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Energy and phase relaxation of phosphorescent F centers 
in Cao 

M. Glasbeek,al D. D. Smith.bl J. W. Perry, Wm. R. Lambert, cl and A. H. Zewaildl 

Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology,'1 Pasadena, 
California 91125 
(Received 2 February 1983; accepted 5 May 1983) 

In this paper we study the temperature-induced homogeneous broadening of the no-phonon line in the 
emission spectrum of the F center in CaO. The linewidth can be fitted to if(if + 1), where if is the thermally 
averaged occupation number of phonons with a frequency of 90 cm- 1

• The results are characteristic of elastic 
scattering of pseudolocalized phonons at the defect site. These phonons also appear to dynamically couple the 
Jahn-Teller components of the F center in the photoexcited 3T,, state and thus give rise to a temperature 
dependence of the lifetime of this phosphorescent state. Finally, from experiments using laser-selective 
excitation it is concluded that the zero-phonon emission peaking at 571.1 nm does not originate in the F 
center. 

I. INTRODUCTION 

Recently, the problem of vibronic dephasing of an im
purity in an optical inactive medium has received much 
interest. i, 2•

3 Pure dephasing occurs because elastic 
phonon scattering is different in the impurity ground (i) 
and excited (f) levels. Actually, the disparity results 
from different impurity-lattice couplings in i and f. By 
a separation of "impurity" and "lattice" coordinates, 
one can showi that the strength of the impurity-lattice 
coupling depends on intramolecular electronic and vi
brational motions. If, however, the optical probe lacks 
intramolecular modes, the coupling strength is solely 
determined by its electronic part and the vibronic de
phasing process reduces to pure electronic dephasing; 
intramolecular anharmonicity is then irrelevant. In 
this paper, results representative of a pure electronic' 
dephasing mechanism are reported for a color center 
system, namely, the luminescent F center in CaO. 

In emission, the F center in CaO (i.e., an oxygen 
vacancy containing two electrons) is recognized by its 
narrow zero-phonon line at 574. 2 nm, corresponding to 
the 3 Tiu - i Ai" transition. 4 As discussed later, analysis 
of the shape of the quasiline emission allows one to di
rectly examine the homogeneous line broadening at high 
temperatures. Thus, to obtain the dephasing rates, the 
necessity of performing time-resolved coherence ex
periments1"3'5 is not mandatory in this case. We also note 
that relatively few studies involving optical dephasing in 
color center systems have been reported. 6 The reason 
is that most work is concerned with defects in alkali 
halides and for these, sharp zero-phonon transitions 
are seldom observed. 

From this work, several new findings for the F cen-
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ter in CaO emerge. Population and phase relaxation 
(i.e., Ti- and T2-type relaxation, respectively) could 
be independently studied as a function of temperature. 
It turns out that the corresponding relaxation rates have 
much different cross sections but both are thermally 
activated by phonons with fiw"" 90 cm-i. 

To explain the results, it is inferred that the F center 
defect is coupled to pseudolocalized modes. It will be 
shown that because of this coupling the observed effects 
of temperature on homogeneous linewidth and lifetime 
can be accounted for in a consistent way. Finally, by 
selective laser excitation a zero-phonon line emission 
peaking at 571. 1 nm was observed. Since the 571. 1 and 
574. 2 nm line emissions differ by about 90 cm-i, it was 
thought worthwhile to examine the possibility that the 
571. 1 nm line (of which the origin has hitherto remained 
unclear7

•
8

•
9

) originates in the F center. No evidence was 
found that this is actually the case. 

II. EXPERIMENTAL 

Yellow-colored CaO crystals (purchased from Spicer 
Ltd.) were mounted inside a Janis DT-10 variable tem
perature Dewar. The sample was cooled by a helium 
gas flow. The temperature, measured with a tempera
ture sensing probe near the sample, was regulated be
tween 4 and 120 K to within ± 0. 5 K using a Lakeshore 
Cryotronics DT-500 temperature controller. A Molec
tron DL II nitrogen pumped-dye laser was used for the 
optical excitation. The laser has a bandwidth of 0. 2 
cm-1 and a typical pulse energy of 0. 5 mJ at 574. 3 nm, 
the F-center excitation wavelength. The pulse duration 
is approximately 10 ns. The light emitted from the 
crystal was spectrally resolved with a Spex 3/ 4 m mono
chromator having a holographic grating with 1800 
grooves/mm. 

A Varian VP-100 PMT with a GaAs photocathode was 
used for detection. A PAR-162 boxcar integrator with 
a 164 plug-in unit was used for measuring lifetimes and 
time-resolved spectra. The spectra were digitized and 
computerized for data analysis. The fit of the data was 
done using a nonlinear least squares regression pro
gram. For analysis of the line shapes we have used the 
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FIG. 1. Zero-phonon emission of the F center in Cao at the 
temperatures indicated. To compensate for the intensity low
ering of the no-phonon line at the higher temperatures, spec
trometer slit width, and instrumental gain were increased. 
Spectral resolution was always better than the actual linewidth 
by at least a factor of 5. Drawn curves represent computed 
Voigt profiles. 

16 

12 

I 
E 
..£ 

8 

x 

4 
x 

• • 

13 16 39 52 65 

FIG. 2. Width and shift of the zero-phonon emission of the F 
center in CaO as a function of temperature. Dots represent the 
width of the Lorentzian component of the Voigt line shape fit. 
Error bars denote standard deviation of the calculated curve 
with respect to experimental line shape function. Crosses 
represent the total apparent width. The shift, indicated by 
squares, is into the red. Drawn curves are best fits using 
functions proportional to nOi + 1) with 1iw = 90 cm·1 for the width, 
and n with 1£w =75 cm·1 for the shift. 
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FIG. 3. Temperature dependence of the lifetime of the phos
phorescent 3T1" state of the F center in Cao. Drawn curve is 
calculated for rTa: coth (Fiw/2kT), where Fiw = 95 cm-1• 

algorithm of Armstrong (see Sec. III) to separate the 
Lorentzian and Gaussian components of the Voigt zero
phonon line shapes. 

Ill. RESULTS 

We first consider the temperature-induced broadening 
of the no-phonon emission around 574. 2 nm of the CaO 
F center. Figure 1 is illustrative of the observed broad
ening of the F-center line emission after pulsed laser 
excitation (A= 504 nm) at a number of different tempera
tures. Below 20 K, the zero-phonon line is asymmetri
cally shaped with a typical FWHM of 4. 6 cm-1 • The 
asymmetry is caused by the effect of internal strain 
fields in the crystal on the vibronically triply degenerate 
3 T1u level. 10 As the temperature is increased, the line 
becomes more symmetric and becomes a good Lorentz
ian above 40 K. Overlap with the phonon side band is 
negligible for temperatures lower than 50 Kand severe 
above 65 K. To determine the inhomogeneous width, we 
fit the high-energy side of the line, which showed the 
steepest edge, to a Voigt function (i.e., a Lorentzian 
convoluted with a Gaussian). 11 At 4. 2 K the best fit gave 
a Gaussian width of 1. 3 ± 0. 5 cm-1

. At higher tempera
tures, the line was fitted by convolve-and-compare us
ing the algorithm of Armstrong. 12 The drawn curves in 
Fig. 1 represent the computed Voigt profiles. 

The width of the Lorentzian component is considered 
representative of the homogeneous broadening. 13 The 
temperature dependence of the homogeneous width of the 
F-center zero-phonon line is given in Fig. 2, together 
with the apparent FWHM and the shift of the line center. 
As shown in Fig. 2, a residual homogeneous width of 
- 1. 8 cm-1 at the lowest temperatures is found. 

In a separate experiment the contribution of the popu
lation decay out of the 3 T1u state to the homogeneous 
broadening was determined. Figure 3 shows our data 
for the temperature dependence of the 3 T1u state life
time in the temperature region of interest. It is seen 
that the lifetime always remains on the order of milli
seconds. However, a significant temperature effect is 
also evident. 

Laser excitation at 503. 8 nm yielded in addition to 

J. Chem. Phys., Vol. 79, No. 5, 1 September 1983 
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the F-center phosphorescence, a sharp-line emission 
with a peak at 571.1 nm. Figure 4(a) shows the well
known F-center spectrum (T=4. 2 K) gated 1 ms after 
the laser pulse, whereas Fig. 4(b) shows the spectrum 
gated 50 ns after the excitation pulse. [Note that the 
intensity scales in Figs. 4(a) and 4(b) are much differ
ent due to a difference in experimental conditions (slit 
widths and apparatus gain). The 571.1 nm is much 
stronger than the 574. 2 nm line emission.] The excita
tion spectra of the 574. 2 and 571.1 nm lines were moni
tored also. These spectra, shown in Fig. 5, were ob
tained by scanning the dye-laser wavelength from 480 
to 580 nm. For the excitation spectrum of the 574. 2 
nm line, an asymmetric broad absorption band peaking 
at 510 nm was observed. On the other hand, the excita
tion spectrum of the 571.1 nm line [cf. Fig. 5(b)] con
sists of two bands, a relatively weak band with its maxi
mum near 510 nm and a strong band with a maximum at 
550 nm. As mentioned in Sec. I, it seemed of interest 
to investigate the possibility that the 571.1 nm emis
sion originates in the F center. 

As already noted, the 3 Tiu state lifetime typically is 
in the millisecond range. By contrast, the time decay 
of the 571. 1 nm emission appeared too short to be mea
sured within the time resolution of our equipment (- 50 
ns). The orders of magnitude difference in the decay 
time of the 571.1 and 574. 2 nm emissions shows that 
the population flow, if any, between the emitting states 
is slower than the millisecond decay of the 3 T1,, level. 
Thermal isolation was also found in another experiment. 

Upon direct excitation of the crystal at 571. 1 nm (T < 10 
K), no emission is observed at 574. 2 nm. Thus, now 
we find that the level, which emits at 571. 1 nm, has de
cayed before any relaxation to the 3 T1,, level has oc
curred. In our initial experiments, the temperature 
dependence of the intensity of the emission at 571. 1 nm 
was measured while the crystal was pumped optically 
with light of 574. 2 nm wavelength. It was found that, 
as the temperature raises from 4 up to 100 K, the 571. 1 
nm emission becomes more intense. This suggests that 
during the lifetime of the 3 T1,, state, thermal equilibra-

~ 
580 570 

610 600 590 580 570 

FIG. 4. (a) F-center phosphorescence spectrum gated 1 ms 
after laser excitation at 503. 8 nm (T = 4. 2 K). (b) Emission 
as observed for additively colored Cao, 50 ns after laser ex
citation at 503. 8 nm (T = 4. 2 K). Due to different experimental 
conditions (slit width and apparatus gain), the intensity scales 
of (a) and (b) are different. 

@ 

@ 

FIG. 5. (a) Excitation spectrum of F-center emission peaking 
at 57 4. 2 nm, gated 1. 5 ms after excitation (T = 20 K). (b) Ex
citation spectrum of zero-phonon line with peak at 571.1 nm, 
gated 50 ns after photoexcitation (T = 20 K). The spectra were 
not corrected for system response. 

tion among the two emitting levels is achieved and in
deed, the 571.1 nm emission intensity was found to be ex
ponentially enhanced with an activation energy of 95 
cm-1

• However, from the time-resolved experiments 
we know now that thermalization does not take place and 
the alternative explanation for the temperature induced 
increase of the 571. 1 nm line intensity must be that the 
574. 2 nm light is absorbed in the hot electronic ground 
state of some unknown defect. 

IV. DISCUSSION 

The dephasing times that correspond to the homo
geneous linewidths of Fig. 2, range from 5 to O. 4 ps. 
These times are much shorter than the lifetime of the 
3 T1u state, which never drops below the value of 300 µs 
(cf. Fig. 3). Consequently, "pure" dephasing (and not 
population relaxation) is responsible for the observed 
homogeneous line broadening. 

When pure dephasing is caused by phonon scattering 
at the impurity levels, the general expression for the 
rate of dephasing is given by1

•
2 

(T~r1 =(7T/m I: wpl<Pl~vlP'>i2<'i<Ep-Ep·), (1) 
p,p' 

where ~ V = (i I VI i)- (ti VI j), Vis the potential operator 
that couples the defect states i and/ to the bath, p and 
p' are the states representative of the phonon reservoir, 
and WP is the occupation probability of state p. As is 
apparent from Eq. (1), phonon-induced dephasing evolves 
from a disparity in the cross section for phonon scatter
ing in the electronic initial and final states. 

When Eq. (1) is considered for different densities of 
phonon states, one obtains either a T7-Raman type tern-

J. Chem. Phys., Vol. 79, No. 5, 1 September 1983 
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perature dependence for 1/T~, or, in the case where 
the phonon density of states is sharply peaked, the homo
geneous width will be proportional to n(n + 1 ), where n is 
the thermally averaged occupation number of the rele
vant phonons. As reflected by the drawn curve in Fig. 
2, the F-center zero-phonon linewidth follows the n(n+ 1) 
temperature dependence, the effective mode frequency 
being 90 cm -i. 

The change in the 3 Tiu-state lifetime is striking. As 
illustrated by the drawn curve in Fig. 3, the lifetime 
appears proportional to coth(liw/2kT), for liw = 95 cm-i. 
The results are in agreement with the experimental data 
obtained by Welch et al. i4 for the same temperature 
range. 

In the Appendix, it is shown that when a level decays 
due to a vibronic transition, the temperature dependence 
of its lifetime is given by the function cot h (liw/2kT). In 
fact, a Herzberg-Teller coupling in the initial electronic 
level induced by a mode of frequency w gives rise to the 
vibronic character of the decay; all other lattice modes 
are treated within the usual adiabatic approach for the 
defect-lattice coupling. In view of the fact that the F
center 3 Tiu level refers to a Jahn-Teller state, is it may 
seem surprising that the adiabatic description is valid. 

However, for the particular case of the F center in 
CaO it is well established that the 3 Tiu level is strongly 
coupled to eg modes15 in which case the exact vibronic 
solutions (in the linear coupling limit) can still be written 
as Born-Oppenheimer states, >V(r, q0)F0 ,m(q8, q,). i6 Note 
that the phase relaxation of the 3 Tiu - iAig no-phonon 
transition as well as the decay out of the 3 Tiu level both 
are activated by 90 cm-i modes. On this basis, we in
fer that the pseudolocal modes that affect the optical de
phasing process are also involved in the vibronic mixing 
among the Jahn-Teller levels in the excited 3 Tiu state. 
This vibronic mixing is readily visualized as follows. 
Three tetragonal distortions exist for the F center in 
the 3 Tiu state, due to the strong linear coupling of the 
latter to an eg mode. For the system in one of these 
distorted configurations i ( =x, y, z), the coupling to t'4 
modes causes a vibronic mixing among the Jahn-Teller 
states according to 

-'•'( (i)) - ,y. ( (j)) "\°""'' ,T, ( (i)) "'1r,q. -'i';r,q. +L..J"i;"';r,q. qt, 
j 

where >1' 1(r, q! 0 ) is the uncorrected electronic wave 
function for distortion i and q~ll is short for the equi
librium positions of the q6 and q, coordinates of the eg 
(Jahn-Teller) mode corresponding to distortion i; A;; is 
representative of the vibronic mixing between >1' 1 and >1'; 

as induced by the t2g mode with coordinate q1 • Presum
ably, the relative small energy spacing among the states 
'11 1(r, q!ll)and>V1(r, q!0 ) is most effective in promoting 
the temperature dependence of the 3 T1u-state lifetime. 

Finally, we comment on the small shift to the red of 
the F-center zero-phonon emission when the tempera
ture is raised. As shown in Fig. 2, the shift o can be 
fitted to 0 cc n, where n is the thermally averaged occupa
tion number of a lattice mode with liw = 75 ± 10 cm -i. 
Consequently, in contrast to the two-phonon effects on 
the linewidth, the shift is typical for a one-phonon as-

sisted process. Evidently, again low-frequency pseudo
local modes are involved. A general expression for o 
appears to comprise the sum of two terms2

: the first of 
these (the incoherent term) is of the order of I Hint 12

/ .6.E, 
where .6.E is the energy difference of the states mixed 
by Hint· 

The second (the coherent term) is determined by the 
coherence in the dynamic frequency shift of the two 
resonant levels and demands that no change in the pho
non state occurs during the electron-phonon interaction 
("elastic scattering"). The latter condition implies that 
only terms second order in the expansion of Hint in pho
non coordinates contribute to o. On the other hand, no 
such restriction applies for the incoherent shift and 
therefore the latter is predominantly determined by first 
order terms in the electron-phonon interaction. One 
readily shows that then I Hint 12 a: n. 

V. CONCLUSION 

In this paper, a laser-selective study concerning the 
mechanism for optical dephasing of the 3 T1u -

1A 1g tran
sition within the F center in CaO is presented. The 
homogeneous width of the no-phonon line is found to be 
proportional to n(n + 1). This behavior is characteristic 
of a process of elastic scattering of pseudolocalized pho
nons at the defect site. The presence of pseudolocalized 
modes is independently concluded from temperature ef
fects on the no-phonon line position and the lifetime of 
the emissi ve 3 T1u state. In both these series of mea
surements we find changes proportional to n, in which 
case it can be shown the temperature behavior is deter
mined by terms linear in the electron-phonon coupling. 

Finally, we emphasize that the temperature dependence 
of the coherence decay rate and the dynamic frequency 
shift differ by a factor of (n + 1). This result eliminates 
for the F center the applicability of the conventional ex
change model. 3 In the latter, an exchange process in
volving different vibronic transitions is invoked, there
by producing line broadening and line shifts. However, 
for such an exchange mechanism one can show that the 
ratio of the temperature-induced shift and broadening 
should be temperature independent. 
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APPENDIX 

To derive the temperature dependence of the lifetime 
( r) of an emitting level I Ii), the vibronic transition I Ii) 
- I II/) is considered. Here I and i denote the initial 
electronic and phonon states, n and f denote the respec
tive final states. The radiative decay rate (T-i) is re
lated to the integrated vibronic transition probability ac
cording to 

T-t a: L: (W(Ii- II/ ))T 
f 

(Al) 

J. Chem. Phys., Vol. 79, No. 5, 1September1983 
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In Eq. (Al), W(Ii-II/) represents the probability for 
the I Ii) to I II/) transition, ( ... )T expresses thermal 
averaging of W over all occupied initial phonon states i 
and the summation is over all possible final phonon 
states/. Consider now the electronic transition moment 

M 1 n(R)= f drI(r,R)M(r)II(r,R), (A2) 

which is assumed to exhibit a weak dependence on q,, 
the normal coordinate of a pseudolocal mode, only. 
Thus, 

M1 u(q,) = M~0/1 + M~1/1 q, + · · · 

and Eq. (Al) becomes 

(A3) 

(A4a) 

Here (W(Iip - 11/,))T is the probability for the I Ii,) to 
111/p) vibronic transition thermally averaged over all 
occupied initial pseudolocal mode states i,, and the 
Franck-Condon overlap is given by 

Jlsf s = I f dq. xt1. (q.):XIIfs (q.) I 2 

where Xu, (q.) is the harmonic vibrational function for 
mode s in the electronic state I. Since, 2: J 1, 1, = 1 (clo
sure relation), Eq. (A4a) becomes 

(A4b) 

To evaluate the right-hand side ofEq. (A4b) we assume 
the same equilibrium configuration for mode p in states I 
and II (i.e. , no shift in the equilibrium positions of the lattice 
atoms). Furthermore, no additional distortions in II 
for mode pare assumed (w1p =wu,=w,). Then, by sub
stitution of Eq. (A3) in Eq. (A4b) and making use of the 
properties of the harmonic oscillator functions {viz, 
(Xv+ 1 lq lxv> =(v+ 1)112 [n/(2µw)]112}, one readily obtains 

T-la: IM(O) 12+_1i_ ,M(l) 12((2i +1)) 
III 2µwp III p T 

=A+ B coth(1iw,/2kT) , (A5) 

whereµ is the reduced mass of pseudolocal mode p. 
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