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1   Synthesis Details 

1.1   General Considerations 

All manipulation of air and water sensitive compounds were carried out under dry nitrogen 

using a Braun Labmaster Glovebox or standard Schlenk line techniques. 1H and 13C NMR spectra were 

recorded on Varian INOVA 400 (1H, 400 MHz) or Varian INOVA 500 (1H, 500 MHz) spectrometers. 1H 

NMR spectra were referenced with residual non-deuterated solvent shifts (CHCl3=7.26 ppm), and 13C 

NMR spectra were referenced by the deuterated solvent shifts (CDCl3=77.16 ppm).  

 Flash column chromatography was performed using silica gel with particle size 40-64 µm, 230-

400 mesh. Gel permeation chromatography (GPC) analyses were done using an Agilent PL-GPC 50 

integrated system (2 x Plgel Mini-MIX C columns, 5 micron, 4.6 mmID) equipped with a refractive 

index detector. The GPC columns were eluted with tetrahydrofuran at a rate of 0.3 mL/min at 30 ºC, 

and calibration was done using monodisperse polystyrene standards.  

 Differential Scanning Calorimetry (DSC) of polymer samples was performed on a TA 

Instruments Q1000 modulated differential scanning calorimeter with a 50 chamber autosampling 

platform. Samples were prepared in crimped aluminum pans, and experiments were conducted using 

the following protocol unless otherwise stated: heating under nitrogen from 25 ºC to 200 ºC at 10 

ºC/min, cooling from 200 to -100 ºC at 10 ºC/min, and then heating from -100 to 200 ºC at 10 ºC/min. 

The data were processed using Universal Analysis 2000 software, and all reported glass transition 

temperatures (Tg) and melting temperatures (Tm) were obtained from the second heating cycle. Thermal 

gravimetric analysis (TGA) was performed using a TA Instruments Q500 Thermogravimetric Analyzer 

equipped with an autosampler. HRMS Analyses were performed on a Thermo Scientific Exactive 

Orbitrap MS system with an Ion Sense DART ion source.  

1.2   Materials 

Grubbs first generation catalyst (Sigma-Aldrich or Strem) and Crabtree’s catalyst (Sigma-
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Aldrich) were stored under nitrogen in the glovebox and used as received. Diethylene glycol (Sigma-

Aldrich, 99%) was dried over activated 3 Å molecular sieves overnight then vacuum distilled. 

Triethylene glycol (Sigma-Aldrich, 99%) and tetraethylene glycol (Sigma-Aldrich, 99%) were dried 

over activated 3 Å molecular sieves overnight. Tetrahydrofuran (THF) and dichloromethane (DCM) 

were obtained from Fisher Scientific and dimethylformamide (DMF) was obtained from Burdick and 

Jackson, and the solvents were dried using a Phoenix solvent drying system. Alumina beads (F-200, 

BASF) were activated by heating to 180 °C overnight under reduced pressure, then stored in the 

glovebox. All other reagents were purchased from commercial sources and used as received.  

1.3   Synthesis of Monomers 

1.3.1   Synthesis of C2EO4π Monomer 

In the glovebox, sodium hydride (95%, 2.7 g, 112 mmol) was added to a 500 mL vacuum-

adapted round bottom flask with a stirbar. The flask was sealed and taken out of the glovebox, and THF 

(200 mL) was added via cannula under nitrogen. Triethylene glycol (6.0 mL, 44 mmol) was added 

dropwise and stirred for 20 minutes at room temperature. Allyl bromide (8.0 mL, 92.4 mmol) was 

added dropwise, and the reaction was stirred overnight. The reaction was concentrated in vacuo, and 

the residue was suspended in 150 mL of ether. The ether layer was washed three times with water, dried 

over magnesium sulfate, and concentrated. The crude product was purified by column chromatography 

using 50% ether in hexanes as the eluent. The product was obtained in 57% yield (5.76 g, 25.0 mmol), 

and stored neat over activated alumina beads in the glovebox. The 1H NMR spectrum of the product 

matched well with literature values.1 1H NMR spectrum in ppm (CDCl3, 500 MHz): δ 5.97-5.84 (ddt, 

J=5.7 Hz, 5.7 Hz, 10.5Hz, 21.9 Hz, 2H); 5.26 (dd, J=1.6 Hz, 17.2 Hz, 2H); 5.17 (dd, J=1.24 Hz, 10.4 

Hz, 2H); 4.01 (d, J=2.7 Hz, 4H); 3.71-3.50 (m, 12 H). 13C NMR spectrum in ppm (CDCl3, 125 MHz): δ 

134.88, 117.22, 72.36, 70.76, 69.54. HR/MS (DART): calculated for C12H23O4
+ (M+H)+ 231.1591 

g/mol; found 231. 1590 g/mol.  
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1.3.2   Synthesis of C2EO5π Monomer 

Tetraethylene glycol diallyl ether was synthesized following a procedure adapted from the 

literature.2 In the glovebox, sodium hydride (1.24 g, 51.5 mmol) was added to a 100 mL round bottom 

flask with a stirbar. The flask was removed from the glovebox, and 20 mL of dry degassed DMF was 

added via syringe. The flask was cooled to 0 ˚C, and tetraethylene glycol was added dropwise (2.0 g, 

10.3 mmol). The reaction was stirred at 0 ˚C for 15 minutes, then allyl glycidyl ether (3.48 mL, 40.2 

mmol) was added dropwise. The flask was warmed to room temperature and stirred overnight. The 

reaction was quenched with isopropanol, filtered through a Celite plug, and diluted with ~100 mL ether. 

The solution was washed three times with brine, dried over sodium sulfate, and concentrated. The 

crude product was purified by column chromatography with 100% diethyl ether as the eluent. The 

product was obtained in 77% yield (2.18 g, 7.9 mmol), and stored neat over activated alumina beads in 

the glovebox. 1H NMR spectrum in ppm (CDCl3, 500 MHz): δ 5.90 (ddd, J=5.7 Hz, 10.9 Hz, 22.8 Hz, 

2H); 5.26 (dd, J=1.3 Hz, 17.2 Hz, 2H); 5.17 (d, J=10.4 Hz, 2H); 4.01 (d, J=5.7 Hz, 4H); 3.75-3.52 (m, 

1H). 13C NMR spectrum in ppm (CDCl3, 125 MHz): δ 134.88, 117.22, 72.36, 70.76, 70.72, 69.54. 

HR/MS (DART): calculated for C14H27O5
+ (M+H)+ 275.1853 g/mol; found 275.1850 g/mol.  

1.3.3   Synthesis of C4EO4π Monomer 

The synthesis of the mesyl-terminated PEG was adapted from a literature procedure.3 

Triethylene glycol (3 g, 20 mmol) was added to a 300 mL vacuum adapted round bottom flask 

equipped with a stirbar under nitrogen. Dry dichloromethane (100 mL) and diisopropylethylamine (7.7 

mL, 44 mmol) were added via cannula, and the flask was cooled to 0 ˚C. The solution was stirred for 

10 minutes, and then methanesulfonyl chloride (3.4 mL, 44 mmol) was added. The flask was allowed 

to warm to room temperature and stirred overnight. The crude reaction mixture was washed with 100 

mL brine, and the organic layer was concentrated under reduced pressure. The residue was partitioned 

between 100 mL hexanes and 100 mL water. Sodium chloride (10 g) was added to the aqueous layer, 
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which was extracted with 3x100 mL dichloromethane. The combined organic layers were dried over 

sodium sulfate and concentrated. The crude product was purified by column chromatography using 5% 

methanol in dichloromethane as the eluent. The product was isolated as a yellow oil in 29% yield (1.77 

g, 5.8 mmol), and the 1H NMR spectrum was consistent with the literature. 1H NMR spectrum in ppm 

(CDCl3, 400 MHz): δ4.37 (m, 4H), 3.76 (m, 4H), 3.67 (s, 4H), 3.07 (s, 6H). 

In the glovebox, sodium hydride (95%, 253 mg, 10.5 mmol) was added to a 20 mL scintillation 

vial equipped with a stirbar. The vial was sealed with a pierceable Teflon-lined septum cap and brought 

out of the glovebox. Dry THF (5 mL) was added via syringe .The reaction was cooled to 0 ˚C, then 3-

butene-1-ol (800 µL, 9.3 mmol) was added dropwise and stirred for 15 minutes. The mesyl-terminated 

PEG (1.48 g, 4.8 mmol) was dissolved in 5 mL THF, and the solution was added to the vial dropwise. 

The reaction was warmed to room temperature and stirred overnight. The vial was quenched with H2O 

and concentrated under reduced pressure. Diethyl ether (80 mL) was added to the residue, and the 

milky suspension was filtered through Celite and concentrated. The crude product was purified by 

column chromatography using 50% ether in hexanes as the eluent. The product was isolated as a clear 

oil in 36% yield (0.90 g, 1.7 mmol), and stored over activated alumina beads in the glovebox. 1H NMR 

spectrum in ppm (CDCl3, 500 MHz): δ 5.82 (ddt, J=6.8 Hz, 6.8 Hz, 10.2 Hz, 17.0 Hz, 2H); 5.09 (dd, 

J=1.5 Hz, 17.2 Hz, 2 H); 5.04 (d, J=10.2 Hz, 2H); 3.70-3.58 (m, 12 H); 3.53 (t, J=6.9 Hz, 4H); 2.35 (q, 

J=6.8 Hz, 4H). 13C NMR spectrum in ppm (CDCl3, 125 MHz): δ 135.27, 116.44, 70.77, 70.75, 70.70, 

70.26, 34.25. HR/MS (DART): calculated for C14H27O4
+ (M+H)+ 259.1909 g/mol; found 259.1903 

g/mol.  

1.3.4   Synthesis of C4EO5π Monomer 

The C4EO5π monomer was synthesized using the same procedure as for C4EO4π, except 

tetraethylene glycol was used instead of triethylene glycol. The monomer was purified by column 

chromatography using 50 to 75% ether in hexanes as the eluent. The product was isolated as a clear oil 
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in 46% yield (0.66 g, 1.44 mmol), and stored over activated alumina beads in the glovebox. 1H NMR 

spectrum in ppm (CDCl3, 500 MHz): δ 5.81(ddt, J=6.7 Hz, 6.7 Hz, 10.2 Hz, 17.0 Hz, 2H); 5.08 (dd, 

J=1.8 Hz, 17.2 Hz, 2H); 5.02 (d, J=10.2 Hz, 2H); 3.68-3.56 (m, 18 H); 3.51 (t, J=6.9 Hz, 4H), 2.34 (qd, 

J=5.6 Hz, 6.8 Hz, 6.9 Hz, 6.9 Hz, 4H). 13C NMR spectrum in ppm (CDCl3, 125 MHz): δ 135.27, 

116.46, 70.78, 70.74, 70.72, 70.70, 70.26, 34.25. HR/MS (DART): calculated for C16H31O5
+ (M+H)+ 

303.2166 g/mol; found 303.2165 g/mol.  

1.3.5   Synthesis of C6EO4π Monomer 

The synthesis of the C6EO4π monomer was adapted from a literature procedure.4 In the 

glovebox, sodium hydride (95%, 288 mg, 12 mmol) was added to a 20 mL scintillation vial equipped 

with a stirbar. The vial was sealed with a pierceable Teflon-lined septum cap and brought out of the 

glovebox. Under nitrogen, sodium iodide (37 mg, 0.24 mmol) and dry THF (5 ml) were added (mg, 

mmol), and the vial was cooled to 0 ˚C. Triethylene glycol (0.54 mL, 4.0 mmol) was added dropwise, 

and the reaction was stirred until the bubbling ceased (~5 minutes). The 5-bromo-1-pentene (1.42 mL, 

12 mmol) was added dropwise as a solution in 6 mL THF. The reaction was allowed to warm to room 

temperature and stirred 5 days. The crude reaction mixture was concentrated under reduced pressure. 

The residue was diluted in 10 mL diethyl ether, filtered through Celite, and concentrated. The crude 

product was purified by column chromatography using 33 to 50% diethyl ether in hexanes as the 

eluent. The product was obtained as a clear oil in 31% yield (354 mg, 1.24 mmol) and stored over 

activated alumina beads in the glovebox. 1H NMR spectrum in ppm (CDCl3, 500 MHz): δ 5.82 (ddt, 

J=6.6 Hz, 6.6 Hz, 10.2 Hz, 16.9 Hz, 2H); 5.03 (dd, J=1.64 Hz, 17.1 Hz, 2H); 4.97 (d, J=10.2 Hz, 2H); 

3.70-3.57 (m, 8H); 3.48 (t, J=6.7 Hz, 4H); 2.12 (dd, J=7.3 Hz, 14.3 Hz, 4H); 1.69 (m, 4H). 13C NMR 

spectrum in ppm (CDCl3, 125 MHz): δ 138.43, 114.81, 70.84, 70.76, 70.24, 30.37, 28.91. HR/MS 

(DART): calculated for C16H31O4
+ (M+H)+ 287.2217 g/mol; found 287.2215 g/mol.  
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1.3.6   Synthesis of C6EO5π Monomer 

The C6EO5π monomer was synthesized using the same procedure as for C6EO4π, except 

tetraethylene glycol was used instead of triethylene glycol. The crude product was purified by column 

chromatography using 50 to 75% ether in hexanes as the eluent. The product was isolated as a clear oil 

in 35% yield (459 mg, 1.4 mmol), and stored over activated alumina beads in the glovebox. 1H NMR 

spectrum in ppm (CDCl3, 500 MHz): δ 5.80 (ddt, J=6.6 Hz, 6.6 Hz, 10.2 Hz, 13.3 Hz, 2 H); 5.00 (d, 

J=17.1 Hz, 2H); 4.94 (d, J=10.1 Hz, 2H); 3.78-3.52 (m, 12H); 3.45 (t, J=6.7 Hz, 4H); 2.10 (dd, J=7.0 

Hz, 14.3 Hz, 4H); 1.67 (m, 4H). 13C NMR spectrum in ppm (CDCl3, 125 MHz): δ 138.41, 114.81, 

70.83, 7074, 70.23, 30.36, 28.90. HR/MS (DART): calculated for C18H35O5
+ (M+H)+ 331.2479 g/mol; 

found 331.2477 g/mol.  

1.4   Synthesis of Polymers 

1.4.1   Representative ADMET Procedure for Unsaturated Polyethers 

In the glovebox, Grubbs first generation catalyst (11.2 mg, 13.6 µmol) was added to a 100 mL 

vacuum-adapted round bottom flask equipped with a 1' stirbar. Neat triethylene glycol diallyl ether 

(C2EO4π, 200 mg, 0.87 mmol) was added via Pasteur pipet. Dry, degassed dichloromethane (~0.5 mL) 

was used to rinse the sides of the flask and pipet. The flask was sealed and brought outside of the 

glovebox. On the Schlenk line, the dichloromethane was removed under reduced pressure at room 

temperature while stirring. After ~1 minute, the reaction was left open to vacuum and heated to 50 ˚C 

for 2 hours. The polymerization was quenched by cooling the reaction to room temperature under 

nitrogen, then rapidly adding 0.5 mL ethyl vinyl ether via syringe. The reaction was then stirred at 

room temperature for at least 30 minutes before precipitating into 15 mL of stirring hexanes. The 

hexanes were decanted from the precipitated polymer, which was dried at room temperature under 

reduced pressure. The polymer was isolated as a brown tacky goo in 87% yield.  
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1.4.2   Synthesis of Unsaturated [C2EO5π]n Polymer 

The unsaturated [C2EO5π]n polymer was synthesized by following the representative ADMET 

procedure with the C2EO5π monomer (400 mg, 1.5 mmol) and Grubbs first generation catalyst (19.2 

mg, 23.3 µmol). The polymerization was run for 2 hours at 50 ˚C under reduced pressure, and the 

polymer was precipitated in hexanes and isolated as a brown goo in 64% yield (231.0 mg).  

1.4.3   Synthesis of Unsaturated [C4EO4π]n Polymer 

In the glovebox, Grubbs first generation catalyst (10.2 mg, 12.4 µmol) was added to a 100 mL 

vacuum-adapted round bottom flask equipped with a 1' stirbar. Neat C4EO4π monomer (200 mg, 0.77 

mmol) was added via Pasteur pipet. Dry, degassed dichloromethane (~0.5 mL) was used to rinse the 

sides of the flask and pipet. The flask was sealed and brought outside of the glovebox. On the Schlenk 

line, the dichloromethane was removed under reduced pressure at room temperature while stirring. 

After ~1 minute, the reaction was left open to vacuum and heated to 50 ˚C for 2 hours. After 2 hours, a 

solution of Grubbs first generation catalyst (1.3 mg, 1.6 µmol) in 0.5 mL dry, degassed 

dichloromethane was added via syringe under nitrogen, and the polymerization was continued for 2 

hours at 50 ˚C under vacuum. The polymerization was quenched by cooling the reaction to room 

temperature under nitrogen, then rapidly adding 0.5 mL ethyl vinyl ether via syringe. The reaction was 

then stirred at room temperature for at least 30 minutes before precipitating into 15 mL of stirring 

hexanes. The hexanes were decanted from the precipitated polymer, which was dried at room 

temperature under reduced pressure. The polymer was isolated as a brown goo in 71% yield (125.8 

mg). 

1.4.4   Synthesis of Unsaturated [C4EO5π]n Polymer 

The unsaturated [C4EO5π]n polymer was synthesized following the same procedure as for the 

unsaturated [C4EO4π]n polymer, except using the C4EO5π monomer (200 mg, 0.66 mmol) and Grubbs 

first generation catalyst (8.7 mg, 10.6 µmol), followed by a second addition of Grubbs catalyst in 0.5 
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mL dichloromethane after 2 hours (1.3 mg, 1.6 µmol). The reaction was quenched with ethyl vinyl 

ether 2 hours after the second addition of catalyst and stirred for at least 30 minutes. The polymer was 

isolated as a brown goo in 81% yield (147.4 mg).  

1.4.5   Synthesis of Unsaturated [C6EO4π]n Polymer 

In the glovebox, Grubbs first generation catalyst (10.3 mg, 12.5 µmol) was added to a 100 mL 

vacuum-adapted round bottom flask equipped with a 1' stirbar. Neat C6EO4π monomer (220 mg, 0.77 

mmol) was added via Pasteur pipet. Dry, degassed dichloromethane (~0.5 mL) was used to rinse the 

sides of the flask and pipet. The flask was sealed and brought outside of the glovebox. On the Schlenk 

line, the dichloromethane was removed under reduced pressure at room temperature while stirring. 

After ~1 minute, the reaction was left open to vacuum and heated to 50 ˚C for 1 hour. The 

polymerization was quenched by cooling the reaction to room temperature under nitrogen, then rapidly 

adding 0.5 mL ethyl vinyl ether via syringe. The reaction was then stirred at room temperature for at 

least 30 minutes before precipitating into 15 mL of stirring hexanes. The hexanes were decanted from 

the precipitated polymer, which was dried at room temperature under reduced pressure. The polymer 

was isolated as a brown tacky goo in 56% yield (109.0 mg). 

1.4.6   Synthesis of Unsaturated [C6EO5π]n Polymer 

The unsaturated [C6EO5π]n polymer was synthesized following the same procedure as for the 

unsaturated [C6EO4π]n except using the C6EO5π monomer (220 mg, 0.66 mmol) with Grubbs first 

generation catalyst (9.0 mg, 10.9 µmol). The polymerization was run for 1 hour, quenched with ethyl 

vinyl ether, and precipitated in hexanes. The polymer was isolated as a brown tacky goo in 78% yield 

(156.7 mg).  

 

1.4.7   Representative Hydrogenation Procedure 

In the glovebox, unsaturated [C2EO4π]n polymer (from C2EO4π monomer, 600 mg unsaturated 
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polymer, 3.0 mmol repeat units) and Crabtree's catalyst (52 mg, 65 µmol) were dissolved in 100 mL 

dry dichloromethane. The solution was added to a Fischer-Porter bottle with a stirbar, and the reactor 

head was attached. The Fischer-Porter bottle was removed from the glovebox and charged with 30 psig 

of hydrogen. The reaction was stirred at room temperature for 20 hours, and then the reactor was 

vented to atmospheric pressure. The solvent was removed under reduced pressure to yield the 

hydrogenated polymer as a brownish grey tacky goo in quantitative yield.  

1.4.8   Procedure for Removal of Ruthenium Residues from Polymer 

The procedure for removing residual Ru was adapted from a literature procedure.5 The polymer 

was dissolved in dichloromethane to give a concentration of ~50 mg/mL. Activated carbon (Darco KB 

100 mesh wet powder, Sigma-Aldrich) was added (100 mass % relative to polymer), and the 

suspension was stirred at room temperature overnight. The slurry was filtered through a plug of 

Whatman glass microfiber filter paper cotton wool, and then concentrated under reduced pressure.  
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1.5   NMR Spectra of Polymers 

1.5.1   NMR Spectra of Unsaturated [C2EO4π]n  

1H NMR spectrum in ppm (CDCl3, 400 MHz): δ 6.27 (dd, J=29.8, 12.6 Hz, endgroup); 5.85-

5.75 (m, trans alkene, 2H including cis alkene); 5.73-5.67 (m, cis-alkene); 4.80-4.67 (m, endgroup); 

4.10-3.95 (m, 4H); 3.71-3.51 (m, 13 H); 2.18 (q, J=7.2, 7.2, 7.2 Hz, endgroup); 1.53 (dd, J=6.7, 1.5 Hz, 

endgroup). 13C NMR spectrum in ppm (CDCl3, 125 MHz): δ 129.66, 129.49, 71.32, 70.72, 69.66, 

69.59, 66.99, 28.37 (endgroup).  

 

Figure 1. 1H NMR spectrum of unsaturated [C2EO4π]n polymer in CDCl3. 
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Figure 2. 13C NMR spectrum of unsaturated [C2EO4π]n polymer in CDCl3. 
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1.5.2   NMR Spectra of [C2EO4]n  

1H NMR spectrum in ppm (CDCl3, 500 MHz): δ 3.70-3.51 (m, 12 H); 3.50-3.40 (m, 4H); 1.69-

1.56 (m, 4H); 0.90 (t, J=7.4, 7.4 Hz, endgroup). 13C NMR spectrum in ppm (CDCl3, 125 MHz): δ 

71.26, 70.73, 70.19 26.39.  

 
Figure 3. 1H NMR spectrum of [C2EO4]n polymer in CDCl3. 

 

 
Figure 4. 13C NMR spectrum of [C2EO4]n polymer in CDCl3. 

 
  



16 
 

1.5.3   NMR Spectra of Unsaturated [C2EO5π]n 

1H NMR spectrum in ppm (CDCl3, 500 MHz): δ 5.89 (ddt, J=17.2, 10.4, 5.7 Hz, endgroup); 

5.79-5.75 (m, trans alkene, 2H including cis alkene); 5.70-5.67 (m, cis-alkene); 5.27-5.12 (m, 

endgroup); 4.10-3.93 (m, 4H); 3.73-3.47 (m, 18H); 1.52 (dd, J = 6.7, 1.6 Hz, endgroup). 13C NMR 

spectrum in ppm (CDCl3, 125 MHz): δ 129.59, 71.26, 70.71, 70.70, 70.67, 69.65, 69.59, 66.97.  

 

Figure 5. 1H NMR spectrum of unsaturated [C2EO5π]n polymer in CDCl3. 

 

 

Figure 6. 13C NMR spectrum of unsaturated [C2EO5π]n in CDCl3. 
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1.5.4   NMR Spectra of [C2EO5]n  

1H NMR spectrum in ppm (CDCl3, 500 MHz): δ 3.70-3.53 (m, 19H); 3.50-3.42 (m, 4H); 1.68-

1.56 (m, 4H); 0.89 (t, J=7.4, 7.4 Hz, endgroup). 13C NMR spectrum in ppm (CDCl3, 125 MHz): δ 

71.28, 70.78, 70.24, 26.44.  

 
Figure 7. 1H NMR spectrum of [C2EO5]n polymer in CDCl3. 

 

 

Figure 8. 13C NMR spectrum of [C2EO5]n polymer in CDCl3. 
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1.5.5   NMR Spectra of Unsaturated [C4EO4π]n 

1H NMR spectrum in ppm (CDCl3, 500 MHz): δ 5.87-5.76 (m, endgroup); 5.53-5.41 (m, 2H); 

5.13-4.97 (m, endgroup); 3.69-3.56 (m, 13H); 3.46 (td, J = 7.1, 1.5 Hz, 4H); 2.35 (dd, J = 12.7, 7.1 Hz, 

2H); 2.28 (dt, J = 7.1, 6.3 Hz, 2H). 13C NMR spectrum in ppm (CDCl3, 125 MHz): δ 128.50, 127.64, 

71.26, 70.98, 70.75, 70.73, 70.71, 70.28, 70.21, 33.18, 28.12. 

 

Figure 9. 1H NMR spectrum of unsaturated [C4EO4π]n polymer in CDCl3. 

 

 

Figure 10. 13C NMR spectrum of unsaturated [C4EO4π]n polymer in CDCl3. 
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1.5.6   NMR Spectra of [C4EO4]n 

1H NMR spectrum in ppm (CDCl3, 400 MHz): δ 3.68 – 3.53 (m, 12H); 3.43 (t, J = 6.7 Hz, 4H); 

1.87 (br s, endgroup); 1.62 – 1.51 (m, 4H); 1.39 – 1.27 (m, 4H); 0.90 (t, J = 7.4 Hz, endgroup). 13C 

NMR spectrum in ppm (CDCl3, 125 MHz): δ 71.54, 70.73, 70.72, 70.18, 29.72, 26.10. 

 
Figure 11. 1H NMR spectrum of [C4EO4]n polymer in CDCl3. 

 

 
Figure 12. 13C NMR spectrum of [C4EO4]n polymer in CDCl3. 
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1.5.7   NMR Spectra of Unsaturated [C4EO5π]n 

1H NMR spectrum in ppm (CDCl3, 400 MHz): δ 5.88-5.75 (m, endgroup); 5.53-5.40 (m, 2H); 

5.14-4.98 (m, endgroup); 3.66-3.55 (m, 17H); 3.45 (td, J = 7.1, 1.5 Hz, 4H); 2.34 (dd, J = 12.7, 7.0 Hz, 

2H); 2.28 (ddd, J = 10.8, 7.0, 1.4 Hz, 1H), 1.70 (dd, J = 6.3, 1.3 Hz, endgroup). 13C NMR spectrum in 

ppm (CDCl3, 125 MHz): δ 128.48, 127.63, 71.25, 70.97, 70.71, 70.26, 70.20, 33.16, 28.10. 

 

Figure 13. 1H NMR spectrum of unsaturated [C4EO5π]n polymer in CDCl3. 

 

 

Figure 14. 13C NMR spectrum of unsaturated [C4EO5π]n polymer in CDCl3. 
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1.5.8   NMR Spectra of [C4EO5]n 

1H NMR spectrum in ppm (CDCl3, 400 MHz): 3.68-3.53 (m, 4H); 3.44 (t, J = 6.8 Hz, 4H); 

1.65-1.50 (m, 2H); 1.42-1.25 (m, 2H); 0.91 (t, J = 7.4 Hz, endgroup). 13C NMR spectrum in ppm 

(CDCl3, 125 MHz): δ 71.57, 70.75, 70.72, 70.19, 29.74, 26.12. 

 
Figure 15. 1H NMR of [C4EO5]n polymer in CDCl3. 

 

 
Figure 16. 13C NMR spectrum of [C4EO5]n polymer in CDCl3. 

 



22 
 

1.5.9   NMR Spectra of Unsaturated [C6EO4π]n 

1H NMR spectrum in ppm (CDCl3, 400 MHz): δ 5.87-5.75 (m, endgroup); 5.46-5.37 (m, trans 

alkene, 2H when combined with cis-alkene); 5.36 (t, J = 4.6 Hz, cis-alkene); 5.06-4.90 (m, endgroup); 

3.69-3.51 (m, 12H); 3.44 (td, J = 6.7, 2.1 Hz, 4H); 2.21-1.92 (m, 4H); 1.70-1.56 (m, 4H). 13C NMR 

spectrum in ppm (CDCl3, 125 MHz): δ 130.14, 129.72, 70.97, 70.74, 70.24, 70.22, 29.70, 29.58, 29.16, 

23.82. 

 

Figure 17. 1H NMR of unsaturated [C6EO4π]n polymer in CDCl3. 

 

Figure 18. 13C NMR spectrum of unsaturated [C6EO4π]n polymer in CDCl3. 
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1.5.10   NMR Spectra of [C6EO4]n 

13H NMR spectrum in ppm (CDCl3, 400 MHz): 3.69-3.53 (m, 12H); 3.43 (t, J = 6.8 Hz, 4H); 

1.80 (br s, endgroup); 1.62-1.49 (m, 4H); 1.28 (br s, 8H); 0.88 (br s, endgroup). 13C NMR spectrum in 

ppm (CDCl3, 125 MHz): δ 71.65, 70.75, 70.73, 70.18, 29.76, 29.58, 26.18. 

 
Figure 19. 1H NMR spectrum of [C6EO4]n polymer in CDCl3. 

 

 
Figure 20. 13C NMR spectrum of [C6EO4]n polymer in CDCl3. 
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1.5.11   NMR Spectra of Unsaturated [C6EO5π]n 

1H NMR spectrum in ppm (CDCl3, 400 MHz): δ 5.87-5.74 (m, endgroup); 5.43-5.36 (m, trans 

alkene, 2H when combined with cis-alkene), 5.36 (t, J = 4.6 Hz, cis-alkene); 5.13-4.98 (m, endgroup); 

3.67-3.54 (m, 17H); 3.44 (td, J = 6.7, 2.2 Hz, 4H); 2.43-2.22 (m, 4H); 1.68-1.56 (m, 4H). 13C NMR 

spectrum in ppm (CDCl3, 125 MHz): δ 130.14, 129.72, 70.97, 70.74, 70.24, 70.22, 29.70, 29.58, 29.15, 

23.82. 

 

Figure 21. 1H NMR spectrum of [C6EO5π]n polymer in CDCl3. 

 

Figure 22. 13C NMR spectrum of [C6EO5π]n polymer in CDCl3. 
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1.5.12   NMR Spectra of [C6EO5]n 

1H NMR spectrum in ppm (CDCl3, 400 MHz): 3.67-3.53 (m, 16H); 3.43 (t, J = 6.8 Hz, 4H); 

1.83 (br s, endgroup); 1.64-1.49 (m, 4H); 1.28 (br s, 8H); 0.91-0.84 (m, endgroup). 13C NMR spectrum 

in ppm (CDCl3, 125 MHz): δ 71.66, 70.74, 70.71, 70.18, 29.75, 29.58, 26.18. 

 
Figure 23. 1H NMR spectrum of [C6EO5]n polymer in CDCl3. 

 

 
Figure 24. 13C NMR spectrum of [C6EO5]n polymer in CDCl3. 

  



26 
 

1.6   Analysis of Polymer Endgroups 

 

Figure 25. Comparing terminal olefin and allyl ether endgroups in [C2EO3π]n polymer.  

 

Grubbs metathesis catalysts are known to form ruthenium hydride species that can lead to side 

reactions, resulting in the migration of olefins. In the case of the polymers with 1 methylene unit 

between the ethylene glycol and the alkene, the migration of the olefin would result in the formation of 

an allyl ether. Depending on the polymerization conditions, we were able to see varying amounts of the 

allyl ether alkenes in our polymers. Furthermore, when the migration involved the formation of an allyl 

ether endgroup (vs. an internal allyl ether), we were able to identify a peak (F) at δ 1.54 corresponding 

to the methyl group of the endgroup (see Figure 33). Thus, we were able to quantify the amount of 

migration of the internal olefin by comparing the integrations of the allyl alkenes (D, E) to the 

integration of F. For samples with isomerization primarily of endgroups and no internal olefin 

migration, one would expect to see D/E/F in a 1:1:3 ratios. For samples with significant migration of 

the internal olefin, the relative ratio of D and E would be much larger. In general, we were able to 
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eliminate the migration of the internal olefin by avoiding excessive heat and reaction times, as well as 

using carefully purified monomer.  

 

 

Figure 26. Observation of internal olefin migration by 1H NMR in [C2EO3π]n polymer. 
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1.7   Analysis of Polymer Thermal Stability 

1.7.1   Representative TGA Thermograms 

 
Weight% Remaining 95 50 5 

Temperature (°C) 286.16 368.35 408.78 
 

Figure 28. TGA thermogram of [C2EO4]n polymer. 

Figure 27. TGA thermogram of unsaturated [C2EO4π]n polymer. 
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Weight% Remaining 95 50 5 

Temperature (°C) 277.47 363.24 379.15 

2   Force Field Parameters for Molecular Dynamics Simulations 

In this section, the parameters used to perform the MD simulations are provided. As discussed 

in the main text, the generalized CHARMM bonding parameters are used,6 and the TraPPE-UA force 

field7 is used for all other inter- and intramolecular interactions between polymer atoms. Parameters for 

the lithium cation are obtained from a previous simulation study.8 Figure 29 provides reference labels 

for the different atom types for assigning the appropriate force field parameters. 

 

Figure 29. Labels for atom types referenced for force field parameters. 

2.1   Non-bonded Interaction Parameters 

Non-bonded interactions are computed for all intermolecular interactions and for intramolecular 

interactions between atoms separated by four or more bonds and consist of pairwise additive Lennard-

Jones and Coulombic potentials, 

�������	 
 	4
�� ���������
�� � ��������

�� � ����
�������,                                        (1) 

where i and j denote non-bonded atoms, qi and qj are their respective partial charges, rij is the separation 

distance,  ��  is the Lennard-Jones diameter, and 
��  is the Lennard-Jones well depth. Unlike interactions 

are computed with Lorentz-Berthelot mixing rules: 
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 �� 
 0.5� �� �  ��	 and  �� 
 $
�
�.                                              (2) 

Coulombic interactions between atoms separated by three bonds (1-4 interactions) are additionally 

computed, but the strength of the interaction is reduced by a factor of 0.5, unless otherwise noted. The 

parameters used in the MD simulations for these interactions are provided in Table 1. 

Table 1. Non-bonded potential parameters 

 

atom %  (amu)  �� (Å) 
�� (kcal/mol) & (e) 
ch2 14.02694 3.950 0.091411 0.00 
ch3 15.03491 3.750 0.194746 0.00 
ce2 14.02694 3.950 0.091411 0.25 
ce3 15.03491 3.750 0.194746 0.25 
oet 15.99940 2.800 0.109296 -0.50 
Li+ 6.94100 1.400 0.400000 1.00 

2.2   Bonding Potential Parameters 

United atoms separated by a single bond interact via a harmonic bonding potential, 

��'�(����	 
 	)�'�(*��� � ���+,-.�,                                                 (3) 

where )�'�( is the bonding force constant, ���  is the separation distance between atom / and 0, and ���+,- 

is the corresponding equilibrium bonding distance. The parameters used in the MD simulations for this 

type of interaction are provided in Table 2. 

 

Table 2. Bonding potential parameters for polymer atoms. 

bond )�1�( 	� kcal
mol ⋅ Å�� ���+,- (degrees) 

ce2-ce2 225.0 1.540 
ce2-ch2 225.0 1.540 
ce2-ch3 225.0 1.540 
ce2-oet 360.0 1.410 
ce3-oet 360.0 1.410 
ch2-ch2 225.0 1.540 

2.3   Bending Potential Parameters 

United atoms separated by a two bonds interact via a harmonic bending potential, 
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��1�(�:��;	 
 	)�1�(*:��; � :��;+,-.�,                                           (4) 

where )�1�( is the bending force constant, :��; is the angle between atom /, 0, and ), and :��;+,- is the 

corresponding equilibrium angle. The parameters used in the MD simulations for this type of 

interaction are provided in Table 3. 

Tables 3. Bending potential parameters for polymer atoms. 

bend )�1�( 	� kcal
mol ⋅ rad�� :��;+,- (degrees) 

ce2-ce2-oet 49.9782 112.0 
ce2-ch2-ch2 62.1001 114.0 
ce2-oet-ce2 60.0136 112.0 
ce3-oet-ce2 60.0136 112.0 
ch2-ce2-oet 49.9782 112.0 
ch2-ch2-ch2 62.1001 114.0 
ch2-ch2-ch3 62.1001 114.0 

2.3   Torsional Potential Parameters 

United atoms separated by three bonds interact via potential given by a cosine series, 

�>'?@�A��;B	 
 	 C�D1 � cos�A��;B	G � C�D1 � cos�2A��;B	G � CID1 � cos�3A��;B	G,             (5) 

where C�, C�, and CI are constant coefficients, A��;B  is the dihedral angle defined by atoms i, j, k, and l. 

The parameters used in the MD simulations for this type of interaction are provided in Table 4. 

Table 4. Torsional potential parameters for polymer atoms. 

torsion KL (kcal/mol) KM (kcal/mol) KN (kcal/mol) 
ce2-ce2-oet-ce2 1.44142 -0.32540 1.10926 
ce2-ce2-oet-ce3 1.44142 -0.32540 1.10926 
ce2-ch2-ch2-ch2 0.70551 -0.13551 1.57251 
ce2-oet-ce2-ch2 1.44142 -0.32540 1.10926 
ch2-ch2-ch2-ch3 0.70551 -0.13551 1.57251 
ch2-ch2-ce2-oet 0.35098 -0.10600 1.53001 
ch3-ch2-ce2-oet 0.35098 -0.10600 1.53001 
oet-ce2-ce2-oet 0.00000 -0.50002 2.00006 
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3   Derivation of fexp Formula 

 
As indicated in the Results and Discussion section of the main text, the experimental solvation-

site connectivity, fexp, quantifies differences in conductivity that arise due to differences in monomer 

structure, as opposed to those due to shifts in the glass transition temperature Tg or the number of 

charge carriers. To show this, we take fexp to be the ratio of reduced molar conductivities: 

O1PQ 
	� �RS
�RS,UVW		��,XYXZ,     (6) 

where  [? 
  ?/C@]^> , σr is the reduced conductivity as defined in the main text, csalt is the molar 

concentration of salt, and (…)r,T-Tg denotes quantities obtained for a given r = [Li+]/[O] and T-Tg. In eq. 

6, utilizing the reduced conductivities enables comparison between polymers at the same T-Tg, and 

normalizing the conductivity by the concentration reports the mobility of ions in the system rather than 

the net conductivity. Eq. 6 can then be rewritten in terms of the reduced conductivity and a ratio of the 

salt concentration in the two electrolytes: 

O1PQ 
	� �S
�S,UVW		��,XYXZ *

_`abc,UVW
_`abc . 
 � �S

�S,UVW		��,XYXZ *
d`abc,UVW/e
d`abc/e .,            (7) 

where nsalt indicates the moles of salt added to the system with total volume V.  

For the CxEOy polymers, it is useful to express nsalt in terms of r, 

f@]^> 
 gfh'��,            (8) 

and V in terms of the partial molar volumes of the system components,  

i 
 fh'�D+j � 2g-k̅mno � gk̅'G � ∑ f@]^>+;- k̅@]^>+;-; ,          (9) 

where k̅mno and k̅q are the partial molar volumes for a methylene group and an oxygen, respectively, 

and the summation accounts for the volume of all salt species (free ions, pairs, and aggregates). If the 

contribution of the salt to the volume is neglected as an approximation, then eq. 7 can be rewritten as  

O1PQ 
	� �S
�S,UVW		��,XYXZ �

D+rs�t-uvwxostuvyGtD�uvwxosuvyGUVW �,                          (10) 
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where the subscript ‘PEO’ denotes that the partial molar volumes are defined for PEO, in particular. To 

obtain eq. 4 of the main text, we further approximate that the partial molar volumes of all heavy-atom, 

backbone moeities are the same with respect to each other (i.e.,  k̅ 
 k̅mno 
 k̅') and also that the 

partial molar volumes are the same for all CxEOy polymers and PEO such that eq. 10 becomes 

O1PQ 
	� �S
�S,UVW		��,XYXZ *

ry,UVW
ry ..    (11) 

We note that eq. 10 can also be written with a slightly less stringent approximation (k̅q in the the 

CxEOy polymers is the same as in PEO) as 

O1PQ 
	� �S
�S,UVW		��,XYXZ *

zy,UVW
zy .,         (12) 

where A' is the volume fraction of oxygen in the polymer electrolyte.  
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4   Electrolyte Characterization at Different Salt Concentrations 

 Figure 30 shows conductivity, Tg and reduced conductivity for all electrolytes prepared in this 

experiment. In Figure 30c, we find that factoring out the effect of Tg on σ organizes the data at all r, 

consistent with Figure 4 in the main text.  

 
Figure 30. (a) Conductivity, σ, at 90 °C and (b) glass transition temperature, Tg, and (c) reduced 
conductivity, σr, with increasing r. 
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5   Approximating Conductivity Using the Universal Equation 

 As described in the Conclusions section of the main text, the relationship between fexp and xo 

leads us to a universal equation,  

 ��, { � {|,}~q � {|	 
  }~q+�, {- × +3j'- × +5.39j' � 0.86-,                        (13) 

that can be used to approximate ionic conductivity of any polyether mixed with LiTFSI salt. This 

approximation relies on four parameters: xo, the mol fraction of the polymer of interest, σPEO(r,T), the 

conductivity of PEO at a known temperature and salt concentration, Tg,PEO, the Tg of PEO at r; and Tg, 

the Tg of the electrolyte of interest at r. The conductivity approximated using eq. 13 will be at the same 

r as σPEO and at a temperature of T-Tg,PEO+Tg, where T is the temperature of σPEO. Data for σPEO and 

Tg,PEO as a function of temperature and salt concentration is well reported in the literature. For 

convenience, we provide our measurements for σPEO and Tg,PEO at varying r and T. We also provide a 

method for approximating the Tg of any polyether electrolyte based off of xo and r, in the case that the 

Tg of the polymer/salt mixture has not been measured.  

 The relationship between fexp and theoretical connectivity will depend chain architecture of the 

polymer, especially in cases where all oxygens are not chemically similar and equally accessible. Thus, 

further work is required to extend our work to cover electrolytes based on comb or branched polymers. 

Another instance where we can conceive deviation from this relationship is in an ion-paired system, or 

one where steric hindrance precludes the solvation of the lithium ion. Also, we do not expect the 

approximation to capture limitations of ion transport due to the presence of a crystalline phase, as our 

entire analysis was performed on fully amorphous materials. In these cases, eq. 13 would not provide a 

good estimate of the electrolyte conductivity.  
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5.1   Tabulated Data for σ and Tg of PEO 

Table 5. Conductivity data for PEO at different temperatures and salt concentrations where r=[Li+/O]. 
The last row shows the measured Tg of electrolytes at different salt concentrations. All data was 
obtained using 5 kg/mol PEO mixed with LiTFSI salt.  

T (°C) r =0.02 r =0.04 r =0.08 r =0.10 r =0.12 r =0.14 r =0.16 

27 4.12×10
-7
 8.14×10

-7
 7.08×10

-5
 5.08×10

-5
 5.37×10

-5
 3.12×10

-5
 3.15×10

-5
 

40 2.40×10
-6
 5.19×10

-6
 1.67×10

-4
 1.54×10

-4
 1.53×10

-4
 1.03×10

-4
 9.86×10

-5
 

50 9.49×10
-6
 3.13×10

-5
 3.34×10

-4
 3.11×10

-4
 2.98×10

-4
 2.19×10

-4
 2.04×10

-4
 

60 1.57×10
-4
 5.00×10

-4
 5.55×10

-4
 5.54×10

-4
 5.33×10

-4
 4.06×10

-4
 3.77×10

-4
 

70 4.96×10
-4
 7.05×10

-4
 8.00×10

-4
 8.89×10

-4
 8.84×10

-4
 6.92×10

-4
 7.68×10

-4
 

80 6.27×10
-4
 9.45×10

-4
 1.17×10

-3
 1.31×10

-3
 1.24×10

-3
 1.09×10

-3
 9.80×10

-4
 

90 8.16×10
-4
 1.22×10

-3
 1.60×10

-3
 1.84×10

-3
 1.76×10

-3
 1.59×10

-3
 1.45×10

-3
 

100 9.78×10
-4
 1.53×10

-3
 2.10×10

-3
 2.47×10

-3
 2.40×10

-3
 2.23×10

-3
 2.03×10

-3
 

110 1.18×10
-3
 1.88×10

-3
 2.69×10

-3
 3.18×10

-3
 - 2.95×10

-3
 - 

Tg (°C) -55.9 -51.9 -43.7 -38.5 -35.6 -30.9 -27.5 

 

5.2   Approximating the Tg of a Polyether Electrolyte 

 Figure 31 shows data for the increase in the glass transition temperature, ∆Tg, relative to the 

neat polymer at varying r. We find that the data falls on a line,  

∆{| 
 222.6	�,                                                              (14) 

where ∆Tg=Tg,r − Tg,neat. On average eq. 14 estimates the ∆Tg within 20% for CxEOy polymers and will 

likely provide a good approximation for the Tg at a given value of r for other polyethers, if the Tg of the 

neat polymer is known. 
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Figure 31. Increase in Tg as a function of salt concentration. The Tg at r=0 is that of the neat polymer. 
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