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Abstract
Brains and sensory systems evolved to guidemotion. Central to this task is controlling the approach to
stationary obstacles and detectingmoving organisms. Looming has been proposed as themain
monocular visual cue for detecting the approach of other animals and avoiding collisions with
stationary obstacles. Elegant neuralmechanisms for looming detection have been found in the brain
of insects and vertebrates. However, looming has not been analyzed in the context of collisions
between twomoving animals.We propose an alternative strategy, generalized regressivemotion
(GRM), which is consistent with recently observed behavior in fruitflies. Geometric analysis proves
that GRM is a reliable cue to collision among conspecifics, whereas agent-basedmodeling suggests
that GRM is a better cue than looming as ameans to detect approach, prevent collisions andmaintain
mobility.

Introduction

Animals move to forage, approach potential mates,
chase prey, escape from predators, and to maintain
their position within a group. They must do so in
environments that are often cluttered by rocks, plants
and othermoving animals.Whether the goal ismaking
or avoiding contact, it is valuable to detect the
proximity of both stationary andmoving entities.

Looming, defined by Gibson as a visual pattern
expanding symmetrically on the retina (Schiff
et al 1962), is commonly believed to be a robust and
reliable monocular visual cue to impending collision4.
It is often understood as a loosely-defined group of
visual stimuli rather than a specific mechanism, with
an underlying idea that an object approaching with a
constant velocity produces expanding patterns on the
observer’s retina.When an animal is stationary, loom-
ing is a sufficient cue to detect approaching objects.
When a moving animal is on a collision course with a

stationary obstacle, time-to-collision can be estimated
from looming patterns even when distance is
unknown (Lee and Reddish 1981, Wang and
Frost 1992). It is generally accepted that looming is a
cue used by various animals to avoid stationary obsta-
cles, and elegant neural mechanisms for its detection
have been unveiled. Experiments have revealed loom-
ing-sensitive neural pathways in many animals. The
DCMD/LGMD neurons of the locust (Rind and Sim-
mons 1992, Hatsopoulos et al 1995, Gabbiani
et al 2002) as well as the pigeon nucleus rotundus (Sun
and Frost 1998) and the goldfishMauthner cell (Preuss
et al 2006) respond to divergence of image edges.
Finally, the fruit fly uses looming-sensitive neurons
during navigation (Fotowat and Fayyazuddin (2009),
de Vries andClandinin (2012); see also discussion).

Looming has been analyzed in the setting where
either the animal or the obstacle is stationary. This is in
contrast to regressive motion, used by the fruit fly to
avoid collisions among multiple moving animals
(Zabala et al 2012). Neural mechanisms behind regres-
sive motion-driven behavior are unknown (Zabala
et al 2012), but correlational motion detectors likely
used by the fruit fly (Eichner et al 2011, Takemura
et al 2013) can form a solid basis for regressive motion
detection. The ecological usefulness of regressive
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motion has not been explored by Zabala et al (2012).
We build on the results of Zabala et al by providing a
theoretical and practical analysis of generalized regres-
sivemotion (GRM)—visual stimulus similar to regres-
sive motion but simpler to detect and more versatile.
Whereas regressive motion occurs when there is
clockwise motion in the left visual hemifield or coun-
ter-clockwise motion in the right visual hemifield,
GRM occurs if there is clockwise motion in the left eye
or counter-clockwise motion in the right eye, as
shown in figure 1. Experiments by Zabala et al admit
the hypothesis that the fruit fly uses GRM, not pure
regressive motion, for stopping. We show that GRM
enjoys the advantages of both looming motion and
regressivemotion. Our contribution is threefold:

• Whereas regressive motion alone is not a good cue
to frontal collisions, we use geometric reasoning to
show that GRM is a sufficient cue to prevent
collisions whether both agents move, or one is a
stationary obstacle.

• We argue that collisions ought not to be studied as
an all-or nothing phenomenon. Rather the prob-
ability of avoiding collisions (here called ‘safety’) is a
more informative parameter. We point out that
avoiding unwarranted stops is an equally important
performance criterion, whichwe call ‘mobility’.

• With the help of agent-based modeling, we show
that a population of Braitenberg-vehicle-like agents

(Braitenberg 1986) using GRM as their sole col-
lision-avoidance mechanism can be both safe from
collisions and mobile when compared to looming-
based agents.

Collision avoidance has been extensively studied
in the fields of robotics and human locomotion. In the
final section we discuss our work in that context in
detail. We find that GRM-inspired algorithms require
little computational power compared to existing
methods. At the cost of allowing some unnecessary
stops, GRM offers a low-power computational mod-
ule for avoiding collisions between a mobile agent and
mobile obstacles.

Geometry of regressivemotion

Our geometric analysis of GRM is based on an abstract
model of an agent: It is a point in the Euclidean plane,
equipped with two ‘eyes’—centers of projection. Each
agent has a well-defined orientation, which allows us
to define its contralateral visual angle (CVA). The CVA
is the angle subtended by the nasal boundary of each
eye, as in figure 1 (right). For now, we assume the
distance between the eyes is zero and identify their
position with the position of the agent (see figure 2).
This assumption is justified if the modeled animal’s
inter-eye distance is small compared to its typical
distance from other animals. We nevertheless drop
this assumption in simulations (described below),

Figure 1.Progressivemotion, regressivemotion, andGRM. Progressivemotion is any counter-clockwisemotion perceived in the left
visual hemifield and any clockwisemotion perceived in the right visual hemifield. Regressivemotion is any clockwisemotion in the
left visual hemifield and counter-clockwisemotion in the right visual hemifield. GRM ismotion towards the nasal boundary of either
eye. Its perception depends on the azimuthal position of the nasal boundary of the visual field of each eye.We call the angular distance
of the nasal visual boundary from the 0° (straight-ahead) azimuth the contralateral visual angle.

Figure 2.Ageometric-point agent usingGRM. Left: the arrows indicate directions of angular velocity on the agent’s eyes that cause it
to perceive GRM. deye indicates the agent’s inter-eye distance. Right: if =d 0eye the two eyes coincide, but still detect GRM
independently. As a result, anymovement in a cone extending from the agent’s eyes forward is GRM.
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where we consider agents with two separate eyes and
spatially extended bodies.

GRMdetection can prevent all collisions among
moving conspecifics
Let a point (which could be stationary or in move-
ment) project to azimuthal position f on the observer
agent’s eye. Let f = 0 be the direction in front of the
agent, positive angles for the left side and negative
angles for the right side, and restrict p p pÎ - ,[ ).
Denote the point’s angular velocity as ḟ.

Definition 1. A point projecting at f is in regressive
motion with respect to the observer if f f 0˙ · , and
in progressivemotion otherwise.

Before proving ourmain theorem, we state an easy
propsition whose proof we relegate to the mathema-
tical appendix.

Proposition 2. Let the relative position and velocity of
the observed object be x vand respectively. Then
f = á ñ^

 
v x,

x

1
2

˙ . In particular, ḟ scales as one over

distance squared.

The following theorem ensures that before any
potential collision, one of the agents will perceive
regressivemotion.

Theorem 3. Let f1 and f2 be two agents moving on
straight, intersecting trajectories. If f1 reaches the trajec-
tory intersection after f2, f1 perceives regressive motion at
all times before f2 reaches the intersection and progressive
motion afterwards. f2 perceives progressive motion before
f1 reaches the intersection, and regressive motion
afterward.

Proof. Let two point-agents f1, f2 move on a flat
uniform surface with constant velocities on intersect-
ing (that is, non-parallel) trajectories. Align the
reference frame’s y-axis with the direction of f1ʼs
movement, and place the origin at the point at which
the agents’ trajectories cross. The situation is fully
described by four parameters (seefigure 3 Left):

v v,1 2—the speed of f1 and f2 respectively,

ψ—the angle f2ʼs velocity vector makes with f1ʼs
velocity (also called the angle of approach), and

d—the y-coordinate of f1 at the moment when f2
reaches the origin.

First, we compute the angular position f21 of f2 on
f1ʼs projection center and the angular velocity f21

˙ , at
themomentwhen f1 is at distance +d from0.

For  = 0, the positions of the two agents are
respectively

=
=

x d d

x d

0, ,

0, 0 .

1

2

( ) ( )
( ) ( )

If  ¹ 0, the time that passed since the original
configuration is D =t v1, and since the velocity of
f2 is = - Y Yvv sin , cos2 2 ( ), we have

 

 

+ = +

+ = - Y Y

d d

d
v

v

x

x

0, ,

sin , cos .

1

2
2

1

( ) ( )

( ) ( )

Define x v,R R to be the relative position and velocity
of f2 in f1ʼs frame of reference. Then

Figure 3.Reference frames for theorems 3 and 5. Left: when two agents—schematically shown asflies—have non-parallel velocities,
we can describe every possible pair of trajectories using four parameters (see text). Right: when an agent with positive CVA approaches
a flat wall sufficiently close, it can always observe GRM for some points on thewall (see text).
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⎛
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⎞
⎠⎟

  
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


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+ = - Y Y -
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v

v

v

v
d

d v v v
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v

sin , cos ,

sin , cos .

R 2 1

2

1

2

1

R 2 2 1

( ) ( ) ( )

( )

( ) ( )

From this we can directly compute f21, and proposi-
tion 2 enables us to compute the angular velocity of f2

f p

f

= -

= á ñ^

x x

D
v x

arctan 2,

1
, ,

21 2
R

1
R

21 2
R R

( )

˙

where = +D x x2
1
R 2

2
R 2( ) ( ) is the distance between

the two agents. Plugging in the values calculated above
we get


 


f p=

Y - +

- Y
-d

d
, arctan

cos

sin
2,

1

v

v
v

v

21

2

1

2

1

( )
( )

( )

f = - Yd
D

dv,
1

sin , 221 2
2˙ ( ) ( )

with   = + + - Y+D d 2 cos .v

v

v d

v
2

2
2

2

1

2

1( ) ( ) ( )

Now, assume that f2 arrives at the intersection first,
that is <d 0. From equation (2) it follows that

  f  Yd, 0 sin 0.21
˙ ( )

But this implies that the denominator in the arctan-
gent in equation (1) is nonnegative if and only if   0

  - Y > 
v

v
sin 0 0,2

1

A positive denominator restrict the range of the
arctangent to p p- 2, 2[ ], and thus

  f p Î -0 , 0 .[ ]

Thus

   f f p Î - d d, 0 , , 0 0 .21
˙ ( ) ( ( ) [ ] )

Analogously

   f f p Î d d, 0 , 0, 0 .21
˙ ( ) ( ( ) [ ] )

This proves the first part of the theorem. The second
part is proven exactly in the same way, but switching
the reference frame to that of f2. ,

The theorem easily generalizes toGRM:

Definition 4. Let f2 project onto a projection center
f1, with azimuthal position f21. f1 perceives GRM if
and only if f f p> Î -0 and , CVA21 21( ˙ [ ]) or

f f p< Î -0 and CVA,21 21( ˙ [ ]), where CVA is a
fixed angle.

Theorem 5. Let f1 and f2 be two agents moving on
straight, intersecting trajectories. If f1 reaches the trajec-
tory intersection after f2, f1 perceives GRM at all times
before f2 reaches the intersection.

This follows from theorem 3 because regressive
motion implies GRM (see definitions above).

GRMdetection can prevent collisionswith
stationary objects
An agent using solely non-GRM detection will always
collide with stationary obstacles, which project
expanding (progressive) patterns. However, GRM
with CVA >0 and appropriate motion thresholding
provides a mechanism for stationary collision avoid-
ance. Let TGRM denote the smallest magnitude of
GRM that causes the agent to stop. Intuitively, larger
CVA’s and smaller TGRM provide better obstacle
detection.

Theorem 6. An agent on a collision course with a
stationary object will perceive GRM before the collision,
as long as TGRM < ¥ andCVA> 0.

Proof. We assume the agent is approaching an object
such that the centerline of the agent f = 0 does not
point directly at a (non-smooth) corner of the object.
We can then assume there is a neighborhood around
the f = 0 aziumuth that can be approximated as a
wall segment. As in figure 3 (right), place the origin at
the position of the agent as shown. The agent
approaches the wall at an angle a p< <0 2 and
with positive speed v, its velocity a a= v vv sin , cos( ).
Consider an arbitrary wall-point (x, y), marked red in
the figure. The relative velocity of the point w. r. t. the
agent is-v , and its angular velocity on the agent’s eye
equals (by proposition 2)

f a a a=
-
+

-x y v
v

x y
x y, , , cos sin . 3

2 2
˙ ( ) ( ) ( )

We need to take into account very small θ and very
large T. The following proposition implies the theo-
rem

⎧⎨⎩
f a

a q a
" $

>
- > >

q > >
 X y v T

y X y
s.t.

, , , and

tan tan
,T X, 0 0

˙ ( )
( )

where the last condition restricts the point we’re
searching for to be between the leftmost edge of
perceived GRM and the center of the agent’s visual

field. Now, fix = >a q-X y ktan , 1
k( ) . k can always

be chosen to make the point (X, y) arbitrarily close to
the centerline, and so contained in the smooth wall-
like neighborhood on the obstacle. Clearly these X y,
satisfy the second condition above.We also have

⎡⎣ ⎤⎦
f a

a a
=

- -

+

a q

a q

-

-
X y v

v y

y
, , ,

tan cos sin

tan 1
.

k

k
2

( )
( )

˙ ( )

Since a q, and k are constant, this expression scales
as y1 and thus reaches arbitrarily largemagnitudes as
y approaches 0—that is, as we place the observer closer
and closer to thewall. ,

The intuition behind this theorem is that a GRM
detector detects any motion in a cone symmetrical
about the center of the visual field. If the agent fron-
tally approaches an object, the target is guaranteed to
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produce a strong enough signal within that cone at
some positive time before the collision occurs.

False alarms, safety andmobility
Theorems 5 and 6 give basis to the claim that GRMcan
be useful for collision avoidance. However, it can be
argued that they are of limited practical use. One
problematic area not explored by the theorems is that
of false alarms. An agent using GRM as a stopping cue
can stop unnecessarily in a variety of situations, some
ofwhich are shown infigure 4.

If perception of GRM of any magnitude greater
than zero caused the agents to stop, they would be per-
fectly safe from collisions, but unable to move. In
simulations described below we investigate the role of
two parameters that enable GRM-based agents to
trade-off mobility and safety from collisions: the CVA
and tne threshold TGRM on the magnitude of GRM
that stops the agent. Varying these parameters in a
population of agents changes the population’s safety
and mobility, where safety corresponds to the fraction
of prevented collisions, and mobility to the fraction of
useful stops. Formally, we can classify any encounter
between agents f1 and f2 as

True Positive (TP): agent f1 stops due to perceived
motion of agent f2, and f1 would collide with f2 had
both f1 and f2 continued to move with velocities
they had at the moment of f1ʼs stop, and f2 is
outside of f1ʼs collision radius.

True Negative (TN): agent f1 moves without stopping
and does not collidewith any entity.

False Positive (FP): agent f1 stops due to perceived
motion of entity f2, and f1 would not collide with f2
had both f1 and f2 continued tomove at velocities
they had at the moment of f1ʼs stop. In addition,
f2 is outside of f1ʼs collision radius at the time of
stopping.

False Negative (FN): agent f1 collides with agent f2.

We can then definemobility and safety as

=
+

=
+

mobility
TP

TP FP
and

safety
TP

TP FN
.

Mobility is high if and only if the agent rarely stops
without a good reason. Safety is a complementary
measure that is high if and only if the agent avoided
many out of all the potential collisions. In our view,
any collision avoidance algorithm is useful inasmuch
as it offers a range of good mobility-safety tradeoffs: It
can be used to make mobile vehicles remain relatively
safe (relative to other algorithms), as well as safe
vehicles that retain goodmobility.

Simulations

Anumber of issues are not covered by our theory:

• real agents have extended bodies, unlike the geo-
metric points considered in theorem5,

Figure 4.GRM false alarms arrow lengths indicate speeds. In each of the situations pictured collision is not imminent, but the darker
agent perceives GRM. Left: the faster, bright agent takes over a slower one frombehind. Right: the brighter agent crosses a trajectory
junction in advance of the darker agent’s arrival. Bottom: the faster, bright agent ismoving away from the slower dark agent.
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• real agents have visual systems withmultiple centers
of projection and

• there is a tradeoff of safety and mobility to be
explored.

Studying the tradeoff between mobility and safety
is best done experimentally in a simulated environ-
ment. It is difficult to derive theoretical tradeoff curves
given the statistical variability of the trajectories even
in simple environments. Computational simulations
are also a good tool for studying GRM agents with
extended bodies and two separate eyes. Thus, to fur-
ther study GRM we use agent-based modeling with
populations of fly-like agents trying to avoid collisions.
The agents use GRM- and looming-based algorithms
for stopping. We compare the performance of GRM-
based and looming-based collision avoidance using
population safety and mobility as performance
metrics. The details of the simulation setup are avail-
able inMethods below.Matlab code implementing the
simulations is available online at http://vision.
caltech.edu/~kchalupk/code.html.

GRMdetection offers goodmobility and safety to a
population of conspecifics
In each simulation, ten fly-like agents were placed in a
toroidal arena and followed straight trajectories with
constant speed. Each agent was equipped with a
stopping mechanism triggered by the perception of
GRM with specific CVA and TGRM(consistent across

all the agents in a given simulation run). We
performed 100 types of simulations, varying the CVA
and TGRM values systematically5. After running multi-
ple trials for each simulation type, we calculated the
safety and mobility of the agent population in each
case. Figure 5 shows that varying the GRM parameters
offers a wide variety of safety-mobility tradeoffs to the
population.

Looming detection offers poormobility and safety
to a population of conspecifics
As a point of reference we measured the usefulness of
looming as a signal for collision avoidance. To this goal,
we equipped each agent with both a GRM and a
looming detector. We then performed a series of
simulations varying CVA, TGRM and TLOOM, where the
latter is a looming threshold (methods contains a
detailed description of the stopping mechanism).
Figure 6 (left) shows safety and mobility in the
simulations where only the looming signal was used for
stopping (that is,TGRMwas very high). Thefigure shows
that to achieve 95% safety, the agents had to stop
unnecessarily 75% of the time. Figure 6 (middle, right)
shows full simulation data: eachmarker corresponds to
one (CVA, TGRM, TLOOM) setting, and the three
parameters vary independently. In figure 6 (middle) the
value ofTGRM varies smoothly on the upper envelope of

Figure 5.Mobility and safety ofGRM-based collision avoidance. Each point corresponds to themeanmobility and safety achieved by
GRM-based agents with fixedTGRM andCVA (andTLOOM set to a very large value, disabling looming-based collision avoidance in
practice; seemethods formore details). Each point corresponds to a different (TGRM,CVA) value, used in 50 randomized repetitions
of 50 s long simulations to estimate themeans. Awide variety of safety-mobility tradeoffs are available, including a reasonable 50%
mobility at 95% safetymarked by the arrow.

5
The agents were also equipped with a looming detector, which in

the simulations described in this section was set to be extremely
insensitve.
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the scatter plot. It is very clear that choosing low TGRM
offers good safety but bad mobility, whereas higher
TGRM increases safety but decreases mobility. Figure 6
(right) shows that the correspondence between TLOOM
and the safety-mobility tradeoff is much less clear.
Whereas low values of TLOOM decrease mobility of the
agents, increasing the value past a certain point offers
no additional safety-mobility advantages when GRM is
also used for collision avoidance.

Methods: simulation parameters

Each simulation puts ten fly-like agents, each defined
by 14 visible points (see figure 7), in a toroidal arena—
a square of side length 50 mm with opposing edges
glued together.

The flies follow simple dynamics, described below.
For each combination of Î ¼CVA 0, 10, , 90{ }

degrees and TGRM, TLOOM Î 0.1, 1, 2, 4, 6,{
8, 10, 12, 14, 32} rad s−1, we ran 50 trials of 10 000
time-steps (to a total of 1000× 50 simulations, 50 s
long each, of flies walking at realistic speeds). Movies
S1-S4, available online at http://vision.caltech.edu/
~kchalupk/code.html, show four example simulation
runs resulting from different parameter settings.
(Movie captions appendix describes symbols used in
themovies.)

Numerical implementation: the motion and control of
each agent are computed at discrete time-intervals
with constant time increments ofDt . For simplicity
of notation where we write +t 1 in the following,
wemean + Dt t . The value ofDt is given in table 1
alongside all other simulationparameters.

Agent trajectories: the ith agent’s trajectory is deter-
mined by walking speed vi, initial position


xi

0 and

Figure 6.Mobility and safety ofGRM- and looming-based collision avoidance. Each point corresponds to a different (TGRM,TLOOM,
CVA) value, used in 50 randomized repetitions of 50 s long simulations to estimate themeans. Its position is at themean safety and
mobility of a population of agents over the 50 trials. Left: only points withTGRM= 32 rad s−1 (that is, GRMdetection practically
disabled) are shown. The arrowpoints to the highest-mobility point withmore than 95% safety.Middle: points for all the possible
(TGRM,TLOOM,CVA) settings. The angle of each bar is the CVAused in corresponding simulations, while the bar’s color equalsTGRM.
Right: asMiddle, but the colors now correspond toTLOOM. For example, the leftmost top point corresponds toCVA= 0,TGRM= 32,
TLOOM= 4. This point has highmobility and low safety. This is because its lowCVAand highTGRM can not preventmany collisions; at
the same time, relatively lowTLOOMdoes not seem to helpmuchwith collision avoidance.

Figure 7.Outline of a simulated fly agent. Each agent in our simulations is defined by 14 points, as shown in the figure. The agent’s two
eyes (only the right eye is shown) compute at each time step the angular projections and velocities of the 14 defining points of each
other visible agent.
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initial direction

vi with = v 1i , i.e.

= +
  
x t x tv vi i i i

0( ) . Each agent has a different
constant velocity chosen uniformly from the
[1–3] cm s−1 interval.

Control: while it is walking, each agent keeps walking
at constant velocity until it is stopped by a GRM
or looming percept caused by another agent (as
explained below).

Spontaneous start: when an agent is stationary it flips a
coin at each time step: if the coin turns out to be
heads, the agent starts moving in the current
direction at its preferred velocity. If the coin is
tails it stays put. The probability of obtaining
heads in the interval of 1 s is denoted p01; thus, the
probability of obtaining tails in one time-step
is - Dp1 t

01( ) .

Orientation:while an agent is walking, it keeps constant
velocity and orientation (i.e. + =

 
v t v t1i i( ) ( )).

Upon stopping it samples a neworientation from a
Gaussian pdf with standard deviation equal to the
current value of a parameter si and centered at the
current orientation. In addition, after reorienta-
tion, si increases by a fixed amount ds. si decays
exponentially, with decay constant ls, i.e.
s s l+ D = st k t ti i

k( ) ( ) . Thismechanism,model-
ing basic neuronal sensitization, is a simple way to
allow the flies to keep roughly straight trajectories
when encountering transient obstacles (other
moving flies), and avoid getting stuck around large
static obstacles (groups of stoppedflies).

GRM: each eye sees GRM whenever the angular
motion of any point projecting onto its retina is
directed contralaterally, i.e. counterclockwise for
the right eye and clockwise for the left eye. Each
eye’s visual field goes beyond the frontal direction

to cover a givenCVA. TheCVA is a free parameter
which we study to discover the best compromise
between avoiding collisions and false alarms.

GRM stops: agent boundaries are defined by 14 points
visible to other flies, as shown in figure 7. Call the
jth point on the ith agent pj

i and its azimuthal
position on the observer’s eye f pj

i( ). Each agent

measures the angular velocity of all the points on
the other flies. If any GRM f pj

i˙ ( ) is detected, the
agent compares the GRMmagnitude f pj

i˙ ( ) to a

thresholdTGRM and stops if f > pj
i˙ ( ) TGRM.

Looming motion: Let f L
˙ denote the largest magni-

tude of counter-clockwise motion that any point
evokes in the left visual hemifield, and f R

˙ the
largest magnitude of clockwise motion evoked in
the right visual hemifield. Then the strength of
looming perceived by the agent equals
wLOOM f f   min ,L R≔ ( ˙ ˙ ).

Looming stops: similarly to GRM stopping, the agent
stops if w >LOOM TLOOM. This simple mech-
anism activates only if the agent can perceive
points diverging at velocities larger thanTLOOM.

All simulation parameter values are specified in
table 1. To summarize, agent iʼsmotion is governed by
the following equations (see also the diagram in
figure 8).

In order to simplify the notation we omit index i
unless necessary, and write out the equations for a
one-eyed agent; since both looming and GRM are
monocular cues in our implementation, the extension
to the two-eyed agent is trivial.

Control: Let Îz 0, 1{ } be the variable denoting
whether an agent is stationary (z= 0)or inmotion

Table 1.Parameters defining theflymodel.

Symbol Default value Meaning

Dt 0.005 s Time-step in numerical simulations

R 50 mm Edge length of thewalking arena (glued into a torus)
N 10 Number of flies in the arena

l 2 mm Length of an agent

d 0.55 mm distance between the eyes’ centers

vmin 10 mm s−1 minimumagent speed

vmax 30 mm s−1 maximumagent speed

vi ~U v v,min max( ) walking velocity of agent i

p01 ∼0.8 prob. stop-to-walk in a 1 s time-interval

P01 0.008 prob. stop-to-walk in one time-interval (i.e. - = -Dp P1 1t
01 01( ) ( ))

TLOOM 0° s−1 (†) stopping threshold on loomingmotion

TGRM 0° s−1 (†) stopping threshold on regressivemotion

CVA 30° (†) theCVA

qi 120° angle of ipsilateral visual field seen by each eye

ds 30° increment of standard deviation of agent reorientationmotions s v
ls 0.992 decay constant for s v at eachDt

n 14 number of points on each agent

(†) variable whose value is systematically explored in some experiments
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(z= 1). Let u(t) be an i.i.d. random process with
uniform probability density on 0, 1( ). Let
f tGRM
˙ ( ) be the largest observed magnitude

of GRM at time t. Let w tLOOM ( ) ≔
f f   t tmin ,L R( ˙ ( ) ˙ ( ) ) denote the looming

strength observed at time t.

⎧
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Trajectory: Call

v the direction vector, i.e. =v 1.

With a slight abuse of notation use

v also for the

angle of

v , i.e. write m s~


v G ; ,(· ) to indicate

that the angle of

v is drawn from a given Gaussian

densitymod p2 6.
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Discussion

Our results show that GRM constitutes a good cue for
collision avoidance. Extending the analysis of Zabala
et al (2012), we showed both mathematically and in
simulations that increasing the CVA to a non-zero
value improves collision avoidance. In particular, it
allows the detection of both stationary and moving
objects on a collision course. In this respect, GRM can
be viewed as a computationally efficient way to
connect looming detection with regressive motion
detection. We introduced safety and mobility as
collision avoidance performance metrics and used
looming as a reference point to show that GRM is a
better cue for collision avoidance among conspecifics.

Relevance to robotics and human locomotion
Multi-agent navigation has been studied extensively in
robot and human locomotion. It is of practical
importance in applications involving robotic assem-
bly, demining and search and rescue missions, as well
as understanding of crowd behavior and preventing
crowddisasters.

Two main problems arise in multi-agent naviga-
tion: finding the way to the goal and avoiding colli-
sions while approaching it. Our work only attempts to
solve the second problem. Nevertheless, it is easy to
envision GRM-based navigation, for example follow-
ing the general approach of Van den Berg et al (2008):
each agent chooses a heading that is as close as possible
to the target heading, but does not elicit GRM on its
retina. The most striking difference between this
approach and extant work is that GRM requires very
little computation, from cues directly accessible from
the retinal projections and the optical flow.

Cutting et al (1995) analyze what information a
mobile observer withmobile, fixating eyes requires for
navigation. The fruit fly has immobile, non-fixating
eyes. Despite this difference, our basic finding agrees
with Cutting’s seminal work: in a mobile world the
gaze-movement angle, not looming, provides crucial
information as to whether a collision will occur. It is
interesting to note that Cutting arrives at this result by
a careful experimental analysis of human perception,
while we arrived at it analyzing a simplified model of
fruitfly behavior.

Inspired by Cutting, Ondrěj et al (2010) develop a
simple principle for collision avoidance in crowded
scenes: redirect if (1) the bearing of the obstacle is con-
stant and (2) the time until the observer reaches the
closest point to the obstacle is positive. However, even
the simple task of detecting whether the bearing angle
of a specific object is constant requires segmentation
of the scene, because an object’s projection expands
and contracts as the it approaches and departs. In
addition, Ondrěj et alʼs algorithm requires the obser-
ver to know (or infer from angular expansion rates,

Figure 8. Simulated agents, a control diagram. Each fly-like
agent keeps following a straight trajectory (see text for details)
until either regressivemotion or looming expansion on its
retina exceeds afixed threshold. The agent then stops until a
Bernoulli coin (tossed on each time step) shows ‘heads’.

6
A is the surface of the walking arena. We re-draw the initial

positions so that theflies do not overlap at t= 0.
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which presupposes segmentation) the positions and
velocities of all obstacles.

An alternative to biologically-inspired approaches
is to construct a mathematical model of navigation
from first principles. Fajen et al (2003) derive an ele-
gant dynamical model for multi-agent navigation and
set its parameters using human behavior data. How-
ever, the model assumes each agent’s knowledge of
distances to all obstacles. Huang et al (2006) adapt the
algorithm for use with single-camera robots by sub-
stituting that information with a function of the width
of the obstacle on the retina. This, however, requires at
least coarse scene segmentation. Similarly, any algo-
rithm that depends on time-to-collision estimates
(Karamouzas et al 2014) relies on successful scene
segmentation.

Van den Berg et al (2008) (and later Van den Berg
et al (2011)) study reciprocal collision avoidance: similar
to us, they assume that the agents all implement the
same movement protocol. However, they also assume
that each agent knows the positions, velocities, and
exact shapes of all other agents.

Whereas scene segmentation and obstacle posi-
tions and velocities can be computed with modern
mechanical sensors, we showed that collision avoid-
ance is possible with even simpler cues. GRM is biolo-
gically feasible and can be computed using Reichardt-
detector-like circuits (Reichardt 1961). Such circuits
have been successfully implemented on minimalistic
hardware (Barrows et al 2002, Beyeler et al 2009).

GRM-based control is thus at the lower end of the
spectrum of navigation algorithms ordered by the
complexity of the cues they rely on. The algorithms
discussed in this section trade simplicity for better and
more natural-looking navigation. Yet more sophisti-
cated algorithms for robotic navigation, e.g. Probabil-
istic Roadmaps (Kavraki et al 1996, Boor et al 1999,
Karaman and Frazzoli 2011) or Rapidly Exploring
Random Trees (LaValle 1998, Petti and Frai-
chard 2005, Kuwata et al 2009, Karaman and Fraz-
zoli 2011), require significantly larger computational
power. Importance of low-complexity collision avoid-
ance grows as fields such as drone flight control are
rapidly developing (Pines and Bohorquez 2006, Kush-
leyev et al 2013, Lentink 2014, Virágh et al 2014).

GRMandbiology
Whereas perception of regressive motion appears to
influence the behavior of the fruit fly, the neural
circuitry participating in this perception-action loop
remains unknown. Fotowat and Fayyazuddin (2009)
and de Vries and Clandinin (2012) showed that
looming-sensitive neurons inDrosophila participate in
a neural pathway that mediates escape behavior.
However, escape is not the same as collision avoidance.
We showed that looming might not be a practical
collision-avoiding solution for groups of interacting
animals as it can overly impede themobility of a group.

We argue that further research into the neural circuitry
of GRM-based action in animals is an important
future direction.

One reason why regressive motion has remained a
relatively obscure phenomenon might be the often
overlooked difference between static and dynamic
environments when testing collision avoidance algo-
rithms. For example, Blanchard et al (2000) con-
structed a robot guided by responses mimicking those
of the locust looming-detection neurons. However,
the robot’s collision avoidance was only tested in an
environment consisting of stationary obstacles. We
have shown that in a more interactive environment,
GRMhas significant advantages over looming.
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Mathematical appendix

Proposition 2. Let the relative position and velocity of
the observed object be x vand respectively. Then
f = á ñ^

 
v x,

x

1
2

˙ . In particular, angular velocity scales

as one over distance squared.

Proof.Wewish to derive the angular velocity of a point
in relative motion projecting onto an observer. Place
the center of projection at the origin, and a particle
moving with constant velocity = u vv ,( ) at position

= x yx ,0 0 0( ) at time 0, as shown infigure 9.
The position at time t equals = + tx x v0 , and

the azimuth of the particlef is such that

f = =
+

+

y vt

x ut

y

x
tan .0

0

Taking the time derivative on both sides gives

f
f =

+ - +

+
 v x tu u y tv

x ut

1

cos2

0 0

0
2

( ) ( )
( )

and thus

f
f

=
+ - +

+

v x tu u y tv

x tu

cos
4

2
0 0

0
2

˙ ( ( ) ( ))
( )

( )

=
+ + - +

+

x tu v x tu u y tv

D x tu
, 5

0
2

0 0
2

0
2

( ) ( ( ) ( ))
( )

( )

where D is the distance of the particle from the origin.
Equation (5) follows from the relation f = +cos x tu

D
0

(see figure 9). Simplifying the RHS yields
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f =
+ - +v x tu u y tv

D
6

0 0
2

˙ ( ) ( )
( )

= á ñ^

 x
v x

1
, . 7

2
( )

Since the position x moves on a line perpendicular to
^v we expect the dot product to be constant, and
indeed it equals -vx uy0 0. Hence angular velocity
decays as one over distance squared. ,

Movie captions appendix

Available online are supplementary movies S1–S4.
The movies show full trials of our simulations for
chosen parameter settings. In each movie, ten fly-like
vehicles are visible, colored arbitrarily to make track-
ing the vehicles easy. Whenever two vehicles collide,
their body size is temporarily increased. Whenever a
vehicle stops, it is surrounded by a colored circle. A red
circle means the stop is a False Positive. A green circle
indicates a True Positive. In addition, a line segment is
drawn from the stopping vehicle to the one (or more)
causes of its stop.

Movie S1: CVA = 10°, TGRM = 6 rad s−1,
TLOOM = 32 rad s−1. In this movie, GRM is the
stopping mechanism, and the CVA is small. An
interesting situation arises at about 00:10, where
three vehicles (bright green, blue, and yellow)meet.
Green stops due to blue’s motion, but unnecessa-
rily. Blue avoids a collision with yellow. Yellow in
turn crashes into green. That is because green is
already stationary, so the GRMmagnitude it evokes
on yellow’s retina is relatively small, and the small
CVA prevents yellow from picking up any strong
signals from stationary obstacles.

Movie S2: CVA = 70°, TGRM = 6 rad s−1,
TLOOM = 32 rad s−1. This time, the CVA is large.
This makes it easy for the flies to detect stationary
obstacles on time. There are few collisions, but
many unnecessary stops. The collision at 00:22
(blue and bright-green) is a good example of the
type of collision that is hard to avoid using GRM
detection. The vehicles’ relative motion is insignif-
icant,making the evokedGRMsignal small.

Movie S3: CVA = 10°, TGRM = 32 rad s−1,
TLOOM = 6 rad s−1. In this case the CVA is small
and looming is the significant stoppingmechanism.
Collisions with stationary obstacles are hard to
detect, mainly because the CVA is rather small (for
example, three of them happen roughly at the same
time at 00:04).

Movie S4: CVA = 70°, TGRM = 32 rad s−1,
TLOOM = 6 rad s−1. Looming with large CVA.
Encounters such as the light-blue fly stopping at
00:15 emphasize that simple looming mechanism
(such as the one used in our simulation) do not
know about figure-ground segmentation. The two
flies that caused the stop are perceived as one
expanding entity on light-blue’s eye.
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