss a DG method
for a first order reformulation of the Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) formulation of the vacuum
equations, mostly with one-dimensional examples. In ear-
lier work [22] by Field et al. the various nonlinearities and
second derivatives of BSSN are successfully dealt with on a
case by case basis. In [23], Radice and Rezzolla give a
general discussion of the DG method for the matter
equations in the standard flux form, without including
the equation for the geometry. They present a working one-
dimensional implementation for general relativistic matter
in spherical symmetry. Recently in [24], Teukolsky sum-
marized DG methods for curved spacetimes, including a
discussion of nonconservative equations applicable to the
Einstein equations.
In addition, there has been work on special relativistic

hydrodynamics (SRHD). Zhao and Tang [25] were the first
to apply the WENO-DG method of [8] to a variety of one-
dimensional and two-dimensional test cases in SRHD, and
the method turned out to be robust and reliable in capturing
shocks.
The concrete target of the present work is to model a

single stationary neutron star [a Tolman-Oppenheimer-
Volkoff (TOV) star [26,27]] in 3D, although we perform

a variety of tests in one dimension and two dimensions as
well. The TOV star is computed in the Cowling approxi-
mation, which simplifies the problem by assuming that the
geometry may be curved but does not depend on time,
which in turn is compatible with the stationarity of the TOV
star. The numerical evolution of the matter variables for a
fixed metric is a standard approach that still allows to
test key features of the hydrodynamics, including the
treatment of the nondifferentiable density at the surface
of the star. We leave the coupling to a dynamic geometry to
future work.
In preparation for the simulations in full, 3D GRHD, we

test the Runge-Kutta DG (RKDG) method coupled to a
variety of WENO reconstructions for the equations of
general relativistic hydrodynamics [9]. We reproduce the
nonrelativistic standard results [8,28] as well as some of the
special relativistic test cases of [25] for a third and a fifth
order method, WENO3 and WENO5. We extend [25] by
also considering WENO-Z [29] and the simple WENO
limiters of [28]. Finally, we present the first application of
RKDG WENO methods to a 3D TOV star in the Cowling
approximation. The numerical experiments are imple-
mented in the new bamps code [14] for spectral element
methods. We import some methods from an existing full-
featured finite difference AMR code for 3D GRHD, BAM
[10,30–33].
When researching the available HRSC methods for DG,

there is one issue related to shock resolution and efficiency
that is well known but that does not always appear to
receive the attention it deserves.
For FD or FV methods with HRSC, shocks are resolved

within a few cell widths, which means within a few grid
points. For DG methods, the standard approach is to
employ WENO reconstruction based on cell averages
[8]. In such WENO-DG methods, shocks are again
resolved within a few cell widths, but each cell now
contains p points (for polynomials of order p − 1). The
WENO3 stencil involves three cells and 3p points, and the
WENO5 stencil involves five cells and 5p points.
Effectively, the high resolution within each cell (the
“subcell resolution”) is lost if only the cell averages are
used. For practical implementations a rough estimate is
therefore that such WENO-DG methods could require
about 27 or 125 times more resources for shock resolution
in 3D than comparable FD or FV methods (these factors
vary with the actual implementation).
For the evaluation of DG methods for GRHD it matters

whether such methods are competitive to existing
FD/FV methods in terms of efficiency. Hence we consider
the following measures aimed at handling the compara-
tively low efficiency of cell-averaged WENO-DG methods.
A common strategy is to limit the application of the
WENO scheme to only those cells that need it, and there
has been quite some work on so-called “troubled cell
indicators” [34].
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A recent development is the so-called “simple” WENO
methods of [28], which effectively construct a compact
stencil for high order WENO methods. For example, the
fifth order WENO method is constructed from only three
instead of five cells, using the high order information from
the nearest neighbor cells to obtain fifth order. This leads to
significant savings, but the method has not been widely
tested yet. We include the compact/simple WENO method
in our tests and report on some differences to the standard
WENO method, in particular in 3D.
Another important development is a hybrid approach

[35–38], which replaces troubled cells by an equidistant
subgrid and applies FV shock capturing on these grids. This
approach maintains the subcell resolution of FV methods,
but increases the complexity of the implementation since
two types of grids and special grid transfer operators are
required. In our case the method is appealing because a full-
featured FD implementation is already available [30,31]. If
successful, the strategy would be to construct a high order
DG method for regions where the solution is smooth, but to
rely on established FD methods near shocks.
HRSC for DG comes at a cost since WENO-DG as well

as the hybrid FD-DG method break the cell locality of the
basic DG method. We consider both methods here to gain
some insight into their relative merit.
In Sec. II, we introduce the DG method for 3D flux-

balance laws, specify the equations of relativistic hydro-
dynamics, and discuss the WENO-DG and FD-DG
methods. In Sec. III B, we summarize the numerical
implementation. As basic tests we consider the advection
equation and the Burgers equation in one dimension in
Sec. IV, while one-dimensional and two-dimensional tests
for SRHD are presented in Sec. V. The main results concern
the evolution of a TOV star in Sec. VI. We conclude in
Sec. VII. For completeness, we collect some relevant
details of the basic one-dimensional DG method in
Appendix A and compare convergence for different mass
matrices in Appendix B.
Throughout the article dimensionless units are used, i.e.

we set c ¼ G ¼ M⊙ ¼ 1. We denote spacetime indices by
a; b;… and indices over space dimensions by i; j;….

II. METHODS

A. Discontinuous Galerkin method

The hydrodynamical equations governing the time evo-
lution of the matter fields can be cast as a nonlinear
conservation law for a vector of variables, uðx; tÞ, depend-
ing on time t and position x ∈ R3. The conservation law is
given by

∂tuþ ∂ifiðuÞ ¼ S; ð1Þ

with the sources S and the fluxes fi. We summarize some of
the relevant aspects of the DG method for conservation

laws of scalar function on R in Appendix A, while simply
stating the key equations for vector-valued functions on Rn

here; see [4,25].
We consider a partition of Rn into cells Ij, x ∈ Ij, and

define the finite dimensional approximation space

VN ≔ fv∶vðxÞjIj ∈ PNðIjÞg ð2Þ

with PNðIjÞ denoting the finite dimensional space of
polynomials on Ij of degree at most N. As in most standard
applications, we set the polynomial order N as a constant
over the whole partition. To deduce a DG scheme from
Eq. (1), we want to find a function unðxÞ for which the
weak form Z

Ij

v∂tun dV þ
Z
∂Ij

fiðunÞvni dS

−
Z
Ij

fiðunÞ∂iv dV ¼
Z
Ij

Sv dV ð3Þ

holds for all v ∈ VN . For simplicity, we denote the
approximate/numerical solution unðxÞ as uðxÞ in the
following. An important advantage of the DG scheme is
that v does not need to be continuous at the cell boundaries.
Therefore, no unambiguous definition of the fluxes at cell
boundaries entering Eq. (3) exists. To overcome this issue,
we introduce the numerical fluxes f�iðu−;uþÞ, which
depend on the inside/outside cell limited value of u at
the boundary, u− and uþ, and reproduce the original flux if
u is continuous. A simple example of a numerical flux with
this property is the local LAX-FRIEDRICH (LLF) flux

f�iðu−;uþÞni ¼
1

2
½fiðu−Þni þ fiðuþÞni − λðuþ − u−Þ�;

ð4Þ
where λ denotes the maximum absolute eigenvalue of the
Jacobian ∂ðfiniÞ=∂u. We use a LLF algorithm throughout
this article. Writing out the numerical solution uðx; tÞ as an
element of VN explicitly,

ujIjðx; tÞ ¼
XN
k¼0

ûkðtÞvkðxÞ ð5Þ

and vk a basis of PNðIjÞ allows us to recast (3) as an
algebraic equation for the unknown time derivatives ∂tûk.
To evolve these coefficients in time, we use an explicit
fourth order Runge-Kutta method.
For the actual implementation of Eq. (3), we map each Ij

to a reference box ½−1; 1�3 and define N þ 1 Legendre-
Gauss-Lobatto (LGL) points ξp ∈ ½−1; 1� for each direc-
tion. Given these points, we choose the basis vk of
PNð½−1; 1�3Þ to be the product of the corresponding
Lagrange interpolating polynomials each applied to one
component of ξ,
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vk ≡ vpqr ¼ lplqlr ð6Þ

with

lpðξÞ ¼
YNþ1

j¼1
j≠p

ξ − ξj

ξp − ξj
; ð7Þ

i.e. we use a nodal DG formulation. The chosen basis
allows us to use lpðξrÞ ¼ δpr and simplifies the compu-
tation of the coefficients ûpqr ¼ uðξp; ξq; ξrÞ (interpolation
condition). In contrast to the modal DG formulation, the
flux and source coefficients are then easily determined by
pointwise evaluations f̂ipqr ¼ fiðûpqrÞ, Ŝpqr ¼ SðûpqrÞ.
Defining the mass matrix

Mab ¼
Z

1

−1
laðξÞlbðξÞdξ ð8Þ

and the stiffness matrix

Sab ¼
Z

1

−1
∂ξlaðξÞlbðξÞdξ; ð9Þ

we separate analytic expressions and numerical variables in
Eq. (3) to gain the semidiscrete scheme,

∂tûpqr ¼ þ 2

Δx
ðM−1

paSabf̂
1
bqr−M−1

pNf
�1n1ð1; ξq; ξrÞ

−M−1
p0f

�1n1ð−1; ξq; ξrÞÞ

þ 2

Δy
ðM−1

qaSabf̂
2
pbr−M−1

qNf
�2n2ðξp; 1; ξrÞ

−M−1
q0 f

�2n2ðξp;−1; ξrÞÞ

þ 2

Δz
ðM−1

ra Sabf̂
3
pqb −M−1

rNf
�3n3ðξp; ξq; 1Þ

−M−1
r0 f

�3n3ðξp; ξq;−1ÞÞ þ Ŝpqr: ð10Þ

Due to the choice of collocation points, the mass and
stiffness matrix can be determined using Legendre-Gauss-
Lobatto integration with the corresponding weights ωp,

Mab ≈ δab · ωa; ð11Þ

Sab ¼ ∂ξlaðξbÞ · ωb: ð12Þ

Notice that Eq. (11) is just an approximation, while (12)
is exact, since the N þ 1-point Legendre-Gauss-Lobatto
integration is exact for polynomials of order 2N − 1.
This approximation simplifies the scheme and brings M
in a diagonal form. Furthermore, it is equal to a modal
filter, which decreases the highest mode by a factor
N=ð2N þ 1Þ [39].

B. WENO reconstruction methods

As a next step, we explain how to avoid oscillations
and unphysical behavior caused by the Gibbs phenome-
non. For this purpose we locate discontinuities and
oscillations with the troubled cell indicator described in
Sec. II B 1 and apply a WENO limiter reconstruction
[8,25]. We introduce three different WENO reconstruction
methods, the standard WENO approach (Sec. II B 2), the
simple WENO algorithm [28] based on compact stencils
(Sec. II B 3), and a WENO algorithm based on a subcell
evolution (Sec. II C).

1. Troubled cell indication

Given the coefficients of the numerical solution ûpðtÞ at
time t, we can calculate the average of the polynomial
uðx; tÞ over the grid patches Ij ¼ ½aj; bj�,

uj ≔
1

Δx

Z
bj

aj

ûpvpðxÞdx ¼ 1

2

Z
1

−1
ûplpðξÞdξ; ð13Þ

where we use the transformed basis polynomial vpðxÞ ¼
lpðξðxÞÞ. We further denote the boundary values of u as

u−
j ≔ uðajÞ; uþ

j ≔ uðbjÞ ð14Þ

and define the four differences:

~u−
j ≔ uj − u−

j ; ~uþ
j ≔ uþ

j − uj ð15Þ

Δ−u ≔ uj − uj−1; Δþu ≔ ujþ1 − uj: ð16Þ

We also introduce the minmod function

minmodðx1; x2;…; xnÞ

¼
�
s · min1≤j≤njxjj if signðx1Þ ¼ … ¼ signðxnÞ ≕ s

0 otherwise

ð17Þ
and the modified total variation bounded (TVB) minmod
function

minmodTVBðx1; x2;…; xnÞ

¼
�
a1 if ja1j ≤ MðmaxjΔxjÞ2
minmodðx1; x2;…; xnÞ otherwise

:

ð18Þ

Here the constantM > 0 acts as a threshold for the troubled
cell indication. The lower the M, the more cells will be
marked as troubled. The particular choice of M is problem
dependent. Our troubled cell indicator marks a grid patch as
troubled if
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minmodTVBðð ~u−j Þk;Δ−uk;ΔþukÞ ≠ ð ~u−j Þk or

minmodTVBðð ~uþj Þk;Δ−uk;ΔþukÞ ≠ ð ~uþj Þk ð19Þ

for at least one component k. This is exemplary for a
situation in which a component of u is not monotonous
(because the arguments of minmod differ in sign) or its
gradient inside a patch is larger than that of the neighboring
patches (shock inside the cell).
In the case of multiple dimensions, we perform the one-

dimensional troubled cell indication in every direction. A
cell is marked as troubled if at least one of these indications
results in a troubled state. To apply the one-dimensional
algorithm, the boundary values used in (14) have to be
modified, since the cell boundaries are not longer single
points, but lines or surfaces. Therefore, we redefine u�

j
by the boundary averages, i.e. for a 3D cell I ¼ ½aj; bj� ×
½ak; bk� × ½al; bl� in x direction,

u−
jkl ≔

1

ΔyΔz

Z
bk

ak

Z
bl

al

ûpqrvpðajÞvqðyÞvrðzÞ dydz;

uþ
jkl ≔

1

ΔyΔz

Z
bk

ak

Z
bl

al

ûpqrvpðbjÞvqðyÞvrðzÞ dydz: ð20Þ

2. Standard WENO reconstruction

In a standard WENO method of order 2wþ 1, we
construct wþ 1 stencils Si around Ij, each as an aggrega-
tion of wþ1 grid patches: Si ¼ ðIj−wþi; Ij−wþiþ1;…; IjþiÞ;
0 ≤ i ≤ w. In Fig. 1 this partitioning is shown for w ¼ 2.
For each stencil, we construct a wth order polynomial pi,
which has the same average as the numerical solution u

over each grid patch in the stencil. That means solving the
system

uk ¼ 1

Δx

Z
Ik

piðxÞdx; for all Ik ∈ Si ð21Þ

for the wþ 1 coefficients of each component of pi.
Similarly, we construct a 2wth order polynomial q fulfilling

uk ¼ 1

Δx

Z
Ik

qðxÞdx; for all Ik ∈ S; ð22Þ

with S ≔ ∪iSi being the large stencil over all 2wþ 1 grid
patches. The fundamental concept is to approximate the
solution in ½−1; 1� as a linear combination of the pi, which
should give the same result as the higher order approxi-
mation q in smooth regions. This condition defines the
linear (or ideal) weights γi satisfying

qðxÞ ¼
Xwþ1

i¼1

γiðxÞpiðxÞ: ð23Þ

We emphasize that the γi depend on the point x where the
approximation should hold. It is remarkable that although
both sides of Eq. (23) depend intrinsically on the 2wþ 1
averages uk and the system is overdetermined (only wþ 1
variables), we could always find an exact solution for (23)
in our tests. In regions where the solution is not smooth, the
weights should be chosen such that the smoothest poly-
nomial of pi is preferred. For this purpose, we use a
smoothness indicator as suggested in [40],

FIG. 1. The WENO-5 (w ¼ 2) methodology applied in a smooth case (left figure) and a shock case (right figure). The values in the
interval x ∈ Ij ¼ ½−1; 1� are to be reconstructed from the five grid patch averages uj−2; uj−1; uj; ujþ1; ujþ2. The three stencils S1, S2, S3
are created as a clustering of three grid patches each with the corresponding approximating polynomial p1ðxÞ; p2ðxÞ; p3ðxÞ. Another
higher order polynomial qðxÞ can be found from employing all five averages. Following the strategy as described in II B, the smoothness
indicators βi are calculated for each stencil. A large βi indicates nonsmoothness of the corresponding polynomial pi, which leads to a
minor contribution of the stencil Si for the reconstruction. In the shock case, the reconstructed point values (empty black circles) lie very
close to the smoothest polynomial p3, whereas in the smooth case all three approximating polynomials are taken into account almost
equally, so that the reconstruction is very close to the fifth order polynomial q (filled gray circles).
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βi ¼
Xw
l¼1

Z
Ij

Δx2l−1
�
dl

dxl
piðxÞ

�
2

dx: ð24Þ

Because βi is large for nonsmooth pi, the weights are
chosen indirect proportional to βi. We use either the
standard WENO choice

~ωiðxÞ ¼
γiðxÞ

ð10−6 þ βiÞ2
; ð25Þ

or the improved WENO-Z version [29] for w ¼ 2,

~ωiðxÞ ¼ γiðxÞ
�
1þ jβ3 − β1j

βi þ 10−40

�
; ð26Þ

and normalize the results,

ωiðxÞ ¼
~ωiðxÞPwþ1

l¼1 ~ωlðxÞ
; ð27Þ

where ωiðxÞ are the final reconstruction weights. The
reconstructed solution is then given by

uWENOðxÞ ¼
Xwþ1

i¼1

ωiðxÞpiðxÞ: ð28Þ

To generalize the presented reconstruction mechanism
to two dimensions and 3D, we use the procedure described
in [25]. For simplicity, we assume a rectilinear two-
dimensional grid structure with N þ 1 grid points ξp per
cell and direction. To reduce the full reconstruction of the cell
Ijk to the one-dimensional case, we decouple the different
directions. First we perform 2wþ 1 one-dimensional
WENO reconstructions in the x direction with input data

fuj−w; ~k;uj−wþ1; ~k;…;ujþw; ~kg; k − w ≤ ~k ≤ kþ w

ð29Þ
to reconstruct the N þ 1 averages per cell,

up
j; ~k

≔
Z
Ij~k

uðξp; y; tÞdy; k − w ≤ ~k ≤ kþ w;

1 ≤ p ≤ mþ 1: ð30Þ

Then, we can apply a second one-dimensional WENO
reconstruction based on the one-dimensional averages in y
direction with the input data

fup
j;k−w;u

p
j;k−wþ1;…;up

j;kþwg; 1 ≤ p ≤ mþ 1 ð31Þ

to get the two-dimensional reconstructed values inside the
cell Ijk,

uWENO
jk ðξp; ξqÞ; 1 ≤ p; q ≤ mþ 1: ð32Þ

3. Simple WENO reconstruction

To reconstruct the polynomial with a standard WENO
method, the cell averages of many neighboring cells are
needed. This leads to large computational costs and an
undesirable smoothing of the solution. In [28], it is
discussed that this standard procedure is not necessary in
a DG method, since the neighboring cells yield more
information than only a cell average value. This idea
implies the simple WENO reconstruction, in which the
standard WENO methodology is applied to the cell poly-
nomial and the neighboring cell polynomials by redefining

piðxÞ ≔ ujIjþi
ðxÞ þ 1

Δx

Z
Ij

ðujIjðxÞ − ujIjþi
ðxÞÞdx;

i ¼ −1; 0; 1: ð33Þ

The integral values cause a shift of the polynomials, so that
they all have the same average value in cell Ij and the cell
average is conserved during reconstruction. The corre-
sponding expressions in (24) and (28) have to be sub-
stituted. Furthermore, we only use the next neighbors,
which is setting w ¼ 1 (three cell stencil) in all WENO
formulas. Since with the new ansatz (33) every linear
combination of the piðxÞ is a higher order approximation,
there is no need to find special ideal weights as in the
standard WENO method. Instead, we can freely choose the
weights for all involved cells. In our tests, we choose
γ−1 ¼ γ1 ¼ 1 × 10−5, γ0 ¼ 1 − 2γ1 ¼ 1 − 2 × 10−5 for
smooth setups and γ−1 ¼ γ1 ¼ 1 × 10−3, γ0 ¼ 1 − 2γ1 ¼
1 − 2 × 10−3 for problems with discontinuities.

C. Subcell evolution method

Finally, we consider a hybrid FD-DG method motivated
by [35] where shock capturing is performed on a subgrid of
equidistant grid points. The method of [35] is based on
subgrids, an a posteriori troubled cell indicator, and a
locally implicit time integrator. We decided to investigate
the subgrid method separately without these other features,
so we cannot compare directly to [35]. However, this allows
us to isolate the effects due to the subcell algorithm and to
establish its usefulness even in the absence of the other
ingredients. There are open questions regarding the stabil-
ity and accuracy of the subgrid method, in particular when
used without the locally implicit time integration method
(but see also [37,38]).
For our method we use the same troubled cell indicator

as introduced in II B. If a cell Ij has been marked as
troubled, we subdivide this cell in 2N þ 1 equidistant
subcells Jk containing a single point yk each (where N
is the polynomial order) and compute the value of the
approximating polynomial on the individual subcells
points,

vk ¼ ûpvpðykÞ; for all yk ∈ Ij: ð34Þ
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This map ûp ↦ vk can be done with the subcell projection
operator P. The back projection P−1 is nontrivial, because
the problem of finding a polynomial of order N to satisfy
the given 2N þ 1 equations (34) is overdetermined.
Performing a least-squares fit of an Nth order polynomial
for the 2N þ 1 points turns out to be a good choice for a
back projection. In our tests, we found the corresponding
matrices for P and P−1 to be pseudoinverse. This is easy to
verify, because whenever vk originate from an exact Nth
order polynomial, a least-squares fit P−1 gives the exact
polynomial coefficients, so P−1P ¼ 1 (but not necessarily
PP−1 ¼ 1). It is important to notice that contrary to [35],
we use a projection matrix based on the point values in the
subcells, not the averages vk. This is necessary, since we
want to employ a FD code on the subcells instead of a FV
method, leading to a violation of conservation laws (e.g. of
the rest mass), when a projection from top cell to subcells,
or vice versa, is done. In our tests we found this defects
decaying with order N þ 1, when we raise the grid
resolution. We import all necessary routines of the BAM
code [10,30,31]. In [30,41] this scheme is explained in
detail. Further improvements allowing us to obtain high
order convergence in smooth regions are presented in [41].
The general idea is to discretize Eq. (1) as

∂tuk ¼ 2N þ 1

Δx

�
Fk−1

2
− Fkþ1

2

�
þ Sk ð35Þ

with Δx being the cell grid spacing, Δx
2Nþ1

the subcell grid
spacing and Fkþ1

2
the numerical flux at the boundary

between subcells Jk and Jkþ1.
The subcell interface values of the fluxes fk�1

2
are

computed with the LLF scheme. The necessary right and
left states for the interface flux calculation are provided by a
WENOZ [29,40] reconstruction from the given subcell
values. Having evaluated the rhs of Eq. (35), we use an
explicit fourth order Runge-Kutta method for the time step.
After each Runge-Kutta substep the new subcell values are
back projected to the DG grid by P−1. If the cell stays
troubled in the next time step, the next evolution step is
based on the subcell results without using the back-
projected results.

III. IMPLEMENTATION

A. Relativistic hydrodynamics

Although we are working in cowling approximation, i.e.
keeping the metric fixed, the matter fields are evolved
dynamically on a curved spacetime background. We recast
briefly the important equations and methods necessary to
solve the general relativistic hydrodynamical equations;
special relativity can be easily obtained by choosing flat
spacetime.

1. 3þ 1 decomposition

Although we assume the spacetime to be fixed, we have
to recast it in a suitable form for dynamical evolutions. This
can be done with the help of a 3þ 1 decomposition [42,43]
(see [44–46] for textbook introductions) in which the four-
dimensional spacetime metric is rewritten as

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð36Þ

where α is the lapse function, βi the shift vector, and γij the
spatial metric. In the case of a flat spacetime α ¼ 1; βi ¼ 0;
γij ¼ δij employing Cartesian coordinates. Einstein’s field
equations split into two sets, the constraint equations and
the evolution equations. For our single neutron stars tests,
we recast the TOVequation [26,27] in 3þ 1 form and solve
it to obtain an ordinary differential equation. In addition to
the 3þ 1 split we perform a conformal transformation of
the spatial metric,

γij ¼ ψ4γ̄ij; ð37Þ

where ψ is the conformal factor and γ̄ij the conformally
related metric.

2. Hydrodynamic equations

According to Eq. (1) we denote the state vector collect-
ing the conserved variables as u, while fiðuÞ are hydro-
dynamical fluxes, and S the source terms. The fluxes and
the sources depend in general on the metric and matter
fields. The conserved variables are u ¼ ffiffiffi

γ
p ðD; Sk; τÞ, and

denote respectively the rest-mass density (D), the momen-
tum density (Sk), and an internal energy (τ) measured by
the Eulerian observer given by the particular spacetime
foliation. γ ¼ det γij is the determinant of the spatial three-
metric. The conserved variables u can be reconstructed
from the primitive variables w ¼ ðρ; vi; ϵ; pÞ, i.e. rest-mass
density, 3-velocity measured by the Eulerian observer,
internal energy and pressure of the fluid, by the following
equations:

D ¼ Wρ; ð38aÞ

Sk ¼ W2ρhvk; ð38bÞ

τ ¼ ðW2ρh − pÞ −D; ð38cÞ

where W is the Lorentz factor, W ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − vivi

p
and h is

the specific enthalpy h ¼ 1þ ϵþ p=ρ.
To close the system an equation of state (EOS) p ¼

Pðρ; ϵÞ is needed. In this work, we use a simple polytropic

PðρÞ ¼ KρΓ ð39Þ

or an ideal gas EOS of the form
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Pðρ; ϵÞ ¼ ðΓ − 1Þρϵ; ð40Þ

where K is the polytropic constant and Γ is the adiabatic
index. The particular implementation of the hydrodynam-
ical equations follows [9,30].
However, due to the special choice of the background

metric, the flux and source terms simplify dramatically by
setting γ̄ij ¼ δij and βi ¼ 0 in all our examples.

3. Primitive recovery and atmosphere treatment

We evolve the conservative variables u by constructing
the fluxes and source terms for every time slice. While fi

and S both contain the primitive variables w we have to
recover those from the conservatives. The inverse relations
of (38a)–(38c) are given by

ρ ¼ D
W

; ð41Þ

vi ¼ Si

τ þDþ p
; ð42Þ

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ þ pþDÞ2 − S2

p
−Wp −D

D
; ð43Þ

with W¼ðτþpþDÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτþpþDÞ2−S2

p
and S2 ¼ SiSi.

To make use of (41)–(43), we have to determine the
pressure p.
The explicit primitive reconstruction goes as follows.

First, we try to recover the primitive variables for the full
equation of state including thermal components p¼Pðρ;ϵÞ.
For this reason a Newton-Raphson method is employed to
compute the pressure p. If the method does not converge to
the desired accuracy a cold equation of state p ¼ pðρÞ is
used and we try to find with a Newton-Raphson method the
density ρ.
As in most general relativistic hydrodynamic codes, we

have to include an artificial atmosphere to solve the
problem of fluid-vacuum interfaces. This allows long term
stable and robust numerical simulations [47–49]. The
atmosphere ρatm is computed according to

ρatm ¼ fatm · max½ρðt ¼ 0Þ�: ð44Þ

Whenever a point falls below the atmosphere threshold
ρthr ¼ fthr · ρatm during the evolution or the primitive
reconstruction, it is set to the atmosphere value.

B. Numerical implementation

Throughout this article we employ the bamps code [14].
It is based on the method of lines with a pseudospectral
decomposition in the spatial part and an explicit fourth
order Runge-Kutta for the time stepping. It has been
successfully used to study the gravitational wave collapse
and it allows long term simulations of single black hole

spacetimes with excision techniques. The program exhibits
a hybrid p-thread/message passing interface (MPI) paral-
lelization strategy and shows almost ideal scaling for up to
several thousands of computing cores in vacuum simula-
tions; see [14] for more details.
In this work we extend the bamps code by implement-

ing (i) discontinuous Galerkin methods, (ii) a general
relativistic hydrodynamics scheme for fixed background
metrics, (iii) a simple high resolution shock capturing
(HRSC) scheme as in [25], and (iv) a subcell-HRSC
scheme [35]. This work is the first step towards a more
general infrastructure for the simulation of compact binary
systems where matter is present. Although bamps allows
grid structures known as “cubed spheres” [50], we restrict
ourselves to simple Cartesian boxes. However, a generali-
zation could be achieved easily.
For the standard WENO implementation, we recast the

crucial equations in matrix form, where all matrices can be
precomputed from the geometry before evolution. During
the actual simulation (i) the smoothness indicators are
calculated from the cell averages as a quadratic form
βi ¼ Qkl

i uiþkuiþl; (ii) the weights are determined by
(27); (iii) the value piðξqÞ of the approximating polynomial
of stencil i at the collocation points ξq is evaluated from the
cell averages by a matrix-vector multiplication piðξqÞ ¼
Cqr
i uiþr originating from (21); and (iv) the final

reconstruction is calculated by (28). For simple WENO
computations, the only difference is that in steps (i) and
(iii) the matrices are larger, because the βi and piðξqÞ not
only depend on the averages of the neighbor cells, but the
full polynomial given by N þ 1 coefficients per cell.
In contrast to previous work, where no restriction algo-

rithm (Sec. II B) was present, we need to communicate more
then just the two-dimensional boundary layers of every cell.
Therefore, we introduced a new grid distribution method to
reduce the communication between different processors. The
Cartesian grid consisting of n ¼ nxnynz boxes is distributed
on p processes in such a way that communication between
the processes is minimal. For this purpose, we perform
a prime decomposition of p ¼ p1p2…pi and set the
number of grids per direction px ¼ p1; py ¼ p2; pz ¼ p3

initially. Let pmin ¼ minðpx; py; pzÞ; we recalculate pmin as
pmin ↦ pmin · p4. For further pj, we proceed in the same
manner, so that each pj is always multiplied with the
smallest of px, py, pz. Finally, we subdivide the full box
grid inpx parts in x direction, in py parts in y direction and in
pz parts in z direction. Each of these px · py · pz parts is
mapped to one MPI process, which gives a simple box
decomposition, which is almost cubical.

IV. SIMPLE TEST BEDS

A. Advection equation

As a first test for our new algorithms we consider the
advection equation without a source (S ¼ 0)
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∂tuþ ∂xu ¼ 0 ð45Þ

for a Gaussian peak on the interval x ∈ ½−1; 1�,

uðx; 0Þ ¼ Aeð−x2=σ2Þ þ Aeð−ðx−2Þ2=σ2Þ þ Aeð−ðxþ2Þ2=σ2Þ

ð46Þ
(we artificially add two peaks to gain smooth, periodic
initial data) and a rectangular pulse (nonsmooth initial
data)

uðx; 0Þ ¼
�
1 if jx − x0j < σ

0 else
: ð47Þ

The convergence rate in the first test case (A ¼ 1,
σ ¼ 0.4) is influenced by several effects; see Table I.
For our choice of polynomials with order N, we find

convergence rates up to order N þ 1, as expected.
However, in an error regime beyond 10−10, we observe
a further drop in the convergence rates, because of the
growing influence of truncation errors. Applying the
standard WENO reconstruction procedure leads to
slightly different results. Convergence for small numbers
of nx is slower, but finally shows convergence above
N þ 1th order. This can be explained by the decreasing
influence of the WENO procedure for increasing nx. The
cell indicator only marks the cells around the maximum
of the Gaussian peak as troubled, so the effective area,
where the WENO reconstruction takes place, decreases.
Since the reconstruction has a strong smoothing effect, the

numerical results significantly differ from the analytic
solution for small nx and tend to the pure DG solution for
large nx. Comparing the two WENO implementations, we
observe that the simple WENO algorithm shows slower
convergence, but while the standard WENO is ∼1 − 2
orders of magnitude less accurate than the pure DG
evolution, the simple WENO performs much better,
showing roughly the same L1-errors as the pure DG
evolution. Although we have not examined this in detail,
it is plausible that the simple WENO reconstruction is
closer to pure DG than standard WENO since simple
WENO uses the full DG solution of the immediate
neighbors.
For the second case Eq. (47), which we just summarize

briefly, we observe larger total errors than for the smooth
problem discussed above. Again the pure DG-method
errors are below the corresponding errors for the
DGþ standard WENO method. However, the differences
are at most a factor of 2. The simple WENO algorithm has
comparable errors as the DGþ standard WENO method.
Independent of the scheme we observe first order con-
vergence, which is consistent with the expectation for a
nonsmooth problem containing discontinuities.
In these and some of the following tests the DG method

gives accurate results even when not combined with a
reconstruction method, and it is clearly also the most
efficient method. However, more demanding situations
involving shocks typically require methods to handle the
shocks explicitly.

TABLE I. Numerical errors and convergence orders for the advection equation problem (46) at t ¼ 10 for different
numbers of grid patches nx and orders of DG polynomials N (CFL ¼ 0.25, M ¼ 1).

DG DGþWENO-7 DGþ simpleWENO

nx N L1 error Order L1 error Order L1 error Order

10 1 1.53 × 10−1 2.92 × 10−1 1.51 × 10−1

20 3.63 × 10−2 2.08 1.40 × 10−1 1.05 4.79 × 10−2 1.65
40 5.34 × 10−3 2.76 3.77 × 10−2 1.90 6.64 × 10−3 2.85
80 7.29 × 10−4 2.87 7.15 × 10−3 2.39 7.29 × 10−4 3.18
160 1.24 × 10−4 2.54 1.28 × 10−3 2.48 1.24 × 10−4 2.54
320 2.84 × 10−5 2.12 2.36 × 10−4 2.43 2.84 × 10−5 2.12
10 3 2.04 × 10−4 4.84 × 10−2 2.12 × 10−4

20 1.02 × 10−5 4.32 1.51 × 10−3 4.99 1.02 × 10−5 4.37
40 6.27 × 10−7 4.03 4.99 × 10−5 4.92 6.36 × 10−7 4.01
80 3.90 × 10−8 4.00 9.71 × 10−7 5.68 3.98 × 10−8 3.99
160 2.44 × 10−9 4.00 1.60 × 10−8 5.92 2.53 × 10−9 3.97
320 1.52 × 10−10 4.00 3.03 × 10−10 5.72 1.62 × 10−10 3.96
10 5 7.99 × 10−7 9.95 × 10−2 5.75 × 10−6

20 1.88 × 10−8 5.40 1.11 × 10−2 3.15 1.27 × 10−7 5.49
40 8.92 × 10−10 4.39 4.09 × 10−4 4.76 5.26 × 10−9 4.59
80 5.42 × 10−11 4.04 8.67 × 10−6 5.56 1.28 × 10−10 5.35
160 3.40 × 10−12 3.99 1.40 × 10−7 5.95 1.52 × 10−11 3.07
320 6.48 × 10−13 2.39 7.66 × 10−10 7.51 1.94 × 10−10
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B. Burgers equation

The Burgers equation without source (S ¼ 0),

∂tuþ u∂xu ¼ 0; ð48Þ

allows the formation of shocks from smooth initial data u0.
After the time

tshock ¼ −
�
min

∂u0
∂x

�
−1

ð49Þ

shocks appear during the evolution. We use this as a test
bed for our code and evolve the initial Gaussian peak (46)
with A ¼ 1 and σ ¼ 0.2. For this initial conditions, a shock
forms at tshock ≈ 0.23316. Similarly to our results for the
advection equation we observe that the convergence rate is
decreasing after tshock; see Fig. 2. The lower panels show
snapshots of the field u at times t ¼ 0.05, 0.15, 0.25.
Without WENO reconstruction (circles) we observe the
expected convergence order of N þ 1 up to tshock. Shortly
before the shock formation at tshock convergence starts to
drop for all N (gray shaded region). Employing a standard
WENO algorithm convergence is slightly above the
expected N þ 1th order. As discussed for the advection
equation, this is related to the amount of troubled cells,
which are reconstructed. For higher resolution a smaller
percentage of cells is reconstructed and consequently a
faster convergence is observed. After the shock formation
the convergence order drops also for DGþWENO to
approximately first order convergence.
In addition, we prepared the initial conditions

uðx; 0Þ ¼ 0.5þ sinðxπÞ ð50Þ

and check convergence at t ¼ 0.5=π to compare with the
results of [8]; Table II summarizes the results. Because of

FIG. 2. Convergence rate during the evolution of a Gaussian
wave packet for the Burgers equation (48): As expected, the
convergence rate is around N þ 1 during the evolution of a
smooth wave. At tshock ≈ 0.233, a shock forms and the rates
significantly drop down to first order convergence. When a
standard WENO-7 reconstruction is used (crosses) the conver-
gence rates are slightly higher than for the pure DG scheme
(dots). The convergence rate is calculated from the errors of a
nx ¼ 160 and a nx ¼ 320 run.

TABLE II. Numerical errors and convergence orders for the Burgers equation problem (50) at t ¼ 0.5
π for different

numbers of grid patches nx and orders of DG polynomials N.

DG DGþWENO-7 DGþ simpleWENO

nx N L1 error Order L1 error Order L1 error Order

10 1 5.34 × 10−2 6.09 × 10−2 8.23 × 10−2

20 1.45 × 10−2 1.87 1.80 × 10−2 1.75 1.61 × 10−2 2.34
40 4.29 × 10−3 1.76 4.66 × 10−3 1.94 4.80 × 10−3 1.75
80 1.24 × 10−3 1.78 1.29 × 10−3 1.84 1.24 × 10−3 1.94
160 3.60 × 10−4 1.78 3.69 × 10−4 1.80 3.60 × 10−4 1.78
320 1.02 × 10−4 1.82 1.03 × 10−4 1.83 1.02 × 10−4 1.82
10 3 1.80 × 10−3 3.94 × 10−3 1.80 × 10−3

20 9.80 × 10−5 4.20 1.50 × 10−4 4.71 9.80 × 10−5 4.20
40 6.36 × 10−6 3.94 6.72 × 10−6 4.48 6.36 × 10−6 3.94
80 4.21 × 10−7 3.91 4.22 × 10−7 3.99 4.21 × 10−7 3.91
160 2.71 × 10−8 3.95 2.71 × 10−8 3.95 2.71 × 10−8 3.95
320 1.75 × 10−9 3.95 1.75 × 10−9 3.95 1.75 × 10−9 3.95
10 5 3.58 × 10−5 5.86 × 10−3 3.58 × 10−5

20 7.61 × 10−7 5.55 1.49 × 10−4 5.29 7.60 × 10−7 5.55
40 1.61 × 10−8 5.56 1.33 × 10−6 6.81 1.62 × 10−8 5.54
80 2.97 × 10−10 5.75 1.16 × 10−8 6.83 2.98 × 10−10 5.77
160 5.47 × 10−12 5.76 1.63 × 10−10 6.14 5.47 × 10−12 5.76
320 1.15 × 10−13 5.56 9.49 × 10−13 7.43 1.15 × 10−13 5.57
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the smoothness of the solution, we observe for N ¼ 1
polynomials second order convergence independent of the
reconstruction method applied in the troubled cells. While
the total L1 error for DGþWENO-5 is approximately a
factor of 2–3 larger than the pure DG evolution, we see that
the DGþ simple WENO algorithm performs as well as
pure DG. For N ¼ 3 polynomials, we expect fourth order
convergence, which we can verify with the pure DG and the
DGþ simple WENO setup. The DGþWENO-5 algo-
rithm shows a higher convergence rate for low resolutions,
which is again caused by the fact that a larger number of
cells decreases the interval where a reconstruction is
performed.

V. SPECIAL RELATIVISTIC HYDRODYNAMICS

In the following section, we solve the GRHD conserva-
tion law (1) [9,30] without source terms and with α ¼
ψ4 ¼ 1 to consider special relativistic test cases, i.e. flat
spacetimes. Regarding the EOS, we set Γ ¼ 5

3
and K ¼ 1.

A. One-dimensional problems

As a first test, we consider a smooth sine wave
propagating with constant speed. The initial conditions are

ρðx; tÞ ¼ 1þ 0.2 sinð2πðx − vxtÞÞ;
vxðx; tÞ ¼ 0.2;

pðx; tÞ ¼ 1; ð51Þ

inside the periodic one-dimensional domain x ∈ ½−1; 1�
divided into nx uniform grid patches. Viewing the L1 errors
and convergence rates (Table III), we find the convergence
rate of the DG scheme to be N þ 1, when we use
polynomials p ∈ PNð½−1; 1�Þ. In Appendix B we compare
numerical results for analytic mass matrix with mass
lumping for N ¼ 1.
Although we are dealing with a smooth problem a few

cells around the maximum of the density ρ are marked as
troubled. When we employ the standard WENO-5 or
WENO-Z reconstruction method, we observe at least
one order of magnitude larger absolute errors as in the
pure DG case for the employed resolutions. Contrary to
this, the convergence order is artificially higher than for the
pure DGmethod. For the simple WENOmethod, we obtain
absolute errors compatible or identical with the scheme
without reconstruction and obtain a convergence order of
N þ 1 for an Nth order polynomial. In the case of the
subcell evolution, i.e. when we project the grid patch data
on a finer subcell treating this with the finite differencing
method, we observe similar convergence rates. The subcell
evolution itself is performed with a fifth order accurate
scheme [51], which we verify with simulations using only
subcells.
As a second test focusing on the ability of our scheme to

deal with discontinuities, we consider the shock tube
problem with initial conditions

ðρ; vx; pÞðx; 0Þ ¼
� ð10; 0; 13.33Þ if x < 0.5

ð1; 0; 10−7Þ if x ≥ 0.5
ð52Þ

TABLE III. Numerical errors and convergence orders for problem (51) at t ¼ 2 for different numbers of grid patches nx, orders of DG
polynomials N and several shock resolution methods.

DG DGþWENO-5 DGþWENO-Z DGþ simpleWENO DGþ subcells Subcells only

nx N L1 error Order L1 error Order L1 error Order L1 error Order L1 error Order L1 error Order

10 1 1.22 × 10−3 8.46 × 10−2 8.62 × 10−2 1.80 × 10−2 2.85 × 10−3 3.22 × 10−6

20 2.73 × 10−4 2.15 2.80 × 10−2 1.59 2.69 × 10−2 1.67 1.86 × 10−3 3.27 1.95 × 10−3 0.54 1.00 × 10−7 5.00
40 6.72 × 10−5 2.02 4.83 × 10−3 2.53 4.77 × 10−3 2.49 7.03 × 10−5 4.72 4.07 × 10−4 2.26 3.14 × 10−9 4.99
80 1.67 × 10−5 2.00 6.61 × 10−4 2.86 6.43 × 10−4 2.89 1.67 × 10−5 2.06 8.86 × 10−5 2.20 9.84 × 10−11 4.99
160 4.18 × 10−6 2.00 9.64 × 10−5 2.77 8.73 × 10−5 2.88 4.18 × 10−6 2.00 2.02 × 10−5 2.13 3.08 × 10−12 4.99
320 1.04 × 10−6 2.00 1.40 × 10−5 2.77 1.44 × 10−5 2.59 1.04 × 10−6 2.00 4.31 × 10−6 2.22 1.14 × 10−13 4.75
10 3 4.27 × 10−6 3.69 × 10−3 9.67 × 10−4 4.33 × 10−6 1.58 × 10−5 1.08 × 10−7

20 3.29 × 10−7 3.70 4.52 × 10−5 6.35 1.83 × 10−5 5.72 3.21 × 10−7 3.75 9.33 × 10−7 4.08 3.39 × 10−9 4.99
40 1.79 × 10−8 4.20 7.37 × 10−7 5.93 2.10 × 10−7 6.44 1.76 × 10−8 4.18 4.49 × 10−8 4.37 1.06 × 10−10 4.99
80 9.39 × 10−10 4.25 1.09 × 10−8 6.07 3.39 × 10−9 5.95 9.50 × 10−10 4.21 3.56 × 10−9 3.65 3.31 × 10−12 5.00
160 6.01 × 10−11 3.96 1.58 × 10−10 6.10 1.31 × 10−10 4.69 6.06 × 10−11 3.96 2.08 × 10−10 4.09 1.07 × 10−13 4.94
320 3.80 × 10−12 3.97 6.96 × 10−12 4.51 6.93 × 10−12 4.24 3.84 × 10−12 3.97 1.26 × 10−11 4.04 2.06 × 10−14 2.37
10 5 2.63 × 10−9 8.53 × 10−3 1.48 × 10−3 3.79 × 10−8 5.09 × 10−8 1.78 × 10−8

20 3.86 × 10−11 6.08 2.67 × 10−4 4.99 2.13 × 10−5 6.11 5.55 × 10−10 6.09 1.36 × 10−9 5.22 5.57 × 10−10 4.99
40 6.13 × 10−13 5.97 4.80 × 10−6 5.79 1.89 × 10−7 6.81 6.97 × 10−12 6.31 1.04 × 10−11 7.02 1.74 × 10−11 4.99
80 4.64 × 10−14 3.72 6.47 × 10−8 6.21 1.54 × 10−9 6.93 1.95 × 10−13 5.15 3.93 × 10−13 4.73 5.52 × 10−13 4.97
160 8.63 × 10−14 2.98 × 10−10 7.76 1.30 × 10−11 6.89 9.70 × 10−14 1.00 1.20 × 10−13 1.70 4.41 × 10−14 3.64
320 1.80 × 10−13 8.81 × 10−13 8.40 6.47 × 10−13 4.32 7.69 × 10−13 2.48 × 10−13 4.94 × 10−14
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on the domain x ∈ ½0; 1�. The analytical solution for this
problem in the context of SRHD is given by [52]. During
our tests, we observe the troubled cell indicator to work
reliably, since the grid patches which evolve the shock and
the rarefaction wave are marked as troubled. All methods,
the standard DG-WENO methods, the simple WENO
approach as well as the subcell projection method, are
able to provide a stable evolution of the shock tube
problem, shown in Fig. 3.

B. Two-dimensional problems

Generalizing our results to more complex two-
dimensional wave setups, we perform two tests as pre-
sented [25]: A shocklike test with the initial conditions

ðρ; vx; vy; pÞðx; 0Þ

¼

8>>><
>>>:

ð0.03515; 0; 0; 0.163Þ if x > 0; y > 0

ð0.1; 0.7; 0; 1Þ if x < 0; y > 0

ð0.5; 0; 0; 1Þ if x < 0; y < 0

ð0.1; 0; 0.7; 1Þ if x > 0; y < 0

; ð53Þ

and a vortexlike test with the initial conditions

ðρ; vx; vy; pÞðx; 0Þ

¼

8>>><
>>>:

ð0.5; 0.5;−0.5; 5.0Þ if x > 0; y > 0

ð1; 0.5; 0.5; 5.0Þ if x < 0; y > 0

ð3.0;−0.5; 0.5; 5.0Þ if x < 0; y < 0

ð1.5;−0.5;−0.5; 5.0Þ if x > 0; y < 0

; ð54Þ

with ðx; yÞ ∈ ½−1; 1� × ½−1; 1�. During the evolution of
both cases, all initial discontinuities are captured by the
troubled cell indicator. We get the results as shown in
Fig. 4. We tested in detail the standard WENO and the
DGþ subcell scheme; the figures show that the WENO-5
and DGþ subcell evolution give qualitatively the same
results. In the case of the shock tube, Eq. (53), left panels,
fewer cells are marked troubled for the DGþ subcell
scheme. Furthermore, the DGþ subcell method resolves
steep gradients better than the standard WENO
reconstruction. This becomes most dominant in a domain
around x ¼ y ¼ −0.2. However, due to the larger computa-
tional expenses the DGþ subcell scheme is a factor of
∼2.4 times slower than the standard WENO method.
The right panels of Fig. 4 represent the vortex test,

cf. (54). As for the shock tube, both methods are able to
resolve the structure properly. Again the DGþ subcell
method gives more accurate results, i.e. acting less dis-
sipative keeping shock regions resolved, but also needs
more computational resources and is ∼3.2 times slower
than the standard WENO implementation.
For a systematic comparison of the efficiency of the two

methods we could increase the resolution of the WENO
method until it matches the accuracy of the subcell scheme
and then compare run times. We postpone a detailed study
of efficiency since this is more relevant for real applica-
tions, where an important part of the computational load is
how many cells actually require the more expensive shock
treatment.

VI. GENERAL RELATIVISTIC HYDRODYNAMICS

As the final test of our new implementation, we consider
relativistic material in a curved spacetime background and
present results for a TOV star in Cowling approximation in
one dimension, two dimensions, and 3D. Notice, however,
that the one-dimensional and two-dimensional description
is not identical to the 3D star. Being more specific, surfaces
of constant densities correspond for the one-dimensional
test to planes, for the two-dimensional test to cylindrical
shells, and for the 3D test to spherical shells; cf. discus-
sion below.

A. Initial configuration

Initial configurations for a single spherical symmetric
neutron star are obtained by solving the TOV equa-
tion [26,27]. The four-metric for a TOV star is given by

FIG. 3. Evolution of the special relativistic shock tube initial
data (52) (density, red; velocity, blue; pressure, green): Numerical
results using the standard WENO-3 (top, dots), standard WENO-
5 (top, crosses), WENO-Z (bottom, dots), simple WENO
(bottom, crosses) and the subcell evolution method (diamonds),
compared to the analytical result (black line) at t ¼ 0.4. For the
troubled cell indication, we set M ¼ 5.
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ds2 ¼ −e2ϕdt2 þ
�
1 −

2m
R

�
−1

dR2 þ R2dΩ2: ð55Þ

To obtain mðRÞ;ϕðRÞ, and the pressure pðRÞ, the TOV
equations,

dρ
dR

¼ ðρð1þ ϵÞ þ pÞmþ 4πr3p
RðR − 2mÞ ·

1
dp
dρ

; ð56Þ

dm
dR

¼ 4πR2ρð1þ ϵÞ; ð57Þ

dϕ
dR

¼ mþ 4πR3p
RðR − 2mÞ ; ð58Þ

are solved with an explicit fourth order Runge-Kutta
algorithm. As starting values ρðR ¼ 0Þ ¼ ρcentral;
mðR ¼ 0Þ ¼ 0, and ϕðR ¼ 0Þ ¼ 0 are specified and the
system is closed by the polytropic EOS Eq. (39)
(Γ ¼ 2; K ¼ 100). Afterwards a coordinate transformation
is performed to obtain the metric in isotropic coordinates,
which we use for the evolution, because α and ψ4 can easily
be obtained from this form. This solution describes the
spacetime of a static, spherically symmetric star. However,
due to the discontinuity at the star surface and truncation
errors, the evolution is nontrivial.

B. One-dimensional-TOV tests

Before we investigate the performance of our newly
implemented algorithms in full 3D simulations, we

FIG. 4. Special relativistic hydrodynamics simulations in two dimensions for the shock tube problem (53) (left) and the vortex
problem (54) (right) at t ¼ 0.8, each evolved with the standard WENO-5 reconstruction (top) and the subcell evolution method (bottom)
using n ¼ 100 × 100 grid patches, polynomials of order N ¼ 3, M ¼ 5, CFL ¼ 0.25: Density plot with contours, corresponding
velocity field (arrows) and troubled cells (shaded regions).
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consider configurations similar to the TOV star in just one
or two dimensions. A natural option to consider is the
Cartoon method [14,53,54], where the 3D equations are
implemented on one-dimensional or two-dimensional
domains by using boundary conditions derived from
spherical or axial symmetry. However, for the present
work we found that there is a simple alternative. We obtain
a quasistationary test case in the Cowling approximation
by considering the standard 3D TOV data on a one-
dimensional line or two-dimensional plane and setting
all derivatives not contained in the domain (say, the y
and/or z direction) to 0. The numerical results indicate that
the 3D TOV data are a stationary configuration under these
conditions.
Setting certain derivatives at the boundary to 0 is

similar to implementing a translation symmetry in that
direction, while the boundary conditions to obtain the
same evolution as for the TOV star in 3D are given by e.g.
the Cartoon method. Referring to [14], for axisymmetry
about the z axis we have ∂yuðx; 0; zÞ ¼ 0 for a scalar,
while for a vector ∂yvyðx; 0; zÞ ¼ vx=x. Hence for scalars
the derivative is 0, while for vectors it is not 0 in general.
However, in the TOV example the relevant vector vari-
ables are in fact 0 as well. In particular, the velocity is 0,
so again the result of the partial derivative at the boundary
is 0. Notice also that no second derivatives are present in

Eq. (1) and that due to the restriction to the Cowling
approximation first and second derivatives present in the
metric field equations do not affect the simulation. In
conclusion, we expect a numerical evolution for the
truncated one-dimensional and two-dimensional models
that is similar but not identical to that of the full 3D-TOV
example, while the analytic equilibrium configuration is
the same.
We consider the one-dimensional-TOV model here and

the two-dimensional-TOV model in the next section.
Because of the smaller computational costs, we discuss in
detail one-dimensional-TOV results for all reconstruction
algorithms; in particular, we study WENO-3, WENO-5,
WENO-Z, simple WENO reconstruction, as well as a DGþ
subcell and a pure subcell method for comparison. We have
set in all our tests fatm ¼ 10−8 and fthr ¼ 102. Figure 5
shows the density ρ (blue), the velocity vx (red), and the
difference jρ − ρanalj (green), where ρanal refers to initial
condition constructed according to Sec. VI A. All
reconstruction algorithms lead to stable evolutions. In
general we observe three regions of troubled cells, the left
star surface, the maximum of the density, and the right star
surface. During the evolution some troubled cells are
activated or deactivated, which explains why for WENO-
Z reconstruction at the presented time t ¼ 1000 the surfaces
are not marked as troubled.

FIG. 5. Density (blue), density error (green) and velocity (red) cell averages at t ¼ 1000 (≈40 light-crossing times) for a one-
dimensional TOV star using n ¼ 100 cells, polynomials of orderN ¼ 3, CFL ¼ 0.25, fatm ¼ 1 × 10−8 and fthr ¼ 100 evolved with DG
and several shock resolution methods. The cells marked as troubled at t ¼ 1000 are colored in gray. The result of the pure subcell run,
which is equivalent to a finite difference simulation, is shown for comparison.
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We observe that WENO-3, WENO-5, and WENO-Z
perform worst, i.e. large velocities are present at the stars’
surface and jρ − ρanalj is larger as for the other
reconstruction mechanisms (notice the different y scales
for vx and jρ − ρanalj). The best results are obtained with the
simple WENO and DGþ subcell methods. The total L1

errors of ρ for the given setup are 6.0 × 10−7 for simple
WENO and 4.6 × 10−7 for DGþ subcell method. The pure
subcell evolution performs as well as the DGþ subcell
method.
The advantage of the simple WENO and subcell meth-

ods can be understood by considering the effectively higher
resolution compared to the other schemes. In the standard
WENO case, only the cell averages are used for the
componentwise reconstruction; therefore the effective res-
olution drops depending on the employed polynomial
order. In contrast, the simple WENO approach uses the
full information of the polynomial inside the cell and
additionally uses only three cells for the reconstruction;
thus no significant performance loss is obtained and the
simple WENO reconstruction is a factor 1.57 slower than
the standard WENO-3 approach (a factor 1.40 slower than
the standard WENO-5 approach). Finally, in the DGþ
subcell method points are added in problematic regions.
Because of the additional computational effort due to the
projection between top and subcells and the larger number
of points in the troubled cells, the algorithm is a factor of
∼1.67 slower than the standard WENO method. Although
not noticeable for one-dimensional setups, we encounter
for higher dimensional setups a significantly larger amount

of memory, i.e. a ∼2.7 times higher memory load for two-
dimensional runs (∼4.8 times higher for 3D) when subcells
are activated compared to standard WENO-3 simulations.
Nevertheless the DGþ subcell approach seems to be a
valid choice for further development, because it (i) allows
us to reuse well-tested FD schemes in troubled regions,
(ii) gives the most accurate results due to an effectively
higher resolution in troubled regions, and (iii) allows a
speed up compared to the usually employed FD codes,
because of a more effective DG method in large parts of the
numerical domain.
In Fig. 6 we present a pointwise convergence test for all

methods. We compare evolutions with 25,50,100 cells and
use polynomials of order 3. The difference between the low
and medium resolution is shown in blue, while the differ-
ence between the medium and high resolution is shown in
red. We rescale the difference of the medium and high
resolution according to the expected convergence order, i.e.
third order for WENO-3 and fourth order for the other
schemes. We observe that in all cases we obtain roughly the
expected convergence order. Furthermore in the logarithmic
plots it is clearly visible that for some setups the outer
regions of the star are smeared out. In the case of standard
WENO algorithms larger stencils (WENO-5 andWENO-Z)
lead to a numerical solution where the outer star layers are
not fixed and no sharp surface is visible; this improves for
the WENO-3 reconstruction. Contrary to this, the simple
WENO and DGþ subcell method keep the surface of the
star fixed. In all runs higher resolution improves the results
and less material is leaving the star.

FIG. 6. Convergence test for a one-dimensional TOV star at t ¼ 100 for three resolutions nhigh ¼ 100; nmid ¼ 50; nlow ¼ 25,
polynomials of order N ¼ 3, CFL ¼ 0.25, fatm ¼ 1 × 10−8 and fthr ¼ 100 evolved with DG and several shock resolution methods.
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The simplicity of the one-dimensional-TOV star allows
us to consider setups with higher resolution than achievable
in the corresponding two-dimensional and 3D tests and a
more detailed analysis becomes possible. A recurring
question is how regions with low order convergence
(because of low differentiability of the solution) affect
regions where the solution is smooth. Specifically, do the
regions of low order remain localized, or if not, how
quickly does the loss of convergence spread through the
entire domain? See for example [55], where the wave
equation with discontinuous initial data is studied, for
which analytic results are available in [56] predicting the
growth of the nonconvergent area with, e.g., the square root
of time, ∼

ffiffi
t

p
.

Figure 7 shows the convergence order during the first
stages of the evolution up to t ¼ 100 for 50 and 100 cell
setup. Presented are the WENO-3 (top panel), simple
WENO (middle panel), and the subcell (bottom panel)
evolution. For all panels, we observe that inside the star,
where also cells are marked as troubled, the WENO-3
method shows ∼third order convergence and the simple
WENO method a convergence order above 4. Furthermore,
while for WENO-3 the error seems to corrupt the

convergence in the entire star it seems to be localized
for simple WENO for the entire simulation. For the subcell
evolution we observe that the convergence order at the
stars’ center lies between second and third order, which is
consistent with the employed flux methods implemented in
the FD subcells [41]. Artificially setting the center cells as
nontroubled cures this problem and leads locally to higher
order convergence. However, it has no influence on the
global convergence order. More problematic, a large error
is traveling inwards from the outer surface for all simu-
lations, which leads to a lower convergence order for all
setups.
For runs until t ¼ 1000, there is further degradation of

convergence. This is a delicate issue which deserves further
investigation. We are not aware of comparable studies in
the literature, although long term convergence is an
important issue. Notice that this effect is not related to
the movement of troubled cells. The region of troubled cells
stays relatively fixed at the stars’ surface. Nevertheless the
convergence order drops across the entire star. Regarding
this fact, it is debatable whether one can obtain high order
convergence in more general setups, e.g. dynamical space-
times and moving objects.

C. Two-dimensional TOV star

Considering the results of the previous section, the
simple WENO and DGþ subcell schemes seem to be
preferable. However, we found that the simple WENO
method performs worse in higher dimensional problems as
in the one-dimensional case. Compared to the standard
WENO reconstruction, where a smoother polynomial from
several cell averages is constructed, the simple WENO
methodology allows steeper gradients and has weaker
smoothing influence. For runs of higher dimensional
problems we observe this smoothing to be crucial for
the stability of the evolution. Furthermore, the simple
WENO computation underlies a significant slowdown in
d > 1 dimensions, because the evaluation of the smooth-
ness indicators is a quadratic form of all ðN þ 1Þd coef-
ficients. This is the reason why the standard WENO-3
scheme, which turns out to allow stable evolutions, is used
instead.
We investigated the convergence of the two schemes,

standard WENO-3 and DGþ subcell, for the two-
dimensional TOV star1 regarding the density L1 error.
As shown in Fig. 8, we observe a convergence order of ∼2
for the subcell scheme, which indicates that the evolution
error originating in the subcells spreads over the grid and
leads to a lower order of convergence. In comparison, the
standard WENO-3 scheme converges in third order for

FIG. 7. Convergence order for a one-dimensional TOV star
during evolution t ∈ ½0; 100� for two resolutions nhigh ¼ 100,
nlow ¼ 50, polynomials of order N ¼ 3, CFL ¼ 0.25, fatm ¼
1 × 10−8 and fthr ¼ 100 evolved with DG and three shock
resolution methods: standard WENO-3 (top), simple WENO
(middle) and DGþ subcell (bottom).

1As for the one-dimensional test, we employ Cartesian
coordinates and due to the restriction to a fixed spacetime
background also our two-dimensional-TOVexample is in hydro-
dynamical equilibrium.
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coarse grids. The subcell method causes a much higher
memory load and longer calculation times (see Sec. VI B)
because of the higher number of grid points in each
direction. For this reason, we decided to use the standard
WENO-3 method for the 3D simulation of a TOV star.

D. 3D TOV star

Considering a 3D TOV star, we are able to provide a
stable simulation with a DGþ standard WENO-3
method. Although we show our results up to t¼ 1000,
there is no evidence of any instabilities for longer runs.
We are considering two numerical setups at resolutions
25 × 25 × 25 and 50 × 50 × 50 and the initial configu-
ration as a reference solution. After a short transition, the
numerical simulations reach an almost steady structure as
shown in Fig. 9. The density profiles along the x and y
axis are shown as red and blue lines. The difference
between the densities for z ¼ 0 is presented as the gray
shaded region. On the bottom panel, we present the
computed convergence order. In large areas of the star
second to fourth order convergence is present and even
higher convergence in its center and outside areas near
the surface. The latter can be explained by the failure of
the coarse grid setup to keep the density on atmosphere
level outside the star, whereas the fine grid setup does.
The narrow band of low convergence (colored blue)
inside the star can be explained as follows: The finer
resolved solution stays closer to the density maximum in
the star center and 0 at the star’s surface; the opposite
holds for the coarse resolution. Thus, the differences tend
to 0, see the solid black line, and the convergence drops
locally.

As a global measurement of the convergence order, we
present the L1 norm for the 3D TOV star in Fig. 10 for four
different resolutions. Similar to the two-dimensional test
case, we observe an almost third order convergence (black
dashed line) for the standard WENO-3 algorithm with third
order polynomials. Using a fitting function of the form
A · n−bx for the L1 error, the obtained convergence order is
b ¼ 2.75 for t ¼ 500 and b ¼ 2.88 for t ¼ 1000 and thus
close to the theoretical expected value.

FIG. 8. Density L1 error for a two-dimensional TOV star
at t ¼ 500, t ¼ 1000 for six resolutions n ¼ 25, 50, 75, 100,
150, 200, polynomials of order N ¼ 3, CFL ¼ 0.25 and
fthr ¼ 100 evolved with DGþ standard WENO-3 and the
DGþ subcell evolution method. For WENO-3 we set fatm ¼
1 × 10−8; for the DGþ subcell we set fatm ¼ 1 × 10−9.
The dashed black lines correspond to second/third order
convergence.

FIG. 9. Pointwise convergence order in the z ¼ 0 plane for the
density of a 3D TOV star at t ¼ 500 using two resolutions
nhigh ¼ 50, nlow ¼ 25, polynomials of order N ¼ 3, CFL ¼ 0.25,
fatm ¼ 1 × 10−8 and fthr ¼ 100 evolved with DG and standard
WENO-3. The two density solutions for n ¼ 50 (red) and n ¼ 25
(blue) are shown on the axes x ¼ z ¼ 0 and y ¼ z ¼ 0. Their
difference in the z-plane is shown in gray; the corresponding zero
crossing is indicated by the gray contour line.

FIG. 10. Density L1 error for a 3D TOV star at t ¼ 500, t ¼
1000 for four resolutions n ¼ 20, 32, 40, 50, polynomials of
order N ¼ 3, CFL ¼ 0.25, fatm ¼ 1 × 10−8 and fthr ¼ 100
evolved with DG and standard WENO-3. The dashed black
lines correspond to third order convergence.
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VII. CONCLUSION

In this work, we presented new algorithms imple-
mented in the existing bamps code: a DG, a WENO-
DG, and a mixed FD + DG-algorithm combined with
standard WENO [8,40] and a simple (compact) WENO
scheme [28]. We tested all algorithms and reconstruction
methods with a number of tests starting with the
advection and Burgers equation, the main results being
examples for special and general relativistic hydrody-
namics. In almost all cases, we were able to obtain the
expected convergence order for smooth solutions and also
found a proper shock treatment in the case of jumps and
discontinuities.
Our main result was the simulation of a single TOV star,

which we modeled in the Cowling approximation, i.e. for
static geometric variables. In fact, while it has not been
attempted yet to apply the existing DG methods for the
vacuum Einstein equations [20,21] to 3D GRHD, we have
demonstrated recently that the pseudospectral multipatch
method of bamps [14] works well for demanding 3D
vacuum spacetimes (highly nonlinear gravitational waves
that collapse to a black hole). The pseudospectral penalty
method developed in [14] can be viewed as a special case of
a DG method for the full Einstein equations in a nonflux
form. Furthermore, the present work on GRHD and the
wave-collapse simulations are compatible in the type
of variables and equations they use, and can run with
the same spectral element grid and polynomial basis
functions (Chebyshev or Legendre-Gauss-Lobatto grids).
Therefore, we do not expect any immediate obstacle to
combine the existing geometry code with the new GRHD
methods.
Let us note, however, that additional development may

be required to handle more complicated physical models.
As a step beyond the simple TOV star we have started to
investigate a rotating star in equilibrium, but we encoun-
tered problems that require further study. Although stable
simulations are possible, we leave a careful investigation to
future work.
With regard to numerical methods, a simplifying restric-

tion in our implementation was the usage of a simple
troubled cell indicator. We intend to study the influence of
different and more sophisticated troubled cell indicators.
While our simple setup allowed an easy implementation
and stable evolutions, it also marked maxima as troubled,
which should be avoided in the future application of
the code.
Keeping the number of employed cells fixed, we found

that for one-dimensional problems the subcell and simple
WENO algorithms were the most accurate ones. This can
be easily understood, since the standard WENO method is
based only on cell averages for the reconstruction. In
contrast, the simple WENO method uses the knowledge
of the entire polynomial, and the subcell methods resolved
troubled cells with effectively 2N þ 1 times more points. In

our examples, the simple WENO and subcell methods have
some drawback for higher dimensions. Both methods come
with a significant overhead, and it is planned to investigate
more efficient implementations in the future. More impor-
tantly, the direct application of the simple WENO
reconstruction in two dimensions led to unexpected insta-
bilities, for example in the computation of the primitive
from the conservative variables, which one should be able
to avoid. This issue certainly deserves further study since
the simple WENO method is very promising based on the
one-dimensional results.
Due to the large computational cost of the subcell

method, we only employed the standard WENO
reconstruction in 3D and investigated the subcell method
in two dimensions. In our two-dimensional examples, the
subcell method turned out to be (as expected) approx-
imately second order. For the standard WENO-DG
method we found third order convergence for low and
second order convergence for high resolutions. The
observed third order convergence is consistent with our
results in the full 3D simulation. However, for a high
number of cells we noticed that a higher than second
order convergence in the matter variables seems to be
hard to obtain, since (i) the computation of the L1 norm
of the error emphasizes inaccurate, problematic regions,
and (ii) errors propagate from the surface of the star
through the neutron star and corrupt the order of
convergence. Although this fact can be seen as a setback,
DG methods allow a better parallelization and refinement
strategy than fixed FD codes and are one of the most
promising methods to take into account for future
GRHD-code developments.
Our work can be seen as a first step towards a complete

3D-DG implementation for GRHD, since it employs
DG-methods for GRHD problems beyond the limitation
of spherical symmetry as in previous work. It is planned to
further develop the numerical techniques by considering
adaptive mesh refinement, and to extend the physics to full
general relativity (beyond the Cowling approximation),
which together will allow numerical simulations of
astrophysical systems consisting of single and binary
neutron stars.
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APPENDIX A: DG METHOD FOR SCALAR
CONSERVATION LAWS IN ONE DIMENSION

Following [4,5], we summarize some aspects of the DG
method that already arise in the nonlinear, scalar, one-
dimensional case. We add some details relevant to the
present work concerning implementation issues and the
equivalence of the once and twice integrated form of
the equations. One of our goals is the combination of
the DG method for relativistic matter with the pseudospec-
tral penalty method of [14] for the geometry, which is not
using a flux conservative form, but is close to the strong
formulation of the DG method given below in (A7).
Therefore we examine the question of how the discretized
equations for the weak and strong form are related.

1. Derivation of the discretized equations

Consider

∂tuþ ∂xfðuÞ ¼ 0 ðA1Þ

for a function uðt; xÞ and a flux function fðuðt; xÞÞ on the
interval I ¼ ½−1; 1�. Given a space of test functions on I, we
obtain the weak form of the conservation law by integra-
tion. For a test function vðxÞ,

ðv; ∂tuÞ þ ðv; ∂xfÞ ¼ 0: ðA2Þ

Later we assume that the scalar product of two functions is
ðf1; f2Þ ¼

R
1
−1 f1ðxÞf2ðxÞdx, i.e. we assume the trivial

measure which is the natural weight for the polynomial
basis of Legendre polynomials.
Part of the DGmethod is a special treatment of the flux at

the boundaries of I, where we replace the flux f by a
nonunique choice of a numerical flux f�. Integrating (A2)
by parts in space we arrive at two versions of the
conservation law,

ðv; ∂tuÞ − ðf; ∂xvÞ ¼ −½vf��; ðA3Þ

ðv; ∂tuÞ þ ðv; ∂xfÞ ¼ ½vðf − f�Þ�; ðA4Þ

where ½g� ¼ gð1Þ − gð−1Þ for any function gðxÞ.
Equation (A3) is obtained by integrating by parts and
replacing f by f� at the boundary. Equation (A4) is obtained
from (A3) by integrating by parts once more but leaving the
resulting boundary term unchanged. We refer to (A3) and
(A4) as theweak and strong form, respectively, or as the once
and twice integrated flux equation to avoid confusion with
the original strong form, (A1).
The nodal DG spectral element method is based on a

choice of N þ 1 distinct nodes xi ∈ I. Such nodes
define the unique Nth-order Lagrange polynomials
liðxÞ, for which liðxjÞ ¼ δij. We choose the xi to be
the collocation points for Legendre-Gauss (LG) or LGL

integration. This allows the approximation of uðxÞ by a
nodal expansion that has the interpolation property
uðxiÞ ¼ ui, ImuðxÞ ¼

P
N
i¼0 uiliðxÞ.

When the meaning is clear from context, we write u
instead of Imu. A key feature of the nodal expansion is that
it works equally well for linear and nonlinear functions, in
particular,

uðxÞ ¼
XN
i¼0

uiliðxÞ; fðuðxÞÞ ¼
XN
i¼0

filiðxÞ; ðA5Þ

where fi ¼ fðuiÞ ¼ fðuðxiÞÞ.
The nodal approximation with Nth-order polynomials

leads to discretized versions of the conservation laws (A3)
and (A4). Choose test functions vðxÞ ¼ liðxÞ, and insert
(A5) to obtain

M∂tu − STf ¼ −½lf��; ðA6Þ

M∂tuþ Sf ¼ ½lðf − f�Þ�; ðA7Þ

where we have introduced the mass matrix M and stiffness
matrix S,

Mij ¼ ðli;ljÞ; Sij ¼ ðli; ∂xljÞ: ðA8Þ

We use matrix notation and a summation convention,
e.g. Sf ≡ Sijfj ≡P

N
j¼0 Sijfj.

An important point is that in general the mass matrix is
not diagonal, that is, the characteristic Lagrange polyno-
mials are not necessarily orthogonal. Specifically, for LGL
the mass matrix is not diagonal, while for LG it is diagonal.
However, for both LGL and LG the matrix is symmetric
and invertible. The stiffness matrix is directly related to the
derivative matrix,

Dij ¼ ∂xljðxiÞ; ðA9Þ

which approximates the pseudospectral derivative at the
nodes by ð∂xuÞðxiÞ ¼ Dijuj. We have [4]

S ¼ MD; M−1S ¼ D; M−1ST ¼ M−1DTM: ðA10Þ

GivenM,D, and a prescription for f�, we solve the explicit
time-integration problem based on (A6) or (A7),

∂tu − ðM−1DTMÞf ¼ −M−1½lf��; ðA11Þ

∂tuþDf ¼ M−1½lðf − f�Þ�; ðA12Þ

for the discretized, time-dependent function values uiðtÞ.
The method generalizes immediately to a partition of

any interval ½a; b� ∈ R into several elements Ij with an
appropriate mapping of the coordinates and with a coupling
of neighboring elements through f�.
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2. Implementation issues

Let us comment on some implementation issues, specifi-
cally for the LGL method. The nodes xi and the LGL
integration weights wi are obtained from the Legendre
polynomials, for which simple but stable and accurate
algorithms are available, e.g. [5]. The nodes xi are the
N − 1 roots of ∂xPNðxÞ combined with the end points of
the interval, −1 and 1, for a total of N þ 1 nodes. The
integrationweights arewi ¼ 2=ðNðN þ 1ÞPNðxiÞ2Þ.Various
otherquantities aredeterminedwithout further reference to the
Legendre polynomials by general formulas for Lagrange
interpolation. The weights for barycentric interpolation are
ci ¼

Q
N
j¼0;j≠i 1=ðxi − xjÞ. The derivative matrix is

Dij ¼ ∂xljðxiÞ ¼
cj
ci

1

xi − xj
; i ≠ j; ðA13Þ

Dii ¼ −
XN
j¼0

Dij: ðA14Þ

The equation for the diagonal term ensures that the numerical
derivative of a constant like ui ¼ 1 is 0 [58]. Since the end
points are included among the nodes, x0 ¼ −1 and xN ¼ 1,

½lig�1−1 ¼ lið1Þgð1Þ − lið−1Þgð−1Þ ¼ δiNgN − δi0g0:

ðA15Þ

There are several ways to compute the mass matrix
Mij ¼ ðli;ljÞ. One option is to perform the integration
numerically according to the Gauss formula associated with
the nodes, which approximates the integral of a function
gðxÞ using the integration weights wi,

Z
1

−1
gðxÞdx≃XN

i¼0

wigðxiÞ: ðA16Þ

This integration is exact if gðxÞ is a polynomial of degree up
to 2N þ 1 for LG and up to 2N − 1 for LGL. Since the
integrand lilj for the mass matrix is of degree 2N, for LG
the numerical integral is exact,

Mij ¼ ðli;ljÞ ¼ ðli;ljÞN ¼ wiδij; ðA17Þ

where ðf; gÞN ¼ P
iwifigi denotes the numerical scalar

product. However, for LGL we only obtain the approxi-
mation

Mij ¼ ðli;ljÞ≃ ðli;ljÞN ¼ wiδij: ðA18Þ

It turns out that this approximation, also called mass
lumping, is equivalent to a certain filter that strongly
affects the highest mode in the Legendre basis and that
can reduce the effective order of the approximation [39]. In
the context of spectral element methods of comparatively

high order, say N ¼ 10, approximating M for LGL by the
diagonal matrix as in (A18) is considered standard in [5].
However, for orders around N ¼ 2, 3, 4, it is often
preferable to evaluate Mij ¼ ðli;ljÞ for LGL without
approximation [4]. For example [4,39], M−1 ¼ VVT ,
where V is the generalized Vandermonde matrix for the
normalized Legendre polynomials. This relation follows
from the expansion of the Legendre polynomials in the
Lagrange basis. Computing the difference to the diagonal
approximation we find for LGL

M−1
ij ¼ 1

wi
δij þ

N þ 1

2
PNðxiÞPNðxjÞ: ðA19Þ

See also [59], where this relation is derived using the
Sherman-Morrison formula. Alternatively, note that M can
also be computed directly as the analytic integral ðli;ljÞ,
either by term by term integration after expanding the
product liðxÞljðxÞ, or by exact Gauss integration on a
secondary grid with N þ 2 points. (In experiments, N þ 3
gives somewhat more accurate results.) However, we still
have to find the inverse of M numerically. For large N,
(A19) may be preferred.

3. Equivalence of once and twice integrated forms

For the continuum problem, we perform the integration
by parts,

ðv; ∂xfÞ ¼ ½vf� − ðf; ∂xvÞ: ðA20Þ

Under specific but quite general conditions the discretized
equations satisfy the corresponding summation by parts
property exactly. In this case the once and twice integrated
DG methods are numerically identical. There may be
round-off errors, but there are no systematic errors that
only converge away with increasing N. This is fully
explained in [39,60,61].
Given the present setup, it is straightforward to show

algebraic equivalence of (A6) and (A7). The difference
between those two equations is

Sf ¼ ½lf� − STf; ðA21Þ

S ¼ ½ll� − ST; ðA22Þ

for all fi, and independently of the choice of f� or the
computation of M.
In the transition to (A22) we use that f is approximated

by an Nth order polynomial, (A5). By definition of Sij,

Sij ¼ ðli; ∂xljÞ
¼ ½lilj� − ðlj; ∂xliÞ
¼ ½lilj� − Sji; ðA23Þ
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so the summation by parts property (A22) does indeed
hold. Summation by parts is exact for LG and LGL even if
Sij is defined by numerical integration because

Sij ¼ ðli; ∂xljÞ ¼ ðli; ∂xljÞN ðA24Þ

since li∂xlj is a polynomial of degree 2N − 1.
It is instructive to make the summation by parts formula

for the LGL method more explicit. From (A24) and (A16),

Sij ¼
X
k

wkliðxkÞ∂xljðxkÞ ¼ wiDij: ðA25Þ

(Incidentally, this means that Sij ¼ MikDkj ¼ wiDij for
both LG and LGL.) Hence (A22) becomes

wiDij ¼ ½lilj� − wjDji: ðA26Þ

We now restrict ourselves to the LGL case. A priori it is not
clear how a simple rescaling and a transpose of the
derivative matrix leads to the term ½lilj� ¼ ðδiN −δi0Þδij,
which is a diagonal matrix with nonvanishing entries only
in two of the corners. For i ¼ j,

Dii ¼ ∂xliðxiÞ ¼
1

2wi
ðδiN − δi0Þ; ðA27Þ

2wiDii ¼ δiN − δi0 ¼ ½lili�; ðA28Þ

so (A26) is satisfied on the diagonal. In particular, we see
how the boundary terms come about. For i ≠ j, (A26)
becomes

Dij ¼ −
wj

wi
ðDTÞij; ðA29Þ

from which we obtain with (A13) that

cj
ci

¼ wj

wi

ci
cj
: ðA30Þ

In other words, the summation by parts rule implies for
LGL points a relation between the integration weights wi
and the barycentric interpolation weights ci,

ðcLGLi Þ2 ¼ CwLGL
i ; ðA31Þ

for some constant C. Surprisingly, the explicit relation
between wLGL

i and cLGLi was only found recently; see [62]
on such relations for Jacobi polynomials. For our case,

cLGLi ¼ CNð−1Þi
ffiffiffiffiffiffiffiffiffiffi
wLGL
i

q
; ðA32Þ

where CN is an explicitly known constant that depends on
the number of points. In summary, for LGL (or analogously
for LG), we can start from the general result on summation
by parts and arrive at a partial proof of (A32), or we can
start from relations like (A32) and prove summation by
parts without directly using partial integration in the
continuum.

APPENDIX B: ERROR AND CONVERGENCE
FOR THE SMOOTH SINE WAVE

POPAGATION, EQ. (51)

While this paper was under review, a detailed descrip-
tion of SpECTRE, a task-based DG code for relativistic
astrophysics, appeared in [57]. We collaborated with the
authors to compare numerical results for a specific
example, which is an important code validation. In
Table IV, we show additional data on the smooth flow

TABLE IV. Numerical errors and convergence orders for problem (51) at t ¼ 2 for different numbers of grid patches nx, DG
polynomials of order N ¼ 1 and N ¼ 3, and no additional shock resolution method. The columns correspond to the following setups:
(a) analytic mass matrix, L1 error from primitive variables; (b) lumped mass matrix, L1 error from primitive variables; and (c) lumped
mass matrix, L1 error from conservative variables.

(a) (b) (c)

nx N þ 1 L1 error Order L1 error Order L1 error Order

10 2 1.22 × 10−3 2.04 × 10−2 2.55 × 10−2

20 2.73 × 10−4 2.15 5.28 × 10−3 1.95 6.60 × 10−3 1.95
40 6.72 × 10−5 2.02 1.33 × 10−3 1.99 1.66 × 10−3 1.99
80 1.67 × 10−5 2.00 3.33 × 10−4 2.00 4.16 × 10−4 2.00
160 4.18 × 10−6 2.00 8.32 × 10−5 2.00 1.04 × 10−4 2.00
320 1.04 × 10−6 2.00 2.08 × 10−5 2.00 2.60 × 10−5 2.00
10 4 4.27 × 10−6 9.92 × 10−6 1.24 × 10−5

20 3.29 × 10−7 3.70 6.30 × 10−7 3.98 7.88 × 10−7 3.98
40 1.79 × 10−8 4.20 3.66 × 10−8 4.11 4.57 × 10−8 4.11
80 9.39 × 10−10 4.25 2.25 × 10−9 4.02 2.81 × 10−9 4.02
160 6.01 × 10−11 3.96 1.40 × 10−10 4.00 1.75 × 10−10 4.00
320 3.80 × 10−12 3.97 8.77 × 10−12 4.00 1.10 × 10−11 4.00
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sine wave problem (51) in order to compare numerical
results with Kidder et al. [57], and to comment on the
influence of the mass matrix implementation. The setup
(c) in Table IV is algorithmically equivalent to the one
presented in Sec. VI.1.1 of [57], but different from the
method described in the present paper. Comparing the L1

errors for N þ 1 ¼ 2 and N þ 1 ¼ 4, called NC ¼ N þ 1
in [57], we find excellent agreement between the two

codes. Comparing actual numbers the difference is not
larger than ≈5 × 10−12. Comparing the setups (a), which
we use here, and (b) in Table IV, we find that using the
analytic mass matrix leads to smaller errors than those
from the mass lumped (diagonal) matrix scheme.
However, the difference is comparatively small for higher
order schemes, as expected from the discussion after
(A18) and [4,5,39].
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