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On the role of coherence in the transition from kinetics to dynamics:
Theory and application to femtosecond unimolecular reactions

Klaus B. Møller, Niels E. Henriksen,a) and Ahmed H. Zewailb)

Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena,
California 91106

~Received 17 August 2000; accepted 19 September 2000!

We consider the relation between observed pump–probe signals in the femtosecond regime and the
kinetics of unimolecular reactions, that is, the exponential decay of reactants and the exponential
rise of the product population, respectively. It is shown that the signals cannot be fully accounted for
within standard approaches of unimolecular decay, conventionally used in the past, since
interference effectsbetween the quasi-bound vibrational states within the bandwidth of the pump
laser cannot be neglected. When these effects are included, all features of the signals can be
accounted for. We apply this theoretical treatment of coherent interference to examine the dynamics
and kinetics of the quasi-bound transition configurations, and relate them to the decay rates of
individual quasi-bound resonance states. The signals show multi-exponential behavior, reflecting the
different decay rates of the resonance states, with an average rate constant~within the bandwidth of
the pump laser! which can be extracted directly from the signals. The persistence of coherence is
evident in the observed signals. The predissociation of NaI is used as a prototype for numerical
illustration. © 2000 American Institute of Physics.@S0021-9606~00!70747-1#

I. INTRODUCTION

The field of reaction kinetics is concerned with the de-
scription of chemical reactions in terms of rate processes and
the assignment of~macroscopic! rate constants to the in-
volved transformations. In the case of a unimolecular reac-
tion, for instance, the decay of the reactants is often modeled
by simple first-order rate laws. However, the study of chemi-
cal reactions on the molecular level, that is, in terms of
nuclear motion, is the key to the understanding of the dy-
namics of the transformation and, hence, provides physical
insight complimentary to the more phenomenological kinetic
description. The dynamics of elementary physical and
chemical processes can be followed in real time using fem-
tosecond~fs! laser pump–probe techniques.1–6 A fs pump
pulse coherently excites~activates! the molecular system un-
der consideration and another fs pulse subsequently probes
the system at various instants as it undergoes the transforma-
tion. The obtained pump–probe signal thus records the mo-
lecular rearrangement during the course of the process.

In this paper, we consider the theoretical relation be-
tween pump–probe signals and reaction kinetics for unimo-
lecular reactions. The reaction dynamics of photoactivated
molecular reactions are naturally described theoretically by
the time evolution of a wave packet, obtained by solving the
time-dependent Schro¨dinger equation, or by classical trajec-
tory calculations.6–8 Alternatively, if the reaction involves
the decay of a meta-stable intermediate, a microscopic de-
scription of the dynamics in terms of the decay of quasi-
bound resonance states can be invoked.7,8 Adopting such a

description we derive explicit expressions for the pump–
probe signals for molecules which undergo unimolecular re-
action in order to make contact with reaction characteristics,
lifetimes and rate constants, and ultimately with reaction ki-
netics.

Because the ultrashort pulse excites several resonance
states coherently, the approach most commonly used in the
past, where each resonance state decays independently,7–12 is
inadequate in this context. The coupling between different
resonance-state amplitudes must be taken into account.13

Here, we treat this problem of resonance decay in coherently
prepared reactions. The derived expressions clearly display
the coherence induced by the laser excitation as well as the
connection between pump–probe signals and unimolecular
rate constants associated with the individual resonance
states. If detailed information about the individual reso-
nances is not needed, that is, a unimolecular rate constant
averaged over a narrow energy range suffices, we suggest
how to extract such a rate constant directly from a pump–
probe signal. We exemplify our results with numerical simu-
lations of the predissociation dynamics of NaI. This reaction
is a prototype and has already been studied extensively both
experimentally14–18 and theoretically, using semiclassic and
quantal calculations.19–24

This paper is organized in the following way: In Sec. II,
we summarize some of the general expressions for pump–
probe signals. In Sec. III, the dynamics of unimolecular de-
cay is discussed in terms of quasi-bound resonance states.
The relation between the pump–probe signals and the decay
rates of individual vibrational states is discussed. In Sec. IV,
we analyze, as an example, the pump–probe signals of NaI,
and their relation to reaction kinetics. Finally, in Sec. V the
conclusions of our work are summarized.
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II. PUMP–PROBE SIGNALS, GENERAL EXPRESSIONS

We consider the interaction between a molecule and two
time-delayed pulses—a pump and a probe pulse. Within the
electric dipole approximation, the field-molecule coupling
terms take the form~for absorption!

Vpump~ t !52~ 1
2!m10a1~ t !e2 iv1t,

Vprobe~ t !52~ 1
2!m21a2~ t !e2 iv2t, ~1!

wherev1 andv2 are the carrier frequencies,m10 andm21 are
the projections of the transition dipole moments on the po-
larization of the electric field vector, anda1(t) anda2(t) are
the pulse envelopes centered around time zero and the delay
time td , respectively.

The pump pulse creates a wave packetuc1(t)& in elec-
tronic state~1! which is evaluated according to first-order
perturbation theory, andĤ1 is the Hamiltonian for nuclear
motion in this electronic state. The probe pulse creates a new
nonstationary stateuc2(t)& in electronic state~2!. In the limit
of nonoverlapping pump and probe pulses, which we will
consider in the present paper, this state can again be calcu-
lated according to first-order perturbation theory, now with
uc1(t)& as initial state.

The total pump–probe signal is assumed to be propor-
tional to the norm ofuc2(t)& after the probe pulse has de-
cayed to zero. It can be written as a function of the delay
time, td , in the following form:25

S~ td!5^c1~ td!uP̂12~v2!uc1~ td!&, ~2!

whereP̂12(v2) is the probe operator

P̂12~v2!5 P̂†~v2!P̂~v2!, ~3!

with

P̂~v2!5~1/\!E
2`

`

e2 iv2ta2~ t !exp~ iĤ 2t/\!m21

3exp~2 iĤ 1t/\!dt. ~4!

For an ultrashort probe pulse wherea2(t) is strongly
peaked aroundt5td , and under the assumption that the tran-
sition dipole moment is coordinate independent, the signal
can be written in the form26–28

S~ td!5E dqc1* ~q,td!uF@D~q!2v2#u2c1~q,td!

5E dquF@D~q!2v2#u2uc1~q,td!u2, ~5!

where we have introduced the Franck–Condon window
function

uF@D~q!2v2#u25Um21E
2`

1`

dta2~ t !ei @D~q!2\v2#t/\U2

.

~6!

Hereq denotes the collection of all nuclear coordinates, and
D(q)5V2(q)2V1(q) is the difference between the potential
energy surfaces in the electronic states~2! and~1!. Thus, the
signal measures the square magnitude of the wave packetc1

within the Franck–Condon window at timetd . We note that
this is an overlap between two densities, i.e., not wave func-
tions.

Consider, as an example, a Gaussian probe pulsea2(t)
5Ag/pE0 exp@2g(t2td)

2#. The Franck–Condon window
takes the form

uF@D~q!2v2#u25E0
2um21u2e2@v22D~q!/\#2/~2g!. ~7!

In order to gain insight, we consider now one coordinate and
linearize the difference potential around the ‘‘Franck–
Condon point,’’r 5r 0 , where\v25D(r 0). Thus,

D~r !5D~r 0!1g~r 2r 0!, ~8!

whereg5Dr 5r 0
8 is the derivative of the difference potential

~note that the equation\v25D(r 0) may have more than one
solution!. Equation~7! now takes the form

uF@D~r !2v2#u25E0
2um21u2e2~g/\!2~r 2r 0!2/~2g!. ~9!

Thus, the probe window is a Gaussian around the Franck–
Condon point. The position of this point depends on the
probe frequencyv2 .

If the probe pulse is very short (g→`), or equivalently
g→0, the probe becomes insensitive to the potential energy
difference. In this limit, the window is essentially a constant
over the width of the wave packet at all times. Hence,
S(td)→um21u2^c1(td)uc1(td)&; the signal is proportional to
the norm of the wave packet, which in a chemical reaction
exhibits an overall decay, see Sec. III.

Finally, it is instructive to consider the relation between
the pump–probe signal~for transition states! and the cross-
correlation function,

C~ t !5u^cpuc1~ t !&u2

5^c1~ t !ucp&^cpuc1~ t !&

5E E dqdq8c1* ~q8,t !cp~q8!cp* ~q!c1~q,t !, ~10!

whereucp& is an arbitrary ‘‘probe state.’’ Hence,C(t) can be
interpreted as the expectation value of the projection opera-
tor ucp&^cpu. This function is quite similar to Eq.~2! which
is perhaps most transparent in the limit of a short probe pulse
as in Eq.~5!. The ‘‘projection operator’’ in Eq.~5! is, how-
ever, even simpler, since it is diagonal inq. The relation
between the cross-correlation function and the pump–probe
signal in Eq.~5! can be even more clearly expressed in phase
space. In the Wigner phase-space representation,29,30 the
cross-correlation takes the form

C~ t !5E E dqdpWcp
~q,p!Wc1

~q,p,t !, ~11!

whereWcp
(q,p) and Wc1

(q,p,t) are the Wigner functions
corresponding to theucp& anduc1(t)& states, respectively. If
the probe state is highly localized in configuration space, and
therefore almost constant in momentum space, the cross-
correlation function reduces to
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C~ t !;E dqWvp
~q!E dpWc1

~q,p,t !

5E dqWcp
~q!uc1~q,t !u2. ~12!

Thus, an expression similar to the one for the pump–probe
signal is recovered in the limit where the probe state is very
broad~constant! in momentum space. Since the pump–probe
signal is not sensitive to the momentum, the cross-correlation
function is, in general, expected to show more structure than
the pump–probe signal. In many cases, however, the probe
state will be sufficiently localized such thatC(t) is a good
measure of a pump–probe signal.

III. DYNAMICS OF UNIMOLECULAR DECAY

In order to make contact with observables such as life-
times, rate constants, and ultimately reaction kinetics, we
begin with the dynamics in terms of the decay of resonance
states.

A. Decay of resonance states

For unimolecular decay, the state created by the pump
pulse, uc1(0)&, is in the ‘‘bound’’ region of the potential
energy surface. We now expand this state in zero-order reso-
nance states~states with finite lifetime! which areweakly
coupledto continuum statesuE8& ~which we for simplicity
assume to be nondegenerate!. Thus,

uc1~0!&5(
n

cnun&, ~13!

where

(
n

ucnu251. ~14!

The coefficientscn are determined by the pump pulse. For a
d-pump pulse the square magnitude of these coefficients fol-
low a Poisson distribution~in the harmonic coherent state
limit ! which is often well approximated by a Gaussian dis-
tribution.

In standard derivations~see, e.g., Refs. 7–12!, the de-
cays of the individual resonance states are uncoupled. Here
we wish to include possible interferences between decays
when several states are coherently excited and proceed along
the lines of the treatment presented in Ref. 13. Since the
resonance states are not eigenstates of the full Hamiltonian,
the time-dependent state,uc1(t)&, is expanded in both the
resonance and the continuum states

uc1~ t !&5(
n

cn~ t !un&1E dE8h~E8;t !uE8&. ~15!

The dynamics of the ‘‘bound’’ part, i.e., the time evolution
of the amplitudesc1(t),c2(t),...,cn(t), can be formulated in
terms of the effective~non-Hermitian! Hamiltonian13

Heff5H02
i\

2
G, ~16!

whereH0 is the diagonal matrix

~H0!nn85Endnn8 , ~17!

andG is the decay matrix

~G!nn8[Gnn85
2p

\
^VnE8VE8n8&r~Ēnn8!. ~18!

HereVnE8 denotes the coupling matrix element between the
resonance stateun& and the continuum stateuE8&, and
^VnE8VE8n8& is the average over a~narrow! energy range
aroundĒnn85(En1En8)/2, including bothEn andEn8

^VnE8VE8n8&5
1

r~Ēnn8!
E dE8VnE8VE8n8

3r~E8!de~E82Ēnn8!. ~19!

HenceGnn85Gn8n and the decay matrix is a symmetric real
matrix. The diagonal element,Gnn[Gn , is the width of the
nth resonance state or, equivalently, determines its lifetime,
tn5\/Gn . The physical significance of the off-diagonal el-
ements is more subtle13 and for now it suffices to assume that
they are of the same order of magnitude as the diagonal
elements~a more quantitative statement of this assumption is
given below!. It should be noted that static inhomogeneous
broadening effects on the energy differences has been
neglected.13

With these definitions,c(t)[@c1(t),c2(t),...,cn(t)# sat-
isfies the equation of motion

i\
d

dt
c~ t !5Heffc~ t !, ~20!

with the initial conditionc(t)5c. The formal solution to Eq.
~20! takes the form

c~ t !5exp~2 iHefft/\!c. ~21!

Apart from solving this equation numerically, it is illustrative
to consider the situation of nonoverlapping resonances
(Gnn8!uEn2En8u). In this limit, the analytical solution is
found to be

cn~ t !5H cn2 (
n8Þn

cn8

iknn8
2vnn8

3@12eivnn8te~kn2kn8!t/2#J e2 iEnt/\e2knt/2, ~22!

where we have introduced the symbols

vnn8[~En2En8!/\,

knn8[Gnn8 /\, ~23!

kn[Gn /\.

Equation~22! shows indeed that the resonance states do not
decay independently. To first order in the quantity
knn8 /vnn8 , this gives the following expression for the norm:
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^c1~ t !uc1~ t !&5(
n

ucnu2e2knt2(
n

(
n8Þn

ucnuucn8u
knn8
vnn8

3$sin~vnn8t2wnn8!e
2~kn1kn8!t/2

1sin~wnn8!e
2knt%, ~24!

wherewnn85arg(cn)2arg(cn8).
For practical purposes the widths are determined by

standard techniques31–33 and the off-diagonal elements can
be assigned the values

Gnn85hnn8AGnGn8, ~25!

wherehnn8 is a number between 0 and 1.13

The off-diagonal terms in Eq.~24! correspond to an os-
cillatory modulation in the overall decay. In order to make
contact with reaction kinetics, we consider now the average
value of these terms measured over an oscillation period,
assuming that the relevant energy levels are equidistantly
spaced, i.e.,vnn85(n2n8)v. The average value can be
evaluated as the integral over a period divided by the length
of the period

E
nT1t0

~n11!T1t0
sin~vnn8t2wnn8!e

2~kn1kn8!t/2dt

5exp@2t0~kn1kn8!/2#

3exp@2nT~kn1kn8!/2#
vnn8@12e2T~kn1kn8!/2#

~vnn8!
21@~kn1kn8!/2#2 ,

~26!

whereT52p/v is the fundamental period of the oscillation
and t05wnn8 /vnn8 . Thus, the average value of this term is
zero in the limit (kn1kn8)/2!v, which is the limit of non-
overlapping resonances considered in Eq.~24!. The time av-
erage of the last term in Eq.~24! gives a number proportional
to exp@2knnT#(exp@2knT#21)sin(wnn8). That is, the time-
averaged norm is, except for a possible shift which depends
on the phase relation between the coefficients and which
vanish at long times, identical to the norm which is obtained
when the coupling between the decays of the resonance
states is neglected. Now using Eq.~22! in this limit, the
dynamics is given by

uc1~ t !&5(
n

cnun&e2 iEnt/\e2knt/2, ~27!

which implies

^c1~ t !uc1~ t !&5(
n

ucnu2e2knt, ~28!

corresponding to a decay given by a superposition of expo-
nential decays. In light of the above discussion, Eq.~28!
reflects the ‘‘average population’’ in the quasi-bound region
of the potential.

B. Pump–probe signals

In this section we combine the results of the previous
sections in order to obtain expressions for the signal one

would obtain in a pump–probe experiment. The simplest sig-
nal is obtained by merely monitoring the formation of prod-
ucts. The product signal is given by

P~ t !512^c1~ t !uc1~ t !&, ~29!

where it is assumed that all population which is not in the
quasi-bound part of the potential is detected as products, and
where the norm is given by Eq.~24!. If we instead use the
approximate expression in Eq.~28!, the product signal is just
given by superposition of exponential rises

P~ t !512(
n

ucnu2e2knt. ~30!

As already argued, this approximation is reasonable when
the signal is not resolved on the time scale of vibrational
periods. In this limit the product signal corresponds to a
multiexponential rise, which reflects the decay rates of the
resonance states. Equations~24! and ~28! also give the
pump–probe signal for the quasi-bound states in the limit
where the probe operator is independent of the nuclear coor-
dinates, i.e., proportional to the identity operator.

We consider now the general expression for the pump–
probe signal for the quasi-bound states. We evaluate explic-
itly the expression for the pump–probe signal for the detec-
tion of transition states, with a quantum state of the form
given in Eq.~27!. In this case the wave function becomes

c1~q,t !5(
n

cnfn~q!e2 iEnt/\e2knt/2, ~31!

wherefn(q)5^qun&. Hence,

uc1~q,t !u25(
n

ucnu2fn~q!2e2knt

12(
n

(
n8,n

ucnuucn8ufn~q!fn8~q!

3cos~vnn8t2wnn8!e
2~kn1kn8!t/2, ~32!

where we have assumed thatfn(q) is real valued. Inserting
this into Eq.~5! we obtain

S~ t !5(
n

ucnu2Ane2knt12(
n

(
n8,n

ucnuucn8uBnn8

3cos~vnn8t2wnn8!e
2~kn1kn8!t/2, ~33!

where

An5E dquF~D~q!2v2!u2fn~q!2,

~34!
Bnn85E dquF~D~q!2v2!u2fn~q!fn8~q!.

Equation~33! shows that the pump–probe signal for the tran-
sition states consists of resonance recurrences damped by the
unimolecular decay. We remind the reader that this expres-
sion includes the~quantum! interference between the quasi-
bound states but assumes that each of them decays exponen-
tially ~cf. Ref. 9!.

It is illustrative to evaluate the cross-correlation function
in Eq. ~10!, whereucp& is chosen such that the bound region
of the potential is probed. With
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ucp&5(
n

bnun&, ~35!

the cross-correlation function takes the form

C~ t !5U(
n

bn* cne2 iEnt/\e2knt/2U2

. ~36!

Depending on the form ofuc1(0)& as well as the probe state,
C(t) can be dominated by one or more resonances. The au-
tocorrelation function~wherecn5bn) can be written in the
form

C~ t !5U(
n

ucnu2e2 iEnt/\e2knt/2U2

5(
n

(
n8

ucnu2ucn8u
2e2~kn1kn8!t/2eivnn8t

5(
n

ucnu4e2knt/\

12(
n

(
n8,n

ucnu2ucn8u
2 cos~vnn8t !e

2~kn1kn8!t/2.

~37!

Thus, the pump–probe signal in Eq.~33! and the auto-/cross-
correlation function have the same form of time dependence,
and for the purpose of making contact with reaction kinetics,
we can consider the autocorrelation function without loss of
generality.

In the special case where all resonance states have the
same decay rates, i.e., ifkn5k for all n, then

C~ t !5e2ktH(n
ucnu4

12(
n

(
n8,n

ucnu2ucn8u
2 cos~vnn8t !J . ~38!

Thus, in this case the unimolecular decay and the resonance
recurrences factorize. The quantity in the curly brackets cor-
responds to the autocorrelation function without unimolecu-
lar decay, whereas the exponential prefactor corresponds to
the unimolecular decay. HenceC(t)exp(kt) provides infor-
mation on the spreading and recurrences of the wave packet
in the bound region of the potential, separated from the uni-
molecular decay, cf. Ref. 34. In a bound potential the decay
of peak heights in the autocorrelation function, within the
first few vibrational periods, is a signature of the wave
packet spreading on this time scale. That is, from the signal
and the unimolecular decay rate, information on the spread-
ing of the wave packet can be obtained@see also the discus-
sion following Eq.~40!#.

Another simple illustration of the connection between
the signal and the decay rates is for two resonances, where
the autocorrelation function takes the form

C~ t !5c1
4e2k1t/\1c2

4e2k2t/\

12c1
2c2

2 cos~vnn8t !e
2~k11k2!t/2. ~39!

Here, it is important to stress that not even theaveragedecay
rate, ^k&5(k11k2)/2 is related to the overall decay~enve-
lope function! except when the decay rates are very similar.

In general, from the signal~or autocorrelation function!,
we desire to extract decay rates. That is, from the observed
decay of the signal, we wish to separate the contribution due
to the loss of coherence~spreading! in an anharmonic poten-
tial from that due to unimolecular decay. It should be noted
that the state specific decay rate can be extracted
numerically—at least in principle—fromC(t).35 However, it
is useful to have a simple scheme in order to extract kinetic
information directly form the pump–probe signal. To that
end, we note that with the window given in Eq.~9! and
within the Gaussian wave packet approximation,36,37 the sig-
nal can be written in the form

S~ t !5
E0

2um21u2

4\2 A 2g

2~Dr ! t
2~g/\!212g

3expF2
~g/\!2

2~Dr ! t
2~g/\!212g

~r t2r 0!2G , ~40!

wherer t and (Dr ) t are the expectation value and uncertainty,
respectively, of the position of the wave packet at timet.
From this equation we observe that thepeak heightwill de-
cay as the packet spreads, whereas thearea under each
peak—given as peak height times the width—is constant.
Assuming again that all resonance states have the same de-
cay rates, the peak areas should decay exponentially in this
limit. In general, we expect that the areas decay in the same
way as the norm of the wave packet. We will return to this
proposition in the next section. It is clear from the above
discussion, that it is simpler to analyze the connection to
reaction kinetics from the rise of the product signal, Eq.~29!,
since this signal is~essentially! free of wave packet spread-
ing.

Finally, it should be stressed that the discussion in this
section concerns standard unimolecular decay, that isindi-
rect fragmentation. Fordirect fragmentation the correlation
functionC(t) will not show an exact exponential decay. For
a Gaussian wave function in a linear potential, the decay is
approximately Gaussian in time.38

C. Relation to kinetics of unimolecular decay

As shown above for indirect fragmentation, theindi-
vidual resonance states decay exponentially in time. This is
equivalent to normal first-order reaction kinetics

A→P, ~41!

where@A#/@A#05e2kt, and@P#/@A#0512e2kt.
From the discussion in the previous section it is, how-

ever, clear that normally the pump–probe signals will give a
result corresponding to a superposition of resonance states.
Thus, the product signal is clearly multiexponential. It is, in
principle, possible to extract all the individual decay rates,
either by a simple multiexponential fitting procedure~pro-
vided the signal is known over a sufficiently long time inter-
val! or by more advanced methods.35 In the special case
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where all excited states have the same decay rates, the result
in Eq. ~30! corresponds to a single exponential rise,P(t)
512ekt.

For sufficiently short times, the product signal can al-
ways be described by a single exponential rise

P~ t !512(
n

ucnu2e2knt;12S 12(
n

ucnu2knt D
512e2~k!t, ~42!

in the limit knt!1, where the average decay rate is defined
by ^k&5Snucnu2kn . That is, from a short time fit to the prod-
uct signal, we can obtain an average decay rate directly from
the pump–probe signal.

It can for sufficiently short times, in some cases, be jus-
tified to characterize the decay as bi-exponential. If the dy-
namics cover two groups of states, one with large decay rates
and another with small decay rates, then a better approxima-
tion to the short-time behavior of the signal is obtained when
Eq. ~30! is rewritten to

P~ t !;12Ae2^k&st2Be2^k& l t, ~43!

where A5Sn51
n5mucnu2 and B5Sn.mucnu2, and ^k&s

5Sn51
n5mucnu2kn /A is the average decay rate for states with

large decay rates~the exponential time dependence is valid
only at very short times!, and ^k& l5Sn.mucnu2kn /B is the
average decay rate for the states with small decay rates~the
corresponding exponential time dependence is valid for
somewhat longer times!. That is, in this case the product
signal can, approximately, be described as bi-exponential.

IV. APPLICATION TO FEMTOSECOND DYNAMICS
OF NaI

The experimental and theoretical work on the femtosec-
ond dynamics of NaI is a benchmark illustration of unimo-
lecular dynamics.14–24A short pump pulse prepares the mol-
ecule on the repulsive wall of a quasi-bound electronic state
~see Fig. 1!, that is, prepares a vibrating activated molecule,

NaI ——→
pump

~NaI!* →Na1I, ~44!

where dissociation is due to nonadiabatic coupling to the
lower adiabatic state. The experimental signals show nonki-
netic decay and rise of population,14–16 thus they cannot be
described by a single exponential function. The product sig-
nal for the rise of Na has ‘‘steps’’ spaced with the vibrational
period of~NaI!* . The steps arise since the product can only
be formed when the wave packet passes the avoided cross-
ing. The pump–probe signal of the activated molecule,
~NaI!* , looks very much like a damped autocorrelation func-
tion, and the frequency of the resonance recurrences matches
that observed for the separation of steps in the product sig-
nal.

A number of theoretical studies have been made on this
system. For the present discussion we note, in particular, that
the lifetimes of a number of the quasi-bound resonance states
are known,24 see Table I and Fig. 2. A large variation in
lifetimes is observed and to that end, it has also been ob-
served that the temporal recurrences in the pump–probe sig-
nal of the activated molecule, in particular, depends strongly
on the parameters of the pump laser.23,24 We note that the
energy levels in Table I~in an energy range corresponding to
a pump at 330 nm! are almost evenly spaced with an average
spacing of 36 cm21, which gives a period for the wave
packet oscillation of 0.94 ps, in good agreement with
experiments.14–16

We consider first the description of the pump–probe sig-
nals within the framework of decaying resonance states.
From the energies and lifetimes in Table I, which correspond
to nonoverlapping resonances, we calculate the signals with
a Gaussian distribution of the coefficientsucnu25exp@2(En

2^E&)2/s2#/(Aps). The distribution is centered at the energy
^E&530 250 cm21 corresponding to a pump pulse at 330 nm,
with a width given bys5100 cm21 ~i.e., a pulse duration of
about 50 fs!. We calculate first the product signal for the rise
of Na. From Eq.~30!, we obtained the smooth~dashed line!
rise shown in Fig. 3~a!. Thus, the explanation of the experi-
mentally observed steps is clearly beyond the traditional de-
scription of resonance states. The steps are related to the
coherent excitation of a number of vibrational states, i.e.,

FIG. 1. Potential energy curves for NaI. The solid lines are the adiabatic
potentials whereas the dashed lines show the potentials in the diabatic rep-
resentation. Also shown is the wave packet created by the coherent excita-
tion and an indication of its subsequent dynamics.

TABLE I. Energies and widths of resonance states; taken from Ref. 24.

En (cm21) Gn (cm21) En (cm21) Gn (cm21) En (cm21) Gn (cm21)

30022.2 0.7236 30202.8 0.2582 30379.3 0.3076
30058.6 0.3354 30238.5 0.6081 30414.4 0.0803
30094.8 0.0946 30274.1 1.1053 30449.4 0.0015
30130.9 0.0013 30308.7 1.1476 30484.2 0.0477
30166.9 0.0558 30344.1 0.6607
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they cannot be accounted for by Eq.~30!, but the more ac-
curate expression for the norm, Eq.~24!, must be used. In
Fig. 3, we have shown the results assuming that the off-
diagonal coupling elements are given by Eq.~25! with hnn8
equal to 1~if these parameters are chosen to be smaller than
1, the steps will be less pronounced!.

The three parts of the figure show the signal for three
different choices of the phases ofcn . In ~a! cn5ucnu, ~b!
cn5exp(inp/2)ucnu, and ~c! cn5exp(inp)ucnu. These phase
relations between the coefficients correspond townn850,
wnn85(n2n8)p/2, and wnn85(n2n8)p, respectively, in
Eq. ~24!. Since the energy levels in Table I are, essentially,
equidistantly spaced, the last two choices translate into the
phase shifts of a quarter and half a period, as observed in
Figs. 3~b! and 3~c!. In passing we note that in a harmonic
well, coherent states are formed by a superposition of eigen-
states, where the square magnitude of the expansion coeffi-
cients follow a Poisson distribution. The phase relation be-
tween the expansion coefficients determine the location of
the coherent state in the well. With the usual sign
convention,12 positive coefficients result in a coherent state
located at the right wall of the harmonic well whereas real
coefficients with alternating sign result in a coherent state
located at the left wall; a displacement corresponding to one
half of an oscillation cycle.

The figures show the observed periodic steps separated
by just under a picosecond. Furthermore, Fig. 3~a! shows, in
full agreement with the discussion in Sec. III, that the signal
averaged over a vibrational period is identical to the signal
which is obtained when the coherent interference in the de-
cay of the resonance states is neglected~dashed line!. For the
purpose of making contact between reaction kinetics and the
pump–probe signal obtained in the quasi-bound region, we
consider in the following the average signal, that is, neglect
the oscillatory terms. We calculate, consequently, the signal
associated with the quasi-bound motion using Eq.~33!. We
choose the Franck–Condon window function to be a Gauss-
ian, Eq.~9!, centered at the inner turning point of the adia-
batic well atE530 250 cm21, with the width arising from a
probe pulse with the same energy profile as quoted above for
the expansion coefficients. Due to the steepness of the inner
wall of the adiabatic well, this results in a very narrow win-
dow function with a width;0.1 Å. Within the Franck–
Condon window we can, therefore, approximate the reso-
nance states,fn(r ), by Airy functions.11

Figure 4~a! shows the signal according to Eq.~33!. Also
shown is the decay of the average population~norm of the
wave packet! in the adiabatic well, which corresponds to
unimolecular decay. Thus, the signal decays faster than the
norm. In order to describe the decay of the signal, a single
exponential fit to the envelope function is shown on the fig-
ure. We denote this decay as an apparent decay, since the
decay of the signal envelope contains contributions from the
unimolecular decay as well as wave packet spreading. Figure
4~b! shows the autocorrelation function~see also Ref. 24!.
This function is in the present case very similar to the signal
since the probe state is centered at the inner turning point of
the well and, furthermore, it is highly localized.

According to the discussion in connection with Eq.~38!,
it is possible to extract information on the time scale of wave
packet spreading from the apparent decay@of S(t) or C(t)#
and the unimolecular decay, at least in the case of a single
unimolecular decay rate. We have applied this approach to
the results shown in Fig. 4~a!, in the following way: The
apparent decay has been divided by the decay of the average
population. The result is shown in Fig. 4~c! together with the
calculated signal where the unimolecular decay is artificially
eliminated. Excellent agreement is observed within the first
ten vibrational periods. Thus, from the unimolecular decay
observed in the average product signal and the pump–probe
signal of the quasi-bound motion, we can gain insight into

FIG. 2. Distribution of lifetimes according to Table I. The lifetimes of the
states marked~a! and ~b! are off-scale; 4.1 and 3.5 ns, respectively.

FIG. 3. Product signal for Na1I. The dashed curve corresponds to the
situation where interference effects between the quasi-bound vibrational
states within the bandwidth of the pump laser are neglected, Eq.~30!. The
panels~a!–~c! correspond to different choices of the phases for the coeffi-
cients representing the initial state, in terms of the resonance states, see text.
The arrows in~b! and ~c! marks the shift in the induction time, defined as
the first time products are observed.
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the spreading dynamics in the adiabatic well.
Compared to the product signal for the rise of Na, it is

more difficult to extract information on the unimolecular de-
cay rates from the pump–probe signal of the quasi-bound
motion. As shown above, the overall decay of the signal is
not a direct signature of the decay rates of the resonance
states. From the theoretical simulations of the signal@Fig.
4~a!#, we calculate now the peak areas as a function of time.
These areas are constant in the absence of unimolecular de-
cay, according to Eq.~40!. We have plotted the areas in Fig.
5. We observe that the areas decay, and they follow closely
the decay of the average population of the adiabatic well.
Thus, the decay of the peak areas in the signal associated
with the quasi-bound motion gives the counterpart of the
multiexponential rise of the product signal. The decay of the
peak areas has also been studied experimentally.17 From the
experimental signal, it was indeed concluded that the decay
of the peak areas correspond to the rise of the product

signal.17 Here, the areas decayed by 6 ps, which was found to
be similar to the fast rise time of free Na~for a 310 nm
pump!.

From Table I, it is evident that the decay rates of NaI
depends strongly on the energy. This behavior is also found
in other systems. For example, detailed calculations on
HO2→H1O2

39 show that, the decay rates of individual reso-
nance states can vary over several orders of magnitude even
within a verynarrow energy range. However, when the rates
were convoluted with a Gaussian with a width corresponding
to a few hundred cm21, the rate constant agreed well with the
rate constant according to Rice–Ramsperger–Kassel–
Marcus~RRKM! theory. Thus, in many situations, knowing
all the individual decay rates is simply information which is
too detailed and an average rate constant suffices. To that
end we showed in Eq.~42! how to extract an average rate
constant directly from the pump–probe signals.

Finally, for the unimolecular rate constant in systems
like NaI, it has been proposed that the rate constant can be
expressed as the frequency of the vibration times the non-
adiabatic crossing probability,8,14 where the probability is
evaluated according to the Landau–Zener formula.11,40 It is
worth noting that this relation can be justified from a simple
analysis assuming a constant~small! reaction probability,p,
in each period of vibration. In this case, the number of reac-
tants,Nt , aftern periods can be written

Nt5N0~12p!n5N0en ln~12p!;N0e2npt, ~45!

where we have takenp to be relatively small such that ln(1
2p);2p, and that the number of periods corresponds, ap-
proximately, to the actual time divided by the period of os-
cillation, n;t/T5nt. This (np[k) is clearly not an expres-
sion for a genuine microcanonical rate constant. As shown
for NaI ~Table I!, the decay can depend strongly on the en-
ergy of the populated states, and this cannot be explained
from the simple representation of the rate constant. Thus the
frequency16 as well as the Landau–Zener probability have a
relatively weak dependence on the energy. The proposed re-
lation has indeed only been established for an average rate
~averaged over some energy range! in a semiclassical limit.41

If we calculate the rate constant according to Eq.~45!,
using the vibrational period 0.94 ps, which gives the fre-
quencyn51.06•1012s21, we obtain a rate constant in the

FIG. 4. Pump–probe signal of the transition states. Panel~a! shows the
~normalized! signal according to our master equation, Eq.~33!: The solid
decay curve shows for comparison a single-exponential fit to the decay of
the signal, that is, the apparent decay of the signal. The dashed curve shows
the average decay of the population in the adiabatic well, Eq.~28!. Panel~b!
shows the autocorrelation function, Eq.~37!: The behavior obtained in panel
~a! from our master equation is similarly reproduced by the auto-correlation
function. Panel~c! shows the signal obtained when the unimolecular decay
is artificially eliminated, noting the enhancement of the recurrences: The
decay curve obtained is the ratio between the solid and dashed curves in
panel~a!. This curve gives the time scale for wave packet spreading of 9 ps
~defined as the time when the function has decayed to 1/e), and the agree-
ment indicates that the peak heights in panel~a! decay by the total rates of
average population depletion plus spreading.

FIG. 5. Decay of the recurrence areas in Fig. 4~a! ~squares! compared to
decay of the average population in the adiabatic well, Eq.~28! ~dashed
curve!. For comparison, the decay of the envelope in Fig. 4~a! is also drawn
~solid line!.
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range of 1.06•1011 to 1.60•1011s21 with a Landau–Zener
probability,p, in the range of 0.15–0.1.18,20 That is, the life-
time is in the range of 6.3–9.4 ps. These numbers are in very
good agreement with the average rate constant^k&
5Snucnu2kn of Eq. ~42!, which corresponds to a lifetime of
8.7 ps. For a simulation of the pump–probe signal of NaI
with a similar representation of the rate constant, see Refs.
18 and 20.

V. CONCLUSIONS

We considered the relation between pump–probe signals
of unimolecular reactions and macroscopic kinetics, that is,
the exponential decay of reactants and the exponential rise of
the product population, respectively. The description of uni-
molecular decay used by many authors is originally based on
the decay of a single zero-order resonance state. When the
decay of a superposition of such states~i.e., a wave packet! is
considered, each state has simply been multiplied by its own
decay rate. This approach does not reproduce the dynamics
and ignores some coherence phenomena. We showed that the
pump–probe signals corresponding to unimolecular decay
cannot be fully accounted for within this standard approach
to unimolecular decay due to vibrational coherence effects
between the coherently excited vibrational states. Thus, the
resonance states do not decay independently; the decays are
coupled via the continuum.

The effect is pronounced on the time-dependent popula-
tion, in particular the product population which displays an
oscillatory modulation around a rising population. When the
signal is averaged over a vibrational period, the modulation
disappears, and the averaged signal corresponds to a super-
position of exponential rises—the kinetic regime. Each ex-
ponential reflects the different lifetimes of the quasi-bound
states populated by the pump pulse.

Even when all resonance states have the same lifetime,
the corresponding exponential decay differ, in general, from
the envelope function of the transition state signal due to
wave packet spreading. The product signal will, however,
show the well-known single exponential rise. Such a behav-
ior, where all resonance states within the bandwidth of the
pump laser have approximately the same lifetime, might oc-
cur in large molecules with high degree of degeneracy. If this
condition is not fulfilled, we showed in this paper how to
extract an average rate constant~within the bandwidth of the
pump laser! directly from the short time behavior of the
pump–probe signals.

We considered the predissociation of NaI as a prototype
example, and showed explicitly that all features of the
pump–probe signals can be accounted for within the formal-
ism presented in this paper. In particular, the steps in the
product signal were reproduced; the average product signal
is a multiexponential function which reflects the decay rates
of the individual quasi-bound states. The same multiexpo-
nential function was found in the decay of the peak areas in
the probing of the quasi-bound motion. The relationship of
these decay processes to the Landau–Zener average rate of
crossing was examined and related to experimental observ-
ables.
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