Supporting Information

Selectivity for HCO₂⁻ over H₂ in the electrochemical catalytic reduction of CO₂ by (POCOP)IrH₂

Samantha I. Johnson, Robert J. Nielsen,* William A. Goddard, III,

Materials and Process Simulation Center (MSC) and Joint Center for Artificial Photosynthesis (JCAP) California Institute of Technology, Pasadena CA 91125

*smith@wag.caltech.edu

Appendix 1: Scheme S1 – Reduction of the cationic acetonitrile complex	1
Appendix 2: Figure S1 – HOMO of the Ir ^I complex	2
Appendix 3: pKa calculations with water clusters	3
Appendix 4: Scheme S2 – Quaternary amine POCOP	4
Appendix 5: Scheme S3 – Additional transition states for protonation	5
Appendix 6: Figure S2 – Structures along the protonation reaction coordinate	6
Appendix 7: Figure S3 – Hydricities compared to other hydridic compounds	7
Appendix 8: Geometries of Molecules	8
Appendix 9: Calculation Details	9
••	

Appendix 1: Calculation of the doubly reduced acetonitrile complex

Currently Proposed Reduction

Previously Proposed Reduction

Scheme S1: Free energies calculated in acetonitrile at -1.2V vs SHE. Reduction with loss of solvent is preferred to a two-electron reduction of the solvento complex as previously proposed,¹ which leads to a reduced acetonitrile adduct.

In previous work¹ a doubly reduced cationic solvento complex was calculated, as shown below. However, the geometry showed a bent acetonitrile, suggesting that the acetonitrile had been reduced, not the metal center. When this complex is recalculated with our methods, we compute a reduction potential of -1.8, which is inconsistent with the experimentally observed reduction potential.

HOMO -1

НОМО

Figure S1: HOMO of Ir^I complex

The HOMO -1 and HOMO of POCOP-Ir^I hydride anion (**Mol 7**) is shown. The high electron density in axial positions explains why oxygen cannot coordinate simultaneously in a transition state analogous to **TS 4**.

Appendix 3: Justification for Calculations with Water Clusters

The calculated free energy and pKa for the auto-dissociation of water is used to justify our use of an explicit four-water cluster (plus continuum solvation) in transition state calculations. A neutral $4H_2O$ and anionic $OH^- \cdot 3H_2O$ cluster were used.

 $4 \text{ H}_2\text{O}(\text{liq}) \rightarrow \text{H}^+(1\text{M}) + \text{OH}^- \cdot 3\text{H}_2\text{O}(1\text{ M})$

 $\begin{array}{l} \Delta G_{calc} = 20.2 \ kcal/mol \\ \Delta G_{exp} = 19.05 \ kcal/mol \end{array}$

Scheme S2: (a) Structures of quaternary amine POCOP complexes, (b) Free energies of reactions featuring the full ligand versus the truncated ligand.

Experimentally a quaternary amine solvation handle (1,1-piperazinium) was added to the standard (POCOP) ligand in order to aid with solvation. In our calculations, for simplicity, we eliminated this handle, but validated two calculations to ensure that our free energies would be similar. The first is the loss of acetonitrile in water and the second is the free energy of reaction with CO₂ to form formate, involving a change in overall charge. These can be seen in Scheme S2b.

The difference in free energies of these reactions does not exceeds 0.5 kcal/mol, which is well within the error of DFT. Thus we feel comfortable in using the simplified ligand scaffold.

Scheme S3 – Free energies for protonation via the Y-shaped cluster

Protonation via the Y-shaped cluster used previously for protonation has a higher barrier than the square shaped cluster, showing that water orientation is significant.

Figure S2 – Figures of images along the intrinsic reaction coordinate calculation. A. Point on the reverse path; B. The transition state; C. Point on the forward path. All bond lengths in Angstroms. For reference, the spectator Ir-H bond length is 1.70 Å.

Figure S3 – Hydricities of (POCOP) Ir compared to other hydridic compounds

In Figure S3, the first reduction potential vs ferrocene of several $P_4 Ni^2$ and Pd^3 compounds are plotted against their measured hydricites in acetonitrile, denoted by the blue and yellow diamonds. Dubois and coworkers noted that the first half-wave one electron reduction potential correlated linearly with the resulting measured hydricity. The point marked by the red "X" is that calculated for (POCOP)Ir(H)₂(NCCH₃) for the (III/II) couple vs ferrocene. The value for this does not lie on the line established by the Pd and Ni compounds, which means that while the Ir complex has a calculated hydricity near some of the more reactive Pd and Ni compounds, more energy is required to gain the same return in hydricity. This indicates an interesting relationship between hydricity and structure.

References

- 1. Cao, L.; Sun, C.; Sun, N.; Meng, L.; Chen, D. Dalton Trans. 2013, 42, 5755.
- Berning, D. E.; Miedaner, A.; Curtis, C. J.; Noll, B. C.; Rakowski DuBois, M. C.; DuBois, D. L., Organometallics 2001, 20, 1832-1839.
- Raebiger, J. W.; Miedaner, A.; Curtis, C. J.; Miller, S. M.; Anderson, O. P.; DuBois, D. L., J. Am. Chem. Soc. 2004, 126, 5502-5514.

Appendix 8: Geometries of Molecules

Optimized molecular geometries can be found in the supplemental file SI_POCOP_Ir.xyz In order to open these files for viewing and analysis, the authors suggest a program as Mercury, which can be found at <u>http://www.ccdc.cam.ac.uk/pages/Home.aspx</u> free of charge.

Appendix 9:	Calculation	Details

	ZPE	Hvib	Svib	6kT	1/2 (Strans+Srot) +S	elec	Htot	Stot	G(Solv) H20	E(SCF, large basis M06)	Water	# basis
Iridium												
Mol 1b	399.59	22.31	141.52	3.5528	40.81	0.00	24.68	224.74	-0.01256	-1933.20098	-1212739.99	1022
TS 1	407.24	23.76	156.05	3.5528	41.08	0.00	26.13	234.40	-0.01872	-2121.74772	-1331054.06	1088
TS 3	377.19	21.66	136.94	3.5528	40.77	0.00	24.03	220.32	-0.00766	-1989.03209	-1247793.14	1001
TS 1 wat	393.809	22.62	140.91	3.5528	40.91	0.00	24.99	223.71	-0.01259	-2065.46577	-1295742.75	
Mol 2	408.64	24.30	153.01	3.5528	41.08	0.00	26.67	237.08	-0.02298	-2121.75015	-1331055.42	1088
TS 2	409.46	24.28	155.34	3.5528	41.07	0.00	26.65	239.70	-0.03552	-2121.72765	-1331049.05	1088
Mol 3b	410.88	24.38	155.57	3.5528	41.04	0.00	26.75	240.27	-0.02502	-2121.76261	-1331062.94	1088
Mol 3	394.78	22.53	145.70	3.5528	40.80	0.00	24.90	228.76	-0.05674	-1932.42918	-1212289.23	1015
Mol 4	425.84	25.36	165.45	3.5528	41.08	0.00	27.73	250.77	-0.05958	-2065.14991	-1295546.63	1102
Mol 3	394.78	22.53	145.70	3.5528	40.80	0.00	24.90	228.76	-0.05674	-1932.42918	-1212289.23	1015
Mol 4b	393.28	22.43	143.35	3.5528	42.18	1.38	24.80	227.68	-0.01274	-1932.58575	-1212361.19	1015
Mol 1	368.95	19.85	124.68	3.5528	40.49	0.00	22.22	206.18	-0.00526	-1800.49114	-1129486.70	935
TS 4	377.31	21.35	134.05	3.5528	40.77	0.00	23.72	216.21	-0.00662	-1989.02359	-1247786.50	1001
Mol 5	380.84	21.50	133.90	3.5528	40.73	0.00	23.87	218.68	-0.01035	-1989.06614	-1247811.80	1001
Mol 6	363.56	19.56	123.09	3.5528	41.86	1.38	21.93	206.03	-0.00462	-1799.87224	-1129103.53	928
Mol 7	361.83	19.57	122.60	3.5528	40.47	0.00	21.94	204.54	-0.07053	-1799.94434	-1129191.30	928
TS 5	369.19	21.79	141.61	3.5528	40.81	0.00	24.16	224.88	-0.06127	-1988.50825	-1247507.36	994
Mol 8	370.71	20.79	142.11	3.5528	40.78	0.00	23.16	213.41	-0.07378	-1988.51208	-1247517.22	994
Mol 9	406.04	22.90	145.43	3.5528	40.83	0.00	25.27	229.05	-0.05862	-1933.60785	-1213018.35	1029
TSHER Cluster 2	459.34	27.98	180.84	3.5528	41.54	0.00	30.35	266.30	-0.04477	-2238.87669	-1404521.18	1166
TS 6	383.27	20.59	127.79	3.5528	40.60	0.00	22.96	209.96	-0.01176	-1876.87981	-1177411.30	971
TS 7	398.39	21.63	133.96	3.5528	40.72	0.00	24.00	216.16	-0.01501	-1953.32014	-1225366.09	1007
TS 8	412.79	23.17	144.76	3.5528	40.86	0.00	25.54	227.57	-0.01855	-2029.74777	-1273314.72	1043
Mol 14	383.68	20.90	134.00	3.5528	40.60	0.00	23.27	210.24	-0.01520	-1876.89017	-1177421.09	971
Mol 7b	427.51	25.67	165.17	3.5528	41.09	0.00	28.04	249.11	-0.06997	-2105.69896	-1320996.01	1072
TS 11	423.12	25.14	167.84	3.5528	41.21	0.00	27.51	246.68	-0.07858	-2105.67114	-1320989.72	1072
TS 12	420.88	25.88	169.41	3.5528	41.16	0.00	28.25	256.50	-0.07754	-2105.65875	-1320983.25	1072
TS 5b	434.52	27.78	180.39	3.5528	41.39	0.00	30.15	266.18	-0.06640	-2294.25691	-1439311.21	1138
Mol 10	385.48	21.10	130.67	3.5528	40.60	0.00	23.47	213.12	-0.01580	-1876.90628	-1177428.58	971
TS 9 Carbonic Acid	393.62	22.01	138.09	3.5528	40.90	0.00	24.38	221.23	-0.01428	-2065.47240	-1295747.94	1037
TS 10 Carbonic Acid	393.17	22.72	141.94	3.5528	40.89	0.00	25.09	224.88	-0.01784	-2065.47418	-1295752.17	1037
Mol 14 Carbonic Acid	395.70	22.15	138.89	3.5528	40.91	0.00	24.52	222.05	-0.01413	-2065.47436	-1295747.10	1037
Mol 15 Carbonic acid	395.21	21.80	141.27	3.5528	40.90	0.00	24.17	217.82	-0.01782	-2065.48631	-1295758.45	1037
TS 9 Formate	390.27	21.41	133.41	3.5528	40.77	0.00	23.78	216.07	-0.00891	-1990.23128	-1248532.56	1015
TS 10 Formate	389.78	22.14	138.48	3.5528	40.76	0.00	24.51	220.00	-0.01192	-1990.23117	-1248535.64	1015
Mol 14 Formate	392.36	21.55	134.16	3.5528	40.78	0.00	23.92	216.86	-0.00926	-1990.23268	-1248531.65	1015
Mol 15 Formate	391.93	21.72	135.69	3.5528	40.77	0.00	24.09	218.44	-0.01160	-1990.24372	-1248540.75	1015
TS 9 Bicarbonate												
TS 10 Bicarbonate	385.43	21.93	136.57	3.5528	40.86	0.00	24.30	218.67	-0.10187	-2064.90695	-1295455.88	1030
Mol 14 Bicarbonate	387 83	21 98	138 37	3,5528	40.89	0.00	24 35	221 46	-0.08187	-2064.96181	-1295475.85	1030

	ZPE	Hvib	Svib	6kT	1/2 (Strans+Srot)	Selec	Htot	Stot	G(Solv) H20	E(SCF, large basis M06)	Water	# basis
Mol 15 Bicarbonate												
Mol 17	388.59	22.33	144.81	3.5528	40.78	0.00	24.70	227.78	-0.01109	-1932.02271	-1212011.65	1008
Mol 18	374.476	21.13	134.52	3.5528	40.57	0.00	23.50	215.65	-0.01506	-1875.721586021	-1176696.82	
TS 12	419.464	25.81	167.63	3.5528	41.03	0.00	28.18	249.70	-0.02394	-2104.9958299874	-1320534.53	1065
Mol 16	372.773	21.75	139.41	3.5528	40.74	0.00	24.12	224.74	-0.06927	-1988.5334083546	-1247523.93	994
Mol 1 – Quart Amine	493.056	25.36	161.75	3.5528	41.85	0.00	27.725	246.71	-0.08158	-2146.06056	-1346264.59	1202
Mol 1b – Quart Amine	523.78	27.73	177.96	3.5528	42.06	0.00	30.102	264.87	-0.08151	-2278.77740	-1429517.43	1289
Mol 4 – Quart Amine	550.133	30.70	200.25	3.5528	42.25	0.00	33.068	287.04	-0.18942	-2410.66765	-1512324.92	1369
Mol 4b - Quart Amine	519.019	27.94	181.59	3.5528	42.05	0.00	30.305	267.30	-0.19048	-2277.94302	-1429067.86	1282
									67.70966			
Cobalt									68.37620		ĺ	
Mol 1b	399.11	22.18	140.24	3.55	40.39	0.00	24.55	222.65	-0.01076	-1973.57	-1238068.8	1026
TS 1	406.62	24.24	153.33	3.55	40.71	0.00	26.61	238.12	-0.01509	-2162.11	-1356381.0	1092
Mol 4	425.39	25.20	162.75	3.55	40.70	0.00	27.57	245.82	-0.06031	-2105.52	-1320878.5	1106
Mol 1	368.76	19.89	125.14	3.55	40.04	0.00	22.26	206.23	-0.00397	-1840.87	-1154825.7	939
TS 4	376.75	21.30	132.69	3.55	40.36	0.00	23.67	214.92	-0.00533	-2029.40	-1273120.6	1005
Mol 6	363.34	19.46	122.50	3.55	41.41	1.38	21.83	204.39	-0.00825	-1840.28	-1154464.1	932
Mol 7	361.22	19.55	122.53	3.55	38.52	0.00	21.92	203.34	-0.06724	-1840.32	-1154524.7	932
Mol 3	394.59	22.38	143.74	3.55	40.38	0.00	24.75	225.48	-0.05806	-1972.80	-1237623.3	1019
	388.40	22.29	144.27	3.55	40.36	0.00	24.66	226.60	-0.01079	-1972.41	-1237354.9	1012
Small Molecules	_										G (Water)	
Acetonitrile	28.512	0.48	2.32	3.552756	28.8895	0	2.85	60.102		-132.6941011102	-83255.820706	87
CO2	7.282	0.178	0.78	3.552756	25.1875	0	2.252	51.157		-188.5592316715	-118328.438828	66
Formate	12.67	0.085	0.35	3.552756	28.9915	0	2.455	58.336		-189.1736055058	-118784.81265	73
Carbonic Acid	25.019	0.551	2.46	3.552756	30.9195	0	2.921	64.301	-0.01705	-264.9702066404		
Bicarbonate	16.533	0.438	1.95	3.552756	30.866	0	2.808	63.684		-264.4235014483	-166002.222456	
H2	6.384	0	0.00	3.552756	20.566	0	2.074	31.132		-1.1706233064	-735.3966987686	14
Water	13.413	0.002	0.01	3.552756	23.2415	0	2.372	46.49		-76.418225434	-47953.2890948	36
Electron	-71.0248	-71.0248		Potential	-1.2	V					-279.4820529839	
H+ (pH = 7)	-279.82	-279.82	7.00				H+ (1M)	-270.3				
H+(pH=0)	-270.3											
H+ (1 M Acn)	-256.2											
	-6.3	kcal/mol	-0.01							1	ĺ	