Supplementary Information

Insights into an Efficient Light-driven Hybrid P450 BM3 Enzyme from Crystallographic, **Spectroscopic and Biochemical Studies**

Jessica Spradlin,¹ Diana Lee,¹ Sruthi Mahadevan,¹ Mavish Mahomed,² Lawrence Tang,¹ Quan Lam,¹ Alexander Colbert,¹ Oliver S. Shafaat,³ David Goodin,² Marco Kloos,⁴ Mallory Kato,¹ Lionel E. Cheruzel¹*

¹ San José State University, Department of Chemistry, One Washington Square, San José, CA ² Department of Chemistry, One Shields Ave., University of California Davis, Davis, CA.

Table of Contents:

Figure S1. Graphical representations of C-Hpi interactions with P382	p.S-2
Figure S2. Transient absorption traces for the various hybrid enzymes	p.S-3
Figure S3. UV vis spectra for the substrate-free, NPG bound and reduced hybrid enzymes	p.S-4
Figure S4. Michaelis-Menten saturation curves with 16-pNCA substrate	.p.S-4
Figure S5. Partial sequence alignment of 40 human cytochrome P450 heme domains	.p.S-5

³ Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA.

⁴ Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany.

Fig. S1. Graphical representations of C-H--- π interactions between the photosensitizer and the P382 residue preserved during the motion of the 3₁₀ helix by 2.1 Å in the two molecules present in the asymmetric unit of the DMSO bound structure.

Fig. S2. Transient absorption traces for the dF393A-1, dF393W-1 and sL407C-1 hybrid enzymes and the corresponding difference spectra for the substrate free (SF) and substrate bound (SB) forms (bottom panels).

Fig. S3. UV-vis spectra of the substrate free (SF), N-palmitoylglycine bound (NPG bound) and electrochemically reduced (Reduced) of the hybrid enzymes.

Fig. S4. A) Michaelis-Menten saturation curves for the photocatalytic activity of the four hybrid enzymes (dF393A-1, dF393W-1, sL407C-1, dQ403W-1) as a function of the 16-pNCA concentration; B) Total turnover numbers as nmol of products per nmol of enzymes at the end of the reaction.

CYP102A1	EEFRPERFENPSAIPQHAFKPFGNGQRACIG <mark>Q</mark> QFALHEATLVLGMMLKH
CYP3A4	EKFLPERFSKKNKDNIDPYTYTPFGSGPRNCIGMRFALMNMKLALIRVLQN
CYP2C9	EMFDPHHFLDEGGNFKKSKYFMPFSAGKRICVG <mark>E</mark> ALAGMELFLFLT
CYP2C8	NIFDPGHFLDKNGNFKKSDYFMPFSAGKRICAG <mark>E</mark> GLARMELFLFLT
CYP2E1	EKFKPEHFLNENGKFKYSDYFKPFSTGKRVCAG <mark>E</mark> GLARMELFLLLCAILQH
CYP1A2	RPERFLTADGTAINKPLSEKMMLFGMGKRRCIG <mark>E</mark> VLAKWEIFLFLAILLQ
CYP2A6	QDFNPQHFLNEKGQFKKSDAFVPFSIGKRNCFG <mark>E</mark> GLARMELF
CYP2D6	FHPEHFLDAQGHFVKPEAFLPFSAGRRACLG <mark>E</mark> PLARMELFLFFTSLLQH
CYP2B6	DAFNPDHFLDANGALKKTEAFIPFSLGKRICLG <mark>E</mark> GIARAELFLF
CYP2C19	EMFDPRHFLDEGGNFKKSNYFMPFSAGKRICVG <mark>E</mark> GLARMELFLFLT
CYP3A5	EEFRPERFSKKKDSIDPYIYTPFGTGPRNCIGMRFALMNMKLALIRVLQN
CYP2J2	DTFNPDHFLENGQFKKREAFMPFSIGKRACLG <mark>E</mark> QLARTE
CYP1A1	FLPERFLTPDGAIDKVLSEKVIIFGMGKRKCIG <mark>E</mark> TIARWEVFLFLAILLQ
CYP1B1	FDPARFLDKDGLINKDLTSRVMIFSVGKRRCIG <mark>E</mark> ELSKMQLFLFISI
CYP4V2	EEFQPERFFPENAQGRHPYAYVPFSAGPRNCIG <mark>Q</mark> KFAVMEEKTILSCILRH
CYP17A1	FMPERFLNPAGTQLISPSVSYLPFGAGPRSCIG <mark>E</mark> ILARQELFLIMAWLLQ
CYP46A1	FNPDRFGPGAPKPRFTYFPFSLGHRSCIG <mark>Q</mark> QFAQMEVKVVMAKLLQ
CYP4A11	EVFDPSRFAPGSAQHSHAFLPFSGGSRNCIGKQFAMNELKVATALTL
CYP4F12	EVYDPFRFDPENSKGRSPLAFIPFSAGPRNCIG <mark>Q</mark> AFAMAEMKVVLALMLLH
CYP24A1	QFRPERWLQEKEKINPFAHLPFGVGKRMCIGRRLAELQLHLAL
CYP5A1	TFNPERF-TAEARQQHRPFTYLPFGAGPRSCLGVRLGLLEVKLTL
CYP4B1	EVFDSLRFSTENASKRHPFAFMPFSAGPRNCIG <mark>Q</mark> QFAMSEMKVVTAMCL
CYP4A22	LEVFDPSRFAPGSAQHSHAFLPFSGGSRNCIGKQFAMNQLKVARALTL
CYP2S1	EEFNPDRFLDADGRFRKHEAFLPFSLGKRVCLG <mark>E</mark> GLAKAEVFLFFTTILQ
CYP46A	FNPYRFGPGAPKPRFTYFPFSLGHHSCIG <mark>Q</mark> QFAQMEVKVVMAKLLQ
CYP4X1	FDPLRFSQENSDQRHPYAYLPFSAGSRNCIG <mark>Q</mark> EFAMIELKVTIALILLH
CYP4Z1	FNPLRFSRENSEKIHPYAFIPFSAGLRNCIG <mark>Q</mark> HFAIIECKVAVALTL
CYP2W1	QFNPGHFLDANGHFVKREAFLPFSAGRRVCVG <mark>E</mark> RLARTELFLLFAGLLQ
CYP27A1	PHRWLRNSQPATPRIQHPFGSVPFGYGVRACLGRRIAELEMQLLLARLIQ
CYP2AC1P	DTFNPEHFLNSKEKFIKREAFLPFQWGRRMCAG <mark>E</mark> SFARKELFLFFTSLLQ
CYP3A7	EKFLPERFSKKNKDNIDPYIYTPFGSGPRNCIGMRFALVNMKLALVRVLQN
CYP4F23P	FDPENLQKTSPLAFIPFSAVPRNCIG <mark>Q</mark> TFAMAEMKVVLALTL
CYP11B1	ERYNPQRWLDIRGSGRNFYHVPFGFGMRQCLGRRLAEAEMLLLLHHVLKH
CYP51A	DFNPDRYLQDNPASGEKFAYVPFGAGRHRCIG <mark>E</mark> NFAYVQIKTIWSTMLR
CYP26C1	DPERFGAAREDSRGASSRLHYIPFGGGARSCLG <mark>Q</mark> ELA
CYP2F1	QEFNPEHFLDANQSFKKSPAFMPFSAGRRLCLG <mark>E</mark> LLARMELFLYLTAILQ
CYP4F11	EVYDPFRFNQENIKERSPLAFIPFSAGPRNCIG <mark>Q</mark> AFAMAEMKVVLALTLLH
CYP11B2	PFGFGMRQCLGRRLAEAEMLLLLHHVLKH
CYP4F3	VYDPFRFD-PKNIKERSPLAFIPFSAGPRNCIG <mark>Q</mark> AFAMAEMKVVLGLTL
CYP4F9P	EVYDPFRFDPENSKERSPLAFIPFSAGSXNCIG <mark>Q</mark> AFAMAEMKVVLALTL
CYP2R1	EVFHPERFLDSSGYFAKKEALVPFSLGRRHCLG <mark>E</mark> HLARMEMFLFFTALLQ

Fig. S5. Partial sequence alignment indicating that the highlighted Q403 residue of the P450 BM3 enzyme (three residues away from the ligating cysteine) is highly conserved among human cytochrome P450 heme domains.