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With the advanced LIGO and Virgo detectors taking observations the detection of gravitational
waves is expected within the next few years. Extracting astrophysical information from gravita-
tional wave detections is a well-posed problem and thoroughly studied when detailed models for
the waveforms are available. However, one motivation for the field of gravitational wave astronomy
is the potential for new discoveries. Recognizing and characterizing unanticipated signals requires
data analysis techniques which do not depend on theoretical predictions for the gravitational wave-
form. Past searches for short-duration un-modeled gravitational wave signals have been hampered
by transient noise artifacts, or “glitches,” in the detectors. In some cases, even high signal-to-noise
simulated astrophysical signals have proven difficult to distinguish from glitches, so that essentially
any plausible signal could be detected with at most 2-3 σ level confidence. We have put forth the
BayesWave algorithm to differentiate between generic gravitational wave transients and glitches, and
to provide robust waveform reconstruction and characterization of the astrophysical signals. Here
we study BayesWave’s capabilities for rejecting glitches while assigning high confidence to detection
candidates through analytic approximations to the Bayesian evidence. Analytic results are tested
with numerical experiments by adding simulated gravitational wave transient signals to LIGO data
collected between 2009 and 2010 and found to be in good agreement.

I. INTRODUCTION

When the LIGO [1] and Virgo [2] observatories make
their first detection of gravitational waves (GW) it will
represent a major achievement. Making a claim of a sig-
nificant discovery requires exceptional evidence. In the
field of particle physics, a common practice for declaring
detection of a new particle is a “5-sigma” level of con-
fidence, meaning that there is probability of less than
3 × 10−7 of the observation arising from sources other
than the claimed discovery.
Detailed theoretical predictions for the gravitational

wave signal helps reduce the false alarm (or false posi-
tive) rate due to glitches [3–6] but searches for generic
transient signals, known as GW bursts, have been ham-
pered by an inability to distinguish non-Gaussian noise
artifacts, or “glitches,” and astrophysical signals at high
confidence (e.g. Ref. [7]). Background distributions for
burst searches, determined by time-shifting the data from
multiple detectors so that no coherent gravitational sig-
nals are in the data, show a long tail to high signal
to noise ratio (SNR), meaning that even a very strong
gravitational wave signal would be consistent with hav-
ing arisen from a glitch. In both the first and second
joint LIGO-Virgo observation runs, simulated signals in-
tentionally added to the data and included in the final
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analysis were recovered by Burst algorithms with false
alarm probabilities of order 10% and could not be identi-
fied as statistically significant events without using phys-
ically motivated waveform models [8, 9].

In preparation for the advanced detector era several
new approaches to the burst detection problem have
been developed. Thrane and Coughlin [10] have demon-
strated the capability to make high-confidence detec-
tions of long-duration (O(10)s) burst signals in non-
stationary, non-Gaussian noise by searching for excess
power found along parameterized curves through a time-
frequency representation of the data. In an independent
effort, the Bayesian parameter estimation analysis library
LALInference [11], originally designed for the character-
ization of compact binary signals, has been adapted for
burst analyses by using a sine-Gaussian waveform as the
gravitational wave template [12, 13]. LALInference dif-
ferentiates between signals and glitches using a “coher-
ence test” where the “coherent” signal hypothesis uses a
template-based analysis assuming the data streams from
multiple detectors contain a coherent gravitational wave
signal while the “incoherent” glitch hypothesis treats
each data stream independently. The incoherent model
uses the same template waveform as the signal model
but optimizes its parameters independently for each de-
tectors’ data [14].

Recently we proposed BayesWave–a Bayesian algo-
rithm to follow-up short duration (<∼ 1 s) candidate
gravitational wave transient events, separate signals
from glitches, and provide robust signal characterization
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for arbitrary burst waveforms [15]. BayesWave uses a
variable-dimension model for signals and/or glitches en-
abling the analyses to adapt the complexity of the wave-
form model to match what is present in the data instead
of imposing a template waveform and searching for best
fit parameters. For a detection candidate BayesWave

computes the relative evidence of the event being pro-
duced by a GW signal, an instrument artifact, or sta-
tistical fluctuations of the detector’s Gaussian noise. In
the event that the candidate is of astrophysical origin,
BayesWave also produces posterior distributions for the
source sky-location and orientation, accurate waveform
reconstruction, and metrics to characterize the signal
such as duration, bandwidth, signal energy, etc. In all
instances, BayesWave characterizes the instrument be-
havior including spectral estimation for the background
Gaussian noise and glitch reconstructions which can then
be used to feedback into the never-ending effort to im-
prove the interferometers’ performance. Analysis of the
Gaussian component of the instrument noise is handled
by BayesWave’s sibling algorithm, BayesLine [16]. Dur-
ing the first Advanced LIGO observing run BayesWave

is being utilized as a follow-up analysis to candidate and
background events found by the coherent WaveBurst al-
gorithm [17].
In this paper we will demonstrate BayesWave’s poten-

tial by analyzing data from the sixth LIGO science run
(S6) which took place from 2009-2010. Our results are
achieved by analyzing data known to contain glitches
which contributed to the long-tailed background distribu-
tion for the burst search, and by adding simulated grav-
itational wave signals to detector noise. In addition to
this study using archived data, we present an analyti-
cal framework for understanding the performance of the
pipeline. A companion paper uses BayesWave and the
flagship burst search algorithm, coherent WaveBurst [17],
in an end-to-end demonstration of how burst detection
efficiency is improved by the joint analysis [18].
In section II we briefly describe the BayesWave algo-

rithm, Bayesian model selection, and our model for the
data. In section III we go through a simple analytic
calculation to give insight into how BayesWave is able
to distinguish signals and glitches, and use BayesWave’s
performance on simulated signals added to real data to
support the analytic approximations. Section IV uses the
intuition built from the analytics to estimate background
rates for glitches to be considered signals by BayesWave,
and connects the Bayes factor to false alarm rates for
detections. We summarize the work in section V. The
appendix contains a more detailed derivation of the ana-
lytic approximation to the evidence.

II. METHOD

Searches for Burst signals have been based on frame-
works that employ detection statistics to measure the
likelihood that Gaussian noise could produce the data

[17, 19–22]. While stationary Gaussian noise is often
a good description for LIGO/Virgo data, the approxi-
mation breaks down with much higher regularity than
the arrival of detectable gravitational waves. Any data
analysis method must account for the possibility of non-
stationary non-Gaussian noise. Most existing analysis
strategies apply various selection cuts to separate glitches
from astrophysical signals which are tuned by adjusting
thresholds to minimize the estimated background rate of
transient noise glitches [7–9].

Bayesian hypothesis testing has been used in searches
for GWs from a timing glitch in the Vela pulsar [23]
using a damped sinusoid that abruptly starts at times
associated with the pulsar timing glitch as the signal
model. A recently developed search pipeline [13] uses
excess power to identify interesting data segments and
a matched-filtering follow-up with a sine-Gaussian tem-
plate for signal characterization [12]. The “coherent vs.
incoherent” Bayes factor is used to distinguish between
noise and signal [14].

BayesWave employs a different approach by using a pa-
rameterized model for the LIGO/Virgo data, noise and
signal included, and forward modeling, i.e. predicting,
the detector output. The data model has three distinct
components: A gravitational wave signal h that is ellipti-
cally polarized and is coherent across the network of de-
tectors; glitches that are independent in each interferom-
eter; and stationary Gaussian noise which is fully char-
acterized by its power spectral density Sn(f) as modeled
by BayesLine [16]. At its core, BayesWave is a Markov
chain Monte Carlo (MCMC) algorithm [24]. BayesWave

uses parallel tempering [25] and thermodynamic integra-
tion [26] to compute the evidence for each model. The
MCMC implementation and evidence calculation is de-
scribed in detail in Refs. [15, 16]. For results in this work
we utilize an adaptive temperature scheme as suggested
in [27].

Because we do not know a priori the functional form
of glitch or GW burst waveforms, our model for both
must be flexible. We use a linear combination of Morlet-
Gabor wavelets as our waveformmodel where the number
of wavelets included in the linear combination, N , is it-
self a model parameter. Each basis function (wavelet)
is described by parameter vector λ → {f0, t0, A,Q, ϕ0}
with components for central frequency f0 ; central time
t0 ; amplitude A; quality factor Q; and phase offset ϕ0.
A wavelet is expressed in the time domain as:

Ψ(t;A, f0, Q, t0, φ0) = Ae−∆t2/τ2

cos(2πf0∆t+ ϕ0) (1)

where τ = Q/(2πf0) and ∆t = t − t0. BayesWave

uses a reversible jump Markov chain Monte Carlo [28]
to marginalize over the number of wavelets needed for
the model to be consistent with the data.
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A. Bayesian hypothesis testing or model selection

The likelihood that hypothesis H, parameterized by θ,
would have produced the data d is calculated by

p(d|H) =

∫

p(d|θ,H)p(θ|H)dθ. (2)

Directly integrating Eq 2 is seldom practical and a wide
variety of alternative means for arriving at p(d|H) have
been devised. Our method of choice for computing the
integral in Eq. 2 is thermodynamic integration [26].
Once the evidence has been computed it provides a

relative measure of how well one hypothesis is supported
by the data over another through the “odds ratio”

O0,1 ≡ p(H0)

p(H1)

p(d|H0)

p(d|H1)
=
p(H0)

p(H1)
B0,1 (3)

where p(H) is the prior probability for the hypothesis
and B0,1 is the likelihood ratio, or “Bayes factor,” for the
two hypotheses.

B. Modeling signals versus glitches

Consider a GW network consisting of the two LIGO
detectors in Hanford, WA (H) and Livingston, LA (L).
For a candidate event BayesWave calculates the Bayesian
evidence for each of three models: signal, glitch, or Gaus-
sian noise. We can then use the Bayes factor between
any two models to quantify the degree of supporting ev-
idence for one model over the other. Within each model
the likelihood is computed by

p(d|θ,H) ∝
H,L
∏

I

e−
1

2
(rI(θ|H)|rI(θ|H)) (4)

where rI is the residual of the data minus the signal or

glitch model, (a|b) ≡ 2
T

∫ ã∗(f)b̃(f)+ã(f)b̃∗(f)
Sn(f)

df is the noise

weighted inner product, Sn(f) is the noise power spectral
density estimated from the data by BayesLine, and T is
the duration of the data. This work will focus only on
examples where we need to distinguish between the signal
and glitch models. We assume either will be preferred
over the Gaussian noise model.

1. H0: The glitch model (G):

The data dI = nI + gI contain Gaussian noise n and
glitches g independent in each detector I. The parame-
ters θG → [λH ∪ λ

L] are comprised of independent sets
of intrinsic parameters

λ
I → [λ0 ∪ λ1 ∪ · · · ∪ λNI ]

which determine the shape of each wavelet. The glitch
model is computed for each detector as an independent
linear combination of wavelets

g(λI , N I) =

NI

∑

i

Ψ̃(f ;λI
i )

where Ψ̃(f) is the Fourier transform of Ψ(t), N I can
take on any value between [0, Nmax] with the caveat that
at least one wavelet must be used in the model for the
whole network. Nmax is typically 20. The glitch-model
likelihood is computed using Eq. 4 with the residual
rI(θ,G) = dI − g(λI , N I)

2. H1: The signal model (S):

The data dI = nI+hI contain Gaussian noise n and an
elliptically polarized gravitational wave signal h coherent
across the network of detectors. The parameters θS →
[λ⊕ ∪Ω] are a common set of intrinsic parameters

λ
⊕ → [λ0 ∪ λ1 ∪ · · · ∪ λN⊕ ]

referenced at the center of the Earth and four “extrinsic
parameters”

Ω → [θ, φ, ψ, ǫ]

which define the sky-location θ, φ, the polarization angle
ψ and an ellipticity parameter ǫ relating the two gravita-
tional wave polarizations h+ and h×. The signal-model
likelihood is computed using Eq. 4 with the residual

rI(θ,S) = dI − hI(f ;λ⊕, N⊕,Ω)

The geocenter signal wavelets are projected onto the
network using each detector’s unique time delay opera-
tors ∆t(θ, φ), and antenna beam pattern response func-
tions F+(θ, φ, ψ), F×(θ, φ, ψ) [29]:

hI(f ;λ⊕, N⊕,Ω) =
(

F+
I h+(f) + F×

I h×(f)
)

e2πif∆tI

h+(f) =

N⊕

∑

i

Ψ̃(f ;λ⊕
i )

h×(f) = ǫ h+(f)e
iπ/2. (5)

III. DISTINGUISHING SIGNALS FROM

GLITCHES

While BayesWave uses a computationally expensive
numerical integration to compute the evidence for each
model, we will build intuition for how BayesWave suc-
cessfully distinguishes signals from glitches using the
Laplace approximation to the evidence and several sim-
plifying assumptions about the model and the data. As
our results will show, the simple analytic treatment de-
rived here leads to useful approximations for when sig-
nals and glitches are distinguishable and in forecasting
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the most significant background event. A more detailed
derivation and discussion of the Laplace approximation
to BayesWave’s signal and glitch model evidence can be
found in the appendix.

A. Laplace-Fisher approximation to the evidence

If an event has enough SNR to be a strong candidate
for detection (SNR ≡

√

(h|h) >∼ 10) the integrand of
Equation (2) will be sharply peaked around the maxi-
mum a posteriori (MAP) parameter values of the model
θMAP. The evidence can be estimated as

p(d|H) ≃ p(d|θMAP,H)p(θMAP|H)(2π)D/2
√
detC (6)

which is the product of the MAP likelihood
p(d|θMAP,H), the prior p(θMAP|H) evaluated at
the MAP parameters, and the determinant of the
parameter covariance matrix C which is a measure of
the posterior volume. D is the dimension of the model.
The covariance matrix C can be approximated by the
inverse of the Fisher information matrix Γ, and we
replace

√
detC with 1/

√
det Γ.

The p(θMAP|H)(2π)D/2
√
detC term is the “Occam

factor” that penalizes the likelihood by the model’s size.
If two models achieve the same likelihood the Occam fac-
tor, and therefore the evidence, will be smaller for the
model that requires more (constrained) parameters to
achieve that fit. Consider a simple model with a sin-
gle parameter x and uniform prior over an interval Vx.
The covariance matrix is simply the variance of the like-
lihood σ2

x. In this case the Occam factor is proportional
to σx/Vx which leads to a simple, intuitive, interpreta-
tion: The Occam factor is the fraction of the prior taken

up by the posterior. We will return to this interpretation
when predicting the most significant background event
for BayesWave.

For the glitch or signal model, the expectation value
for the intrinsic parameter log likelihood is proportional
to [30]

ln p(λMAP|H) ∼ SNR2

2
+
D

2
. (7)

For uniform priors p(λMAP|H) = 1/Vλ where Vλ is the
volume of the intrinsic parameter space. BayesWave uses
uniform priors for all but the amplitude parameter, with
p(A) a function of the wavelet’s SNR [15]. For simplicity
we will neglect the parameter-dependence of the ampli-
tude prior in favor of the simpler 1/V scaling. A similar
but more detailed derivation including the true ampli-
tude used by BayesWave can be found in the appendix.
The determinant of the intrinsic parameter Fisher ma-

trix for a single wavelet is

det Γλ =
π2SNR10

2Q2
. (8)

If we assume little overlap between wavelets in the pa-
rameter space the correlations between wavelet parame-
ters are negligible and the Fisher matrix is block diago-
nal. The determinant for the full covariance matrix with
N wavelets is then [15]

√

detCλ ≈
N
∏

n

√
2Qn

πSNR5
n

. (9)

Neglecting the extrinsic parameters for the signal
model, and the BayesLine parameters which are com-
mon to all models, the dimension D = 5N where N is
the number of wavelets used in the fit. To simplify the

expression we define Q̄n ≡ (2π)5/2
√
2Qn

π to absorb the

(2π)D/2 and additional factors of 2 and π. Now the log
evidence becomes

log p(d|H) ≃ SNR2

2
+
5N

2
−N log(Vλ)+

N
∑

n

Q̄n

SNR5
n

. (10)

From this expression we see that the Bayes factor for
either the glitch or signal model versus the Gaussian noise
model goes as O

(

SNR2
)

.
For the glitch model, the prior and posterior volume

terms are summed over the number of detectors (IFO)
in the network. The signal model, on the other hand,
picks up an additional DΩ/2 and Occam factor term
log

√
detCΩ/VΩ for the extrinsic parameters which gov-

ern the projection of the signal onto the network. DΩ

is the extrinsic parameter dimension, CΩ is the signal
parameter covariance matrix, and VΩ is the extrinsic pa-
rameter prior volume. Including these details into Eq. 10
we find the log evidence for the glitch and signal models
is

log p(d|G) ≃ SNR2
NET

2
+

IFO
∑

i

5NG
i

2
−

IFO
∑

i

NG
i log(Vλ) +

IFO
∑

i

NG
i
∑

n

Q̄G
i,n

SNR5
i,n

log p(d|S) ≃ SNR2
NET

2
+

5NS

2
−NS log(Vλ) +

NS

∑

n

Q̄S
n

SNR5
NET,n

+

[

DΩ

2
+ log

√
detCΩ

VΩ

]

(11)
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respectively, where SNR2
NET =

∑IFO
i SNR2

i and the ex-
trinsic parameter dimension DΩ = 4 while the prior vol-
ume for extrinsic parameters is 4π2.

B. Two detector network

Consider a fairly loud gravitational wave signal in
the two detector LIGO network. The optimal extrin-
sic parameters for detection will result in similar sig-

nal strength in each of the interferometers such that
SNRI,n ≈ SNRNET,n/

√
2 where the index n is for each

wavelet and the index I is for each detector. For such
events the glitch model will use similar wavelets as the
signal model QG

I,n = QS
n = Q, but because it treats each

detector independently, will need two copies–one for each
interferometer NS = NG

I = N . One final simplifying as-
sumption is that the signal to noise ratio of each wavelet
is the same: SNRNET,n ≈ SNR = SNRNET/

√
N .

Substituting these simplifications into Eq. 11 we arrive
at a simple expression for the log Bayes factor logBS,G =
log p(d|S)− log p(d|G):

logBS,G ≃ 5N

2
+N logVλ + 5N log(SNR)−

N
∑

n

log Q̄n +

[

2 + log

√
detCΩ

4π2

]

(12)

and immediately see that logBS,G ∼ O (N log SNR). As
a consequence, at fixed SNR, waveform morphologies
that require more wavelets to reconstruct have a higher
likelihood of being classified as signals. This is an im-
portant departure from traditional SNR-based ranking
statistics. The Bayes factor computed by BayesWave is
more sensitive to signal complexity than signal strength.
Heuristically, the logBS,G naturally encodes how increas-
ingly unlikely it is for the detectors to simultaneously
and coherently produce glitches with non-trivial time-
frequency structure. This is a significant difference from
existing Burst pipelines which put greater emphasis on
signal strength in forming their detection statistic, and
are thus hamstrung by the detectors’ tendency to pro-
duce loud noise transients at a higher rate than the uni-
verse supplies gravitational wave signals. We find this
fundamental difference allows BayesWave to assign de-
tection candidates high confidence in data prone to loud
glitches while existing pipelines have not.

C. Single wavelet examples in simulated noise

To verify the predictions from the Laplace approxima-
tion we used BayesWave to recover simulated sine Gaus-
sian gravitational wave signals in Gaussian noise, draw-
ing waveform parameters from our prior distributions:
f ∈ [16, 512] Hz, t ∈ [−0.5, 0.5] s, Q ∈ [3, 40], ϕ ∈ [0, 2π]
rad, cos θ ∈ [−1, 1], φ ∈ [0, 2π] rad, ψ ∈ [0, π/2] rad,
ǫ ∈ [−1, 1], and amplitude drawn from the distribution
described in the appendix and Ref. [15]. For this study we
analyze segments of LIGO data collected during the sixth
science run which took place from 2009-2010 in which we
have purposefully added GW signals. The priors used for
this analysis reflect what is being used for low-frequency
triggers in the first advanced LIGO observing run (O1)
during which BayesWave relies on the coherent Wave-
Burst pipeline to provide the segments of data which

warrant follow-up analysis (for details see Refs. [17, 18]).

BayesWave calculates Bayes factors for each combina-
tion of models along with an estimate of the error in
that calculation, using thermodynamic integration. We
do not anticipate the agreement between numerical sim-
ulations and the analytic approximations to be perfect.
Many of the approximations we have made along the way
to arrive at Eqs. 10 and 12 are known to be inadequate
for the gravitational wave detection problem [31], partic-
ularly our use of the covariance matrix to estimate the
posterior volume and, even more egregiously, our use of
the Fisher matrix as the inverse covariance matrix [32].

Fisher matrix approximations are particularly bad for
detCΩ. The extrinsic parameter space is rife with de-
generacies between parameters and non-Gaussian, mul-
timodal likelihood distributions which often span the full
extent of the prior range. Fisher matrix arguments would
predict a SNR−DΩ scaling for the determinant of CΩ

which is much too strong for any burst source in a two
detector network. Using numerical experiments to get
a rough understanding of the extrinsic parameter poste-
rior volume, we find an SNR−γ with γ ranging from ∼ 1
at low SNRs to ∼ 2.5 at SNR ∼ 100 (See Fig. 6 in the
appendix).

In Figure 1 the left panel shows the glitch to noise
(red) and signal to glitch (blue) log Bayes factors as a
function of the simulated signals’ SNR along with the
Laplace approximation predictions. The predicted scal-
ing laws for N = 1 signals logB[S/G],N ∼ O

(

SNR2
)

and
logBS,G ∼ O (log SNR) are generally obeyed by the nu-
merical results. The observed agreement reinforces the
intuition developed from considering the analytic expres-
sions, and we can be confident that the numerical in-
tegration is performing well. The right panel demon-
strates BayesWave’s glitch rejection capabilities by com-
paring logBS,G for simulated sine-Gaussian glitches (gray
crosses) and signals (blue circles). The glitches were sim-
ulated by adding sine-Gaussians to each detector with
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parameters drawn independently from the prior. Nega-
tive logBS,G corresponds to data with higher likelihood
for the glitch model.

D. Multiple wavelet examples in real noise

Equation 12 predicts that the Bayes factor grows with
SNR more rapidly for waveforms that have more time-
frequency structure, thus requiring more wavelets to ac-
count for all of the excess power in the data. For as-
trophysical signals the number of wavelets necessary will
not be known a priori, and furthermore will not be con-
stant, depending on the SNR. As the signal strength in-
creases, more detailed structure in the waveforms will
be detectable, and more wavelets will be favored by the
model selection. Through numerical experiments we find
simple relationships for the number of basis functions and
the average SNR per wavelet in terms of the true SNR:

N ∼ 1 + βSNR

SNR ∼ αSNRa (13)

where the coefficients β, α and index a are different for
different kinds of signals with {β∼0, α∼1, a∼1} corre-
sponding to sine Gaussian waveforms and β and α in-
creasing while a decreases with increasing signal com-
plexity (see Fig. 5 in the appendix).
To demonstrate this important feature of BayesWave

we add simulated gravitational wave signals from differ-
ent waveform families into real detector data. Figure 2
shows logBS,G as a function of SNR for the different
simulations. Red points are sine Gaussian waveforms,
blue points correspond to signals from the merger of two
50 M⊙ black holes modeled using non-spinning Effective
One Body (EOB) waveforms [33], and the black points
are results from “white noise bursts”–unpolarized, band-
limited, white noise signals used to test LIGO/Virgo
burst detection pipelines. We can empirically determine
that β is larger for more complicated signal morphologies.
Results agree well enough with the analytic predictions
that the insight gained in the analytic study is applicable,
but the Laplace approximation is clearly no substitute
for the numerical integration. The large scatter in Bayes
factors is due to failings in the Laplace approximation,
signals that violate our assumption about roughly equal
SNR in each detector, and segments of data that contain
both signals and glitches.
It is important to note that the high degree of scatter

in the white noise burst results is also to be expected
because these signals are unpolarized, while BayesWave

assumes h+ and h× are related by Eq. 5. In a two de-
tector network we generally cannot reliably measure the
GW polarizations independently. Introducing the addi-
tional degrees of freedom to independently solve for h+
and h× will hinder our ability to reject glitches because
the number of signal model and glitch model parame-
ters will be comparable for a wider variety of waveform
morphologies. While there is no reason to expect a priori

that GW bursts will be elliptically polarized, selection ef-
fects by the detection pipelines which identify segments
of data for BayesWave to follow-up in a real analysis,
and the similar orientation of the LIGO detectors, favor
signals which are well approximated by a single polariza-
tion (causing many of the degeneracies between extrinsic
parameters discussed in the previous section). This as-
sumption will need to be relaxed when more detectors
are added to the network, and in future studies we will
investigate strategies for optimizing BayesWave’s perfor-
mance on unpolarized detection candidates even in the
two detector case.

IV. BACKGROUND ESTIMATION

We have shown that BayesWave predictably favors the
signal model over the glitch model for simulated GW
events, i.e. BayesWave is robust against false dismissal of
gravitational wave signals. This is only half of the battle:
Any useful data analysis procedure must also be robust
against false alarms, i.e. misidentifying noise events as
being astrophysical signals, and be able to assign signif-
icance to a detection. While the right panel of Figure 1
demonstrates how BayesWave can reject glitches in the
trivial case of random sine-Gaussian waveforms, how it
will fair against real glitches, and how to assign signif-
icance to candidate events, requires more careful atten-
tion.
To understand BayesWave’s glitch rejection capabil-

ities, imagine that a glitch waveform in LIGO Han-
ford (H) is well represented by a linear combination

of wavelets with parameters λ
H and a coincident (i.e.

within the light travel time between detectors) collection
of wavelets is found in LIGO Livingston (L). If the sig-
nal is astrophysical in nature, the waveform in L must
have parameters λL that are consistent with λ

H , within
the measurement uncertainties

√

detCλL up to the ap-
propriate time, phase, and amplitude shifts due to the
geometry of the detector locations and orientations. On
the other hand, if the data represent coincident glitches,
then a priori there is no reason for the glitch in Liv-
ingston to match the parameters in Hanford. Instead,
the wavelet in Livingston is chosen at random. One can
consider glitches to be random draws from λ space and
false alarms (glitches that appear as signals) are draws

that overlap within the size
√

detCλL . If the posteriors
do not overlap the data is not consistent with the sig-
nal model, i.e. the signal model likelihood will be lower
than the glitch model likelihood, and the Bayes Factor
will favor the glitch model (c.f. Figure 1).
We can use the same logic to estimate the background

rate of glitches that are consistent with the signal model.
Assume, in a given two detector data set, there are Ngl

coincident glitches. If we assume our signal/glitch model
can achieve a perfect match to glitches in the data, the
recovered SNR of the signal and the glitch model will be
equal when the glitches overlap in the λ space and the
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FIG. 1. Left panel: Comparing the numerical results for logBG,N (red squares) and logBS,G (blue circles) to the relevant
analytic predictions in Eqs. 10 and 12 (dark red dashed and dark blue dotted lines, respectively) showing good agreement at
high SNRs where the Laplace approximation is more valid. Right panel: The logBS,G results from the left panel (blue circles)
with logBS,G from a set of glitches simulated by adding independent sine-Gaussian waveforms to each detector (gray crosses).
The log Bayes factor shows a clear separation between the simulated signals and glitches. Cases with logBS,G < 0 correspond
to the glitch model having a higher likelihood.
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FIG. 2. Bayes factors between the signal and glitch model
grow more rapidly with SNR for more complicated wave-
form morphologies. Sine Gaussian injections (red) only re-
quire a single wavelet and thus never achieve particularly
high logBS,G . Intermediate mass black hole (IMBH) merg-
ers need N <

∼ 10 resulting in stronger separation between
models (blue), while the white noise burst waveforms (black)
have rich time frequency structure, often saturating the prior
on N and show the strongest SNR dependence (highest β).

Bayes factor will be again well approximated by Eq. 12.

Recall the Occam factor is interpreted as the fraction of
the prior covered by the posterior ∼

√
detC/V , i.e. the

Occam factor is the size of the “target” the second glitch
must hit to be misidentified as a signal. Put another
way, a glitch has probability ∼

√
detC/V to be consis-

tent with the signal model. Therefore finding a back-
ground event with a Bayes factor consistent with Eq 12

will require analysis of something like (Vλ)
N
/
√
detCλ

coincident glitches. In our application the Occam factor
thus takes on an additional interpretation as the expected
number of trials (coincident noise transients) needed for
two random glitches to have sufficient overlap in param-
eter space to look like a signal.
We can loosely turn this into an argument for the max-

imum Bayes factor–the one that occurs only once in a
span of LIGO data–as having an Occam factor of Ngl,
i.e. the maximum Bayes factor for a background noise
event is

〈BS,G〉background <∼ Ngl. (14)

This limit is not robust. The loudest noise event is
obviously in the extreme tail of the background distri-
bution and will therefore fluctuate wildly for different
realizations of the data. Nor is this a statement about
the population of glitches beyond the assumption that
the parameters λ are chosen at random for glitches in
each detector. It is also important to point out this is
may be a conservative estimate. Most glitches are at low
SNR in any realistic glitch population, and so low values
of the Occam Factor will likely be much more common
than high values.
We use our estimate of the most significant background

event to approximate the false alarm rate. To do so we
need to know the rate of coincident glitches, Rgl, which is
a carefully studied quantity within LIGO. The single de-
tector glitch rate was known during S6 to typically have
values between 1 and 0.1 Hz [34]. The light travel time
between LIGO detectors is 10 ms, leading to a coincident
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glitch rate of Rgl ∼ 1 Hz× 1 Hz× 0.01 s = 0.01 Hz.

False alarm rates are estimated by analyzing time-
shifted data, or “time slides.” If the data from one detec-
tor is shifted by more than the light travel time to another
detector, there will be no coincident gravitational wave
signals. Because the rate of glitches completely domi-
nates the rate of GW signals, analyzing time-shifted data
all but guarantees that any coincidences are due to noise
artifacts.

Consider the last quarter of LIGO’s sixth science run
(S6D) which lasted for ∼ 50 days. A so-called “three
sigma” detection requires an event more significant than
any background coincidences found in ∼ 300 time slides.
The background estimate from 300 time slides corre-
sponds to 40 years of data, and Ngl ∼ 1× 107. Equation
14 predicts that events with lnBS,G >∼ 16 would be de-
tected with better than three-sigma confidence.

To test this prediction we compute the Bayes factors
for the coincident events in time slides of the S6D data
found by the coherent WaveBurst algorithm [17]. Fig-
ure 3 shows the cumulative glitch rate as a function
of lnBS,G i.e. the y-axis is the rate at which coinci-
dent glitches were found with Bayes factors greater than
the corresponding value on the x-axis. The distribution
steeply decreases with increasing Bayes factor, and does
not show evidence of leveling-off with a broad “tail” in
the background that has limited previous searches. See
Ref. [18] for a detailed study of how BayesWave can
improve detection confidence of existing burst searches.
Furthermore, the distribution ends at lnBS,G ∼ 15 which
is consistent with our analytic prediction for the back-
ground. Ultimately we should be able to turn arguments
about the expected background rate into a prior odds ra-
tio between the glitch and signal model. For the immedi-
ate future we elect to take a more conservative approach
and continue using background studies to estimate the
false alarm rate and therefore the detection significance.
There is no guarantee that the non-Gaussian noise in fu-
ture GW data will bear any resemblance to what was
found during S6.

Comparing our inferred background rate to Figure 2
we find that sine-Gaussian waveforms in a two detector
network will be detected at false alarm rates that suggest
marginal significance at any reasonable SNR, similar to
performance seen in past burst searches. However, unlike
previous burst searches, we find that IMBH and white
noise bursts are detectable with very high significance.
Figure 5 in the Appendix shows the number of wavelets
used to recover each waveform morphology as a function
of injected SNR and provides supporting evidence that
waveforms that require more wavelets typically provide
higher Bayes factors.

What is required for a high confidence, or “five-sigma,”
detection? For this case, we seek a p-value of less than 3×
10−7, and so demand our event be louder than the loudest
event in 3× 106 time slides. For S6D this leads to Ngl ∼
1011, and an expected loudest event 〈lnBS,G〉background ∼
25. We have already seen that single wavelet events can
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FIG. 3. The cumulative rate of glitches as a function of Bayes
factor from time-slide studies using BayesWave and the S6D
data set. The black, vertical line shows the expected value
for the most significant event using the limit in Equation 14.
Because this represents 300 time-slides of the data set, we
see that the sine-gaussian injections above network SNR 10
are detected with marginal significance, whereas many WNB
signals above network SNR 25 were “gold-plated” detections.
Our findings are in excellent agreement with the analytic ap-
proximations in this work.

not reach this level at any reasonable SNR but applying
the scaling law in Equation 12, we find that such a “gold-
plated” detection could be achieved at reasonable SNR
with as few as two or three wavelets. For example, the
IMBH and white noise burst signals in Figure 2 added
to the same data we used to estimate the background by
far exceed the Bayes factor which corresponds to a false
alarm probability of ∼ 3 × 10−7. This is an important
feature of the BayesWave pipeline: Gold-plated detections

of short-duration signals are possible even in the presence

of a significant glitch population.

V. DISCUSSION

In this paper we have demonstrated BayesWave’s util-
ity as a follow-up analysis for GW burst searches. By an-
alyzing data from the sixth LIGO science run (S6) which
took place from 2009-2010 we have shown that high con-
fidence detections are achievable using BayesWave as a
follow-up analysis despite the high rate of noise tran-
sients in the data. When used to follow-up short-duration
gravitational wave triggers, BayesWave has been shown
to significantly reduce the rate of false-alarms while re-
maining sensitive to a wide range of signals [18]. For
insight into how BayesWave takes advantage of Bayesian
model selection to separate signals and glitches we pre-
sented an analytical framework and found simple expres-
sions which provide approximations to our full numerical
analysis on real data. The results show that BayesWave
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FIG. 4. Reconstructed whitened, time-domain signal- and glitch-model waveforms for S6D background events. Solid (red/blue)
line is the median (glitch/signal) waveform. Dashed lines of corresponding color show the 2σ errors on the reconstructed
waveforms. Each row shows one of the three most significant background events. Left column is the waveform in Hanford.
Right column is Livingston. From top to bottom lnBS,G was [15, 12, 12]. The overlap between the glitch model and the signal
model was [91%, 93%, and 86%], respectively.

has several novel features, when compared with other
Burst pipelines:

• The detection statistic directly compares the ev-
idence for an astrophysical signal with a glitch
model, as opposed to calculating a likelihood de-
rived from Gaussian noise.

• BayesWave places emphasis on the time-frequency
complexity and network coherence of an event,
rather than just its strength, to distinguish signals
from glitches

• The background distribution shows no evidence of
“tails” at high values.

In order to emphasize the importance of including the
glitch model in a statistical framework, best fit waveforms
for the signal and glitch models for the most “signal-
like” background events in S6D are shown in Figure 4.

For these examples of real glitches, the signal and glitch
model are shown to very nearly agree. Because glitches
can be so successful in imitating real gravitational wave
signals, pipelines which attempt to reject these events
with tunings and cuts face a major challenge. Instead,
BayesWave attempts to accurately assess the probability
of such coincident glitches arising from chance. This ap-
proach places a lower weight to events with simple time-
frequency structure that could plausibly arise simulta-
neously in two or more instruments, regardless of their
SNR.
The detection statistic described in this work, BS,G ,

represents the likelihood ratio for two competing models:
the data contains a glitch, or the data contains an astro-
physical signal. The purist may object to this application
of the Bayes factor, instead favoring the Bayesian odds
ratio between the signal and glitch model. The prior odds
ratio between these models is the ratio of the expected
coincident and coherent glitch rate to the expected rate
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of GW signals. While the rate of GW signals is unknown,
we have shown that the measured background distribu-
tion is consistent with our analytic predictions using the
LIGO glitch rate. This consistency suggests that the
BayesWave model is a good fit to actual LIGO data and
Bayes factors calculated by BayesWave will serve as a ro-
bust means for correctly identifying signals and glitches.
In principle, glitches with non-flat distributions in f and
Q, especially if similarly distributed in multiple detec-
tors, could invalidate this agreement. Should that be the
case, the posterior distribution of background events can
easily be folded in to our analysis as a prior on the glitch
model. Because the glitch population in earlier LIGO
data will likely differ from that of the advanced detec-
tors, we will continue to rely on the brute-force approach
of using time slides to estimate the significance of a can-
didate event and use what is learned to further improve
our priors for subsequently collected data.

As the capabilities of ground based detectors continues
to improve so too must our analysis. The work presented
here represents a snap shot of BayesWave’s capabilities
as the algorithm continues to advance. Further develop-
ment is underway to relax the requirement of elliptical
polarization for the signal model (improving the detec-
tion efficiency for unpolarized signals) and to account for
glitches and signals appearing in the same segment of
data (reducing false dismissals due to near-coincidence
with glitches). Nonetheless, based on the thorough per-
formance studies in real LIGO data reported in this work
we conclude that BayesWave is prepared to decisively aid
in the detection and characterization of GW bursts in the
advanced detector era.
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Appendix: Bayes Factors

The Laplace approximation for the evidence is given
by

Z = p(d|θMAP,H)p(θMAP|H) (2π)D/2
√
detC (A.1)

where θMAP are the maximum a posteriori parameters,
D is the model dimensions, and C is the parameter co-
variance matrix, which we can estimate from the inverse
of the Fisher information matrix Γ. If the prior is uni-
form for all parameters, the prior density is equal to the
inverse of the prior volume: p(θMAP) = 1/Vprior. We

recognize the collection of terms (2π)D/2
√
detC as the

posterior volume. Thus, for uniform priors, the evidence
is given by the product of the MAP likelihood times the
ratio of the posterior to prior volume, which is referred
to as the Occam penalty. In the case of BayesWave the
priors on most parameters are flat, with the important
exception of the amplitude or the signal-to-noise ratio
(which depends of the amplitude, quality factor, central
frequency and noise spectral density).

Dropping terms down by factors of e−Q2

relative to
leading order, the Fisher matrix for a single wavelet using
the parameters {t0, f0, Q, lnA, φ0} is given by

Γ = SNR2
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(A.2)
The determinant of Γ is

det Γ =
1

detC
=
π2 SNR10

2Q2
. (A.3)

The expectation value of the MAP log likelihood is
given by (see page 31 of Ref. [30] and references therein)

E[ln p(d|θMAP)] = const.+
D

2
(A.4)

The constant is independent of the signal model. The
D/2 term comes from more complicated models being
able to better fit features in the Gaussian noise.
Each wavelet is described by 5 parameters, and has

√

detCλi
=

√
2Qi

π SNR5
i

(A.5)

where SNRi is the signal-to-noise ratio for wavelet i. As-
suming that the N wavelets used in the reconstruction
have little overlap with each other, the total posterior
volume for the wavelet model is

√
detC =

N
∏

i=1

√
2Qi

π SNR5
i

(A.6)

http://arxiv.org/abs/ligo-p/1500083
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BayesWave has a non-trivial amplitude prior which
needs to be taken into account. One choice would be a
uniform in volume prior on the source distribution, which
is equivalent to a prior on the distance D that scales as
p(D) D2. Since amplitude and distance are inversely re-
lated, we have D2dD ∼ A−4dA ∼ A−3d lnA. Here we
have made the change of variables to lnA since this is
the parameter used to compute the Fisher matrix. This
prior is improper, and to make it proper a minimum am-
plitude cut-off A∗ (maximum distance) has to be intro-
duced. The properly normalized uniform-in-volume prior
is

p(lnA) = 3

(

A∗
A

)3

. (A.7)

An alternative approach, used by BayesWave in this
work, is to adopt different physically motivated priors
on the signals and glitches that are given as functions of
the SNR. For glitches the SNR is given by

SNR ≃ A
√
Q

√

2
√
2πf0Sn(f0)

, (A.8)

while for signals the SNR is given by the same expression,
but with the individual detector noise spectral density

replaced by the network average

S̄n(f0) =

(

∑

i

F 2
+,i + ǫ2F 2

×,i

Sn,i(f0)

)−1

. (A.9)

Thus the signal-model SNR depends on A,Q, f0,Ω. The
priors on the signal model and glitch model are given in
terms of a prior on the SNR, p(SNR). Making the change
of variables from SNR to lnA yields

p(lnA|G) =
(

SNR

SNR∗

)2

e−SNR/SNR∗ (A.10)

for the glitch model and

p(lnA|S) = 3

4

(

SNR

SNR∗

)2
1

(1 + SNR/4SNR∗)5
(A.11)

for the signal model.

If we further assume little correlation between the
wavelet model and the Gaussian noise model, then the
expected value for the log Bayes Factor between the glitch
plus noise model and the noise model in a single detector
is

lnBG,N =
SNR2

2
+

5NG
2

(1 + ln(2π)) +

NG
∑

n=1

ln

( √
2Qn

π SNR5
n

)

+ ln p(λMAP|G) . (A.12)

Here SNR2 is the signal-to-noise ratio of the signal or
glitch in that detector. Later when considering a network
of detectors the SNR2 will refer to the network signal-to-
noise ratio of the signal.

If the wavelet model in one detector uses N wavelets,
and assuming little overlap between wavelets, then

SNR2 =

N
∑

n=1

SNR2
n = N SNR

2
(A.13)

Based on simulations, we find that the average number
of wavelets used by BayesWave increases linearly with
the total SNR, and that the average per wavelet SNR
increases with the total SNR as a waveform-dependent
power law. Writing N = 1+ βSNR and SNR = α SNRa,
we find that the values of β, α, and a depend on the
waveformmorphology, with α and β increasing, and a de-

creasing, as the time-frequency structure of the waveform
becomes more complicated. In the case of a constrained
model using a fixed number of wavelets the average SNR
per wavelet always increases linearly with the total SNR,
though with a proportionality less than one for anything
other than sine-gaussians.
Fig. 5 shows the average number of wavelets (left

panel) and SNR per wavelet (right panel) as a function of
SNR for the three different waveform morphologies stud-
ied in this paper–sine Gaussians, binary black hole merg-
ers, and white noise bursts–added to simulated Gaussian
noise from a single detector at Advanced LIGO sensitiv-
ity. Each simulation was repeated for several Gaussian
noise realizations. Plotted are the average and one stan-
dard deviations of the mean, plus lines that show the
scaling relations using the best fit values for {α, β, a}.
Starting with a simplified model of to aligned collo-

cated detectors, the signal model does not need any ex-
trinsic parameters and the log Bayes factors are

lnBS,G =

(

5NS
2

− 5NG
2

)

(1+ln(2π))+

NS
∑

n=1

ln

( √
2Qn

π SNR5
n

)

−
NG
∑

n=1

ln

( √
2Qn

π SNR5
n

)

+ln p(λMAP|S)−ln p(λMAP|G). (A.14)



12

0

2

4

6

8

10

12

14

16

18

20

22

10 20 30 40 50

N

SNRNET

SG; β=0
IMBH; β=0.2
WNB; β=0.3

0

5

10

15

20

25

30

35

40

45

10 20 30 40 50

S
N

R
i

SNRNET

SG; α=1.3, a=0.8
IMBH; α=1.6, a=0.5
WNB; α=2.2, a=0.4

FIG. 5. Number of wavelets (left) and SNR per wavelet (right) found for sine Gaussian (red) intermediate mass binary black
hole (blue) and white noise burst (black) waveforms in simulated Gaussian noise at full design sensitivity for a single Advanced
LIGO detector averaged over several Gaussian noise realizations. Error bars represent one standard deviation of the mean.
Over-plotted are SNR scalings found in the text using the best fit values β, α, and a.

If we assume that all the wavelets have the same quality
factor Q and individual signal-to-noise ratios SNRi, then
the individual SNRs in each detector are SNR/

√
2. Thus

for the glitch model SNR2
i = α SNR/

√
2, while for the

signal model SNRi = αSNRa. Then the Bayes Factor
between the signal and glitch models for two collocated
detectors is

lnBS,G =
5NS
2

−5NG
2

+NS ln

(

4π1/2Q

TF∆Q(αSNRa)5

)

−NG ln

(

4π1/2Q

TF∆Q(αSNRa/
√
2))5

)

+NS ln p(lnA|S)−NG ln p(lnA|G)
(A.15)

Here TF is the time frequency volume, and ∆Q is the
prior range for Q. Note that the contributions from
the amplitude prior introduce important SNR scalings
into the Bayes factor. For a single sine-Gaussian model
the posterior volume terms introduce a ln(SNR) scal-
ing to the log Bayes factor. For BayesWave the scal-
ing with SNR is far more complicated. On complex
waveforms both NS and NG scale linearly with the
SNR, so the posterior volume introduces terms that
scale as SNR ln(SNR). The amplitude prior for the
signal model introduces a similar SNR ln(SNR) scal-
ing, along with a more complicated scaling of the form
SNR ln(1 + SNR/4SNR∗). The amplitude prior for the
glitch model introduces SNR ln(SNR) terms, in addition
to a term that scales as SNR2, though this term does not
start to dominate until very high SNRs (SNR > 50 for
typical choices of SNR∗). In the fixed dimension case the
BayesWave scaling is dominantly of the form ln(SNR) for
moderate SNRs. At very high SNRs the quadratic de-
pendence of the full BayesWave scaling is replaced by a
linear scaling in SNR.

There are several assumptions that went into the

derivation of the signal-to-glitch Bayes Factor for
BayesWave that are rather crude. The worst approxi-
mations are that the wavelets used in the reconstruction
all have roughly the same Q and signal-to-noise ratio.
While on average the scaling SNRi = αSNRa is quite
robust, the SNRi for individual wavelets never go much
below the value set by the peak of the SNR prior, SNR∗
so that SNRi

>∼ SNR∗. This means that the linear scal-
ing typically only holds for network SNRs greater than
around 10 or 12. Rather than assuming the same quality
factor for each wavelet we could use the average value.
For Q distributed uniformly in the range Q ∈ [Q1, Q2]
we have

E

[

ln

(

∆Q

Q

)]

= 1 +
Q2 ln(∆Q/Q2)−Q1 ln(∆Q/Q1)

∆Q
,

(A.16)
and

Var

[

ln

(

∆Q

Q

)]

=
Q1Q2(ln(∆Q/Q2)− ln(∆Q/Q1))

2

∆Q2
−1 ,

(A.17)
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1. Extrinsic Parameters

Implicit in the preceding derivation was the assump-
tion that the overlap of any two wavelets (Ψi|Ψj)∼0 and,
as a consequence, the parameter correlation matrix for
the wavelets was block-diagonal. This assumption is rea-
sonable since each wavelet collects the power in a cer-
tain time-frequency volume disfavoring highly overlap-
ping wavelets. For mis-aligned detectors we can write
the parameter correlation matrix for the signal model in
block-form as

C =

(

Cλ CX

CT
X CΩ

)

(A.18)

where Cλ is the 5NS × 5NS correlation matrix for the
intrinsic wavelet parameters, CΩ is the 4× 4 correlation
matrix for the extrinsic parameters and CX is the 5NS ×
4 cross-correlation matrix that mixes the extrinsic and
intrinsic parameters. The Fisher matrix can similarly be

decomposed:

Γ =

(

Γλ ΓX

ΓT
X ΓΩ

)

(A.19)

Now, for partitioned symmetric matrices we have (see
page 46 of the Matrix Cookbook [35])

detC =
detCΩ

detΓλ

, (A.20)

which implies that the volume of the posterior factors
into extrinsic and intrinsic pieces, where the intrinsic part
has exactly the same form as for the glitch model:

VS = (2π)D/2
√
detC

= (2π)5NS/2+2
√

detCΩ

NS
∏

i=1

( √
2Qi

π SNR5
i

)

(A.21)

Putting all the pieces together we have

lnBS,G =

(

5NS
2

+ 2− 5NG
2

)

(1 + ln(2π)) +

NS
∑

n=1

ln

( √
2Qn

π SNR5
n

)

− ln p(λMAP|G)

+ ln

(√
detCΩ

4π2

)

−
NG
∑

n=1

ln

( √
2Qn

π SNR5
n

)

+ ln p(λMAP|S) (A.22)

From here we can insert the SNR scalings for NS , NG
and the SNRn and include the explicit expression for the
intrinsic parameter volumes in an effort to make quanti-
tative predictions. While the expressions are more com-
plicated than the aligned collocated case the scalings with
SNR are the same.

We are unable to derive an analytic expression for√
detCΩ. Additionally, there is the problem that some

of the extrinsic parameters, most notably the elliptic-
ity and polarization angle, are poorly constrained and
Fisher matrix estimates are unreliable. As a result the
posterior volume does not scale as SNR−4 as we naively
expect from the Fisher matrix, but as some lower power
such as SNR−2 or SNR−3. One way to incorporate the
restriction that the posterior not exceed the prior is to
elevate the extrinsic parameters from their fundamen-
tal domain (with periodic boundary conditions) to the
universal cover, and introduce a Gaussian prior on the
parameters that restricts the posterior volume to be no

larger than the prior volume. The negative Hessian of
second derivatives of the log of this prior is added to the
Fisher matrix (so that the Fisher matrix describes the
curvature of the posterior, not just the likelihood). Nu-
merically computing the posterior volume as a function
of SNR using this approach shows that the posterior vol-
ume scales as SNR−γ , where the exponent γ is weakly
dependent on the SNR, varying between roughly 2 and
3 across the range of SNRs we expects to encounter, as
shown in Fig. 5.
The end result is that including the intrinsic parame-

ters increases the dimension of the signal model by be-
tween 2 and 3 degrees of freedom, not 4 as we would
naively expect. Thus, the overall scaling for the single
sine-Gaussian Bayes factor should scales as lnBS,G ∼
(5 → 6) ln SNR. The scaling for more elaborate wave-
forms is far more complicated. Ultimately it is this
added complexity that enables BayesWave to assign high-
confidence to detection candidates of non-trivial GW sig-
nals.
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