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On the role of coherence in the transition from kinetics to dynamics:
Theory and application to femtosecond unimolecular reactions

Klaus B. Mgller, Niels E. Henriksen,® and Ahmed H. Zewail”
Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena,
California 91106

(Received 17 August 2000; accepted 19 September)2000

We consider the relation between observed pump—probe signals in the femtosecond regime and the
kinetics of unimolecular reactions, that is, the exponential decay of reactants and the exponential
rise of the product population, respectively. It is shown that the signals cannot be fully accounted for
within standard approaches of unimolecular decay, conventionally used in the past, since
interference effectbetween the quasi-bound vibrational states within the bandwidth of the pump
laser cannot be neglected. When these effects are included, all features of the signals can be
accounted for. We apply this theoretical treatment of coherent interference to examine the dynamics
and kinetics of the quasi-bound transition configurations, and relate them to the decay rates of
individual quasi-bound resonance states. The signals show multi-exponential behavior, reflecting the
different decay rates of the resonance states, with an average rate conitantthe bandwidth of

the pump laserwhich can be extracted directly from the signals. The persistence of coherence is
evident in the observed signals. The predissociation of Nal is used as a prototype for numerical
illustration. © 2000 American Institute of Physid$§0021-96060)70747-]

I. INTRODUCTION description we derive explicit expressions for the pump—
probe signals for molecules which undergo unimolecular re-
The field of reaction kinetics is concerned with the de-action in order to make contact with reaction characteristics,
scription of chemical reactions in terms of rate processes angfetimes and rate constants, and ultimately with reaction ki-
the assignment ofmacroscopir rate constants to the in- npetics.
volved transformations. In the case of a unimolecular reac-  Because the ultrashort pulse excites several resonance

tion, for instance, the decay of the reactants is often modelegates coherently, the approach most commonly used in the
by simplg first-order rate laws. However, the §tuc_iy of chemi%past' where each resonance state decays indepen@@rily,

cal reactions on the molecular level, that is, in terms ofi\aqequate in this context. The coupling between different

nuclear motion, is the key to the understanding of the dy;esonance-state amplitudes must be taken into acédunt.

namics of the transformation and, hence, provides physicgligre e treat this problem of resonance decay in coherently
insight complimentary to the more phenomenological I('net&)repared reactions. The derived expressions clearly display

descr!ptlon. The dynamics of elementary . physu;al aNGhe coherence induced by the laser excitation as well as the
chemical processes can be followed in real time using fem-

tosecond(fs) laser pump—probe techniguk®. A fs pump connection between pump—probe signals and unimolecular

. ! rate constants associated with the individual resonance

pulse coherently excitggctivate$ the molecular system un- . : . L
. . states. If detailed information about the individual reso-
der consideration and another fs pulse subsequently probés . . .
. . . nances is not needed, that is, a unimolecular rate constant
the system at various instants as it undergoes the transforméla\—/era od over a narrow enerav ranae suffices. we suagest
tion. The obtained pump—probe signal thus records the moﬁ tg tract h ‘ gyt t?j' v f ' 99
lecular rearrangement during the course of the process. OV\t') 0 ex r?cwsuc a r? € cons anlt 're.fh y from a Ipqmp—
In this paper, we consider the theoretical relation beProbe signal. We exemplify our results with numerical simu-

tween pump—probe signals and reaction kinetics for unimo!—at'ons of the predissociation dynamics of Nal. This reaction

lecular reactions. The reaction dynamics of photoactivated® @ Prototype and has already been studied extensively both

molecular reactions are naturally described theoretically byxpenmentallff‘ _18 andz 4theoret|cally, using semiclassic and
the time evolution of a wave packet, obtained by solving theduantal calculations:™= _
time-dependent Schdinger equation, or by classical trajec- 1 NS paper is organized in the following way: In Sec. I,
tory calculation$8 Alternatively, if the reaction involves We summarize some of the general expressions for pump-—
the decay of a meta-stable intermediate, a microscopic ddirobe signals. In Sec. lll, the dynamics of unimolecular de-
scription of the dynamics in terms of the decay of quasi-cay is discussed in terms of quasi-bound resonance states.
bound resonance states can be invok&aAdopting such a  The relation between the pump—probe signals and the decay
rates of individual vibrational states is discussed. In Sec. IV,
dpermanent address: Department of Chemistry, Technical University o¥ve anal.yze’ a.s an example, th.e p-ump—-probe.S|gnaIs of Nal,
Denmark, DTU 207, DK-2800 Lyngby, Denmark. and their relation to reaction kinetics. Finally, in Sec. V the
PElectronic mail: zewail@caltech.edu conclusions of our work are summarized.

0021-9606/2000/113(23)/10477/9/$17.00 10477 © 2000 American Institute of Physics
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Il. PUMP—-PROBE SIGNALS, GENERAL EXPRESSIONS within the Franck—Condon window at tintg. We note that

) ) ) this is an overlap between two densities, i.e., not wave func-
We consider the interaction between a molecule and WQions

time-delayed pulses—a pump and a probe pulse. Within the éonsider, as an example, a Gaussian probe g

electric dipole approximation, the field-molecule coupling:\/mE exg—y(t—t)?. The Franck—Condon window
terms take the fornffor absorption takes theoform

Voumd ) = = (D pacas (e,

_ 1 —iwot

Viropd 1) == (2) uaiy(D)e 2, D1 order to gain insight, we consider now one coordinate and
wherew; andw, are the carrier frequencieg o andu,; are  linearize the difference potential around the “Franck-—
the projections of the transition dipole moments on the po-Condon point,”r =r, wheref w,=D(ry). Thus,
larization of the electric field vector, arad (t) anda,(t) are
the pulse envelopes centered around time zero and the delay D(r)=D(rq)+g(r—rg), (8)
time ty, respectively. , ) o ) .

The pump pulse creates a wave padkei(t)) in elec- WheregzDr:ro is the derivative of the difference potential
tronic state(1) which is evaluated according to first-order (note that the equatiohw,=D(ro) may have more than one

perturbation theory, anéli, is the Hamiltonian for nuclear Solution. Equation(7) now takes the form

motion in this electronic state. The probe pulse creates a new y 2 2 (a2 2I(2y)
nonstationary statis,(t)) in electronic staté2). In the limit [F[D(r)— w,]|*=Eg| uao €™ ey, 9
of nonoverlapping pump and probe pulses, which we will

consider in the present paper, this state can again be calc-lg-hus' the probe window is a Gaussian around the Franck—

lated according to first-order perturbation theory, now withCondon point. The position of this point depends on the
probe frequencyn,.

[1(t)) as initial state. _ .
The total pump—probe signal is assumed to be propor- If the probe pulse is very shortyt-c), or equivalently

tional to the norm of ¢,(t)) after the probe pulse has de- g—0, the probe becomes insensitive to the potential energy

cayed to zero. It can be written as a function of the dela)}j'ffereﬂce' I‘Tj tr?'s ]!'mr']t’ the W|ndowk|s esser|1|t|glly a constant
fime. ty, in the following form? over the width of the wave packet at all times. Hence,

S(tg)— | a1l X 1 (ty) | #1(tg)); the signal is proportional to

e 2
[FID(Q) — w]|? = Ef| ] %e L2 POAITEY, 0 (7)

S(tg) = (1t | Pis w2) | h1(tg)), (2)  the norm of the wave packet, which in a chemical reaction
- ) exhibits an overall decay, see Sec. Ill.
whereP;,(w,) is the probe operator Finally, it is instructive to consider the relation between
7512(w2): IsT(a)z)Is(a)z), &) the pump—probe_: signdfor transition statgsand the cross-
correlation function,
with
. C(t) =yl ¢pa ()]
£ — —iwot 1
Plum)=(Uh) | e sty expift) o — (O] p) Ul (D)
X expt—iAt/A)dt @ - | [ dada vt @ 0w @, @0

For an ultrashort probe pulse wheag(t) is strongly
peaked arount=t4, and under the assumption that the tran-where| ,,) is an arbitrary “probe state.” Henc€(t) can be
sition dipole moment is coordinate independent, the signainterpreted as the expectation value of the projection opera-

can be written in the ford?—28 tor [¢,)(,|. This function is quite similar to Eq2) which
is perhaps most transparent in the limit of a short probe pulse
S(td):j dgy; (a,tq)[F[D(a) — w,]|?¢1(0,tg) as in Eq.(5). The “projection operator” in Eq(5) is, how-

ever, even simpler, since it is diagonal ¢n The relation
) ) between the cross-correlation function and the pump—probe
= f dg|F[D(a) — w,]|*|¢a(a,ta)|%, (5 signal in Eq.(5) can be even more clearly expressed in phase

_ _ space. In the Wigner phase-space represent&tishthe
where we have introduced the Franck—Condon windowsrgss-correlation takes the form

function

+oo ) 2 _
|F[D(Q)—w2]|2= MZlf_ dtaz(t)el[D(q)—hwz]t/ﬁ ) C(t)_JJdqdexpp(Q!p)Wl//l(q!plt)r (11)

©6) WhereW¢p(q,p) and W¢1(q,p,t) are the Wigner functions
Hereq denotes the collection of all nuclear coordinates, anctorresponding to thiy,) and|;(t)) states, respectively. If
D(q)=V2(q)—V;(q) is the difference between the potential the probe state is highly localized in configuration space, and
energy surfaces in the electronic staf@sand(1). Thus, the therefore almost constant in momentum space, the cross-
signal measures the square magnitude of the wave pégket correlation function reduces to
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(Ho)nn =Enénnr (17)

C(t)~f dwap(q)J dpW,,(a,p,t)
andI is the decay matrix

=f daw,, (@) ¢1(a.0)]. (12

Thus, an expression similar to the one for the pump—probe

signal is recovered in the limit where the probe state is Ver)ﬂereVnE, denotes the coupling matrix element between the

broad(constantin momentum space. Since the p“mp_pmberesonance statdn) and the continuum stat¢E’), and

S|gngl is .not. sensitive to the momentum, the cross—correlauog\/nE/VE,nl) is the average over énarrow) energy range
function is, in general, expected to show more structure tha — . .
aeroundEnn,=(En+ E,/)/2, including bothE, andE,,

the pump—probe signal. In many cases, however, the prob
state will be sufficiently localized such th&f(t) is a good
measure of a pump—probe signal. (Ve Vern )=

2 _
(F)nn’Ean’:7<VnE’VE’n’>P(Enn’)- (18

— J dE,VnE’VE’n’
p(Ennr)

lll. DYNAMICS OF UNIMOLECULAR DECAY X p(E')S(E'—Eprr). (19

In order to make contact with observables such as life- o .

. . . - Hencel',,,, =T, and the decay matrix is a symmetric real

times, rate constants, and ultimately reaction kinetics, we_~ . _ . .
T P matrix. The diagonal element;,,,,.=T",,, is the width of the

begin with the dynamics in terms of the decay of resonance . . N

states nth resonance state or, equivalently, determines its lifetime,

m,=h/T,. The physical significance of the off-diagonal el-
A. Decay of resonance states ements is more subffand for now it suffices to assume that

For unimolecular decay, the state created by the pumﬁhley are of the same.orQer of magnltu?eh.as the d|ggonal
pulse, | #,(0)), is in the “bound” region of the potential elementga more quantitative statement of this assumption is

energy surface. We now expand this state in zero-order res%'ven below. It should be noted that static inhomogeneous

nance stategstates with finite lifetimg which are weakly roadening effects on the energy differences has been

; : L lected?
coupledto continuum state$E’) (which we for simplicity neglec _ _
assume to be nondegenejafehus, o With these (_jeflmtlonsn_;(t)=[c1(t),c2(t),...,cn(t)] sat-
isfies the equation of motion

|41(0)=2 cqln), (13 o
n |h&c(t)=Heﬁc(t), (20)
where
with the initial conditionc(t) =c. The formal solution to Eq.
> [eol?=1. (14 (20 takes the form
n
The coefficients,, are determined by the pump pulse. Fora  ¢(t) =exp(—iHegt/%)c. (21

S-pump pulse the square magnitude of these coefficients fol- , , . , o .
low a Poisson distributioriin the harmonic coherent state Apart from solving this equation numerically, it is illustrative

limit) which is often well approximated by a Gaussian dis-I0 consider the situation of nonoverlapping resonances
tribution. (Thn<|En—En]). In this limit, the analytical solution is

In standard derivationgsee, e.g., Refs. 7—12the de- found to be
cays of the individual resonance states are uncoupled. Here

we wish to include possible interferences between decays c.(t)={c,— >, c. Ko

when several states are coherently excited and proceed along nan 2@

the lines of the treatment presented in Ref. 13. Since the

resonance states are not eigenstates of the full Hamiltonian, X[1— el @nn'tetkn—kn)U2) | g~ iEntlhig—kntl2 (2

the time-dependent statpy,(t)), is expanded in both the

resonance and the continuum states
where we have introduced the symbols

t))=_2, c,(t)|ny+ | dE'h(E’;1)|E"). 15
[9a(0)= 25 eq(t)]n) f (E":D|E") (15 o= (EvE ),
The dynamics of the “bound” part, i.e., the time evolution ke =T /% (23)
of the amplitudes(t),c,(t),...,c(t), can be formulated in L
terms of the effectivénon-Hermitian Hamiltoniart® k=T, /h.
ih
Her=Ho— 71‘, (16) Equation(22) shows indeed that the resonance states do not

decay independently. To first order in the quantity
whereH,, is the diagonal matrix Knn' /wnn , this gives the following expression for the norm:
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— K would obtain in a pump—probe experiment. The simplest sig-
<¢1(t)|¢1(t)>=; (R —; 2 |callcn p— nal is obtained by merely monitoring the formation of prod-
n'#n nn ucts. The product signal is given by
X{sin(@nnt—=@qp)e” o2 P(t)=1—(ya(D)]4a(1)), (29
+sin(@ny)e ), (24 where it is assumed that all population which is not in the

quasi-bound part of the potential is detected as products, and
pyvhere the norm is given by Eq@24). If we instead use the
approximate expression in E@®8), the product signal is just
given by superposition of exponential rises

where e, = arg(,) —argCy ).

For practical purposes the widths are determined
standard techniqu&s and the off-diagonal elements can
be assigned the values

Con =70 Nl (25) P(t)=1—§n) |cq|2eknt, (30)

where 7, is @ number between 0 and*y.. , R
The off-diagonal terms in Eq24) correspond to an os- AS aI_ready_ argued, this approximation is reasonqble .when
cillatory modulation in the overall decay. In order to make the signal is not resolved on the time scale of vibrational
contact with reaction kinetics, we consider now the averag@€riods In this limit the product signal corresponds to a
value of these terms measured over an oscillation periodnultiexponential rise, which reflects the decay rates of the
assuming that the relevant energy levels are equidistantf{fSonance states. Equatiof4) and (28 also give the
spaced, i.e.w,,=(n—n')w. The average value can be pump—probe signal for the quasi-bound states in the limit

evaluated as the integral over a period divided by the lengti/here the probe operator is independent of the nuclear coor-
of the period dinates, i.e., proportional to the identity operator.

We consider now the general expression for the pump—

(T DT+ —(Kp Ky )t/2 probe signal for the quasi-bound states. We evaluate explic-
Sln(wnn/t—gonn/)e noon dt . . .
nT+tg itly the expression for the pump—probe signal for the detec-
tion of transition states, with a quantum state of the form
=exf —to(Kn+knr)/2] given in Eq.(27). In this case the wave function becomes

[ 1— e Tt 2]
e Tt T T [k k1217

P (a0 =2 Cry(q)e Enlig=knll2, (31)

(26)  where¢,(q)={(q|n). Hence,
whereT=2x/w is the fundamental period of the oscillation

2_ 2 24—k,
andto= @, /0,y - Thus, the average value of this term is PZChY] —; |cnl®@n(q)%e !
zero in the limit k,+k,/)/2<w, which is the limit of non-
overlapping resonances considered in &4). The time av-
erage of the last term in E€R4) gives a number proportional + 2; n%n [allen | éa(@) dnr (@)

to exd —k,nT]|(exd —k,T]—1)sin(p,y). That is, the time-

averaged norm is, except for a possible shift which depends X COY wppt— @ppr )€ Kt Kn )2, (32
on the phase relation between the coefficients and whiclhere we have assumed that(q) is real valued. Inserting
vanish at long times, identical to the norm which is obtainedys into Eq.(5) we obtain

when the coupling between the decays of the resonance

states is neglected. Now using E@2) in this limit, the S(t)=2, [chl?Ane 42> > [callcn | Ban
dynamics is given by n N n'<n
XCoswnn’t_‘Pnn’)ei(knJrkn,)t/za (33

|‘//1(t)>:2 Cn|n)e*iEnt/ﬁefknt/2, 27
n where

hich impli
which implies An:f dg|F(D(q) — w2)|?pn(q)?,

(P(O]ga(D)=2 ey, (28 (34
" Bnn’:f dqu(D(Q)_w2)|2¢n(q)¢n’(Q)-

corresponding to a decay given by a superposition of expo-
nential decays. In light of the above discussion, EZB) Equation(33) shows that the pump—probe signal for the tran-
reflects the “average population” in the quasi-bound regionsition states consists of resonance recurrences damped by the
of the potential. unimolecular decay. We remind the reader that this expres-
sion includes théquantum interference between the quasi-
bound states but assumes that each of them decays exponen-
tially (cf. Ref. 9.

It is illustrative to evaluate the cross-correlation function

In this section we combine the results of the previousin Eq. (10), where|¢,) is chosen such that the bound region
sections in order to obtain expressions for the signal onef the potential is probed. With

B. Pump-—probe signals
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Here, it is important to stress that not even diveragedecay

| hp) =2 baln), (39  rate, (k)= (k;+ky)/2 is related to the overall decdgnve-
" lope function except when the decay rates are very similar.
the cross-correlation function takes the form In general, from the signdbr autocorrelation function
2 we desire to extract decay rates. That is, from the observed
C(t)=|>, b*c,e Entlhe knt/2) (36)  decay of the signal, we wish to separate the contribution due
n

to the loss of coherendspreadingin an anharmonic poten-

Depending on the form dfj,(0)) as well as the probe state, tial from that due to unimolecular decay. It should be noted
C(t) can be dominated by one or more resonances. The alfat the state specific decay rate can be extracted

) . o : i prined 35 :
tocorrelation functionwherec,=b,) can be written in the Numerically—at least in principle—fror@(t).*> However, it
form is useful to have a simple scheme in order to extract kinetic

information directly form the pump—probe signal. To that
end, we note that with the window given in E) and
within the Gaussian wave packet approximafidf’ the sig-
nal can be written in the form

2
C(t) — 2 |Cn|Ze—iEnI/he—kntl2
n

=33 fenfon e otk metent - Beel® [
412 2(Ar)2(glh)?+2y
=2 [cyl'e " (g/h)?
n expg — r—ro)?|, 40
F{ 2an g2y o) “0
+22 2 |Cal?lcnr|? cog wpp t)e Knt ka2, wherer, and (Ar), are the expectation value and uncertainty,
" ont<n respectively, of the position of the wave packet at titne

(37 From this equation we observe that theak heightwill de-
cay as the packet spreads, whereas dhea under each
epeak—given as peak height times the width—is constant.

. . . .~ .““Assuming again that all resonance states have the same de-
and for the purpose of making contact with reaction kinetics ) S
. . : : ay rates, the peak areas should decay exponentially in this
we can consider the autocorrelation function without loss of;

. imit. In general, we expect that the areas decay in the same
generality. ; )
. way as the norm of the wave packet. We will return to this
In the special case where all resonance states have the L . )
N proposition in the next section. It is clear from the above
same decay rates, i.e.,kf,=k for all n, then . : oo .
discussion, that it is simpler to analyze the connection to

reaction kinetics from the rise of the product signal, &9),

Thus, the pump—probe signal in E§3) and the auto-/cross-
correlation function have the same form of time dependenc

Ct)=e > [c,/* since this signal igessentially free of wave packet spread-
n .
ing.
Finally, it should be stressed that the discussion in this
+22 > |Cn|2|Cnr|2C0$(wnnrt)}- (38)  section concerns standard unimolecular decay, thatdis
I on'<n rect fragmentation. Fodirect fragmentation the correlation

Thus, in this case the unimolecular decay and the resonan(t,%nCtlon C(t) will not show an exact exponential decay. For

recurrences factorize. The quantity in the curly brackets cor? Gaussian wave function in a linear potential, the decay is

responds to the autocorrelation function without unimolecu-apprOXImately Gaussian in tine.
lar decay, whereas the exponential prefactor corresponds to

the unimolecular decay. Hencg(t)expkt) provides infor-

mation on the spreading and recurrences of the wave packet Relation to kinetics of unimolecular decay
in the bound region of the potential, separated from the uni-
molecular decay, cf. Ref. 34. In a bound potential the deca\/lid
of peak heights in the autocorrelation function, within the
first few vibrational periods, is a signature of the wave
packet spreading on this time scale. That is, from the signal A—P, (41)
and the unimolecular decay rate, information on the spread-

— okt —1_ a—kt
ing of the wave packet can be obtairege also the discus- where[A]/[A]O_—e ' anql[P]/[A]o—_l e
sion following Eq.(40)]. From the discussion in the previous section it is, how-

Another simple illustration of the connection between ever, clear that normally the pump-—probe signals will give a

the signal and the decay rates is for two resonances, wheFSSUIt corresponding to a superposition of resonance states.
the autocorrelation function takes the form Thus, the product signal is clearly multiexponential. It is, in
principle, possible to extract all the individual decay rates,

C(t)=cte k4 ciekel/h either by a simple multiexponential fitting procedugzo-
_— (kg 2 vided the signal is known over a sufficiently long time inter-
+2¢3C5 Cof wpprt)e TR (39 val) or by more advanced methotfsin the special case

As shown above for indirect fragmentation, tiedi-
ual resonance states decay exponentially in time. This is
equivalent to normal first-order reaction kinetics
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35000 Tonic IV. APPLICATION TO FEMTOSECOND DYNAMICS
A e OF Nal
30000 7 il R
= 25000 k Covalent The experimental and theoretical work on the femtosec-
k) ond dynamics of Nal is a benchmark illustration of unimo-
& 20000 lecular dynamics#~2*A short pump pulse prepares the mol-
E 15000 ecule on the repulsive wall of a quasi-bound electronic state
000 (see Fig. ], that is, prepares a vibrating activated molecule,
pump
5000 Nal —— (Nah* —Na+l, (44
00 > P p s 10 7 m where dissociation is due to nonadiabatic coupling to the
lower adiabatic state. The experimental signals show nonki-
Internuclear Distance (A) netic decay and rise of populatidfi;*® thus they cannot be

FIG. 1. Potential energy curves for Nal. The solid lines are the adiabaticdescrIbed by a smgle eXponentlal function. The prOdUCt SIg-

potentials whereas the dashed lines show the potentials in the diabatic repal for the rise of Na has “steps” spaced with the vibrational
resentation. Also shown is the wave packet created by the coherent excitperiod of (Nal)*. The steps arise since the product can only

tion and an indication of its subsequent dynamics. be formed when the wave packet passes the avoided cross-
ing. The pump-—probe signal of the activated molecule,
(Nal)*, looks very much like a damped autocorrelation func-

where all excited states have the same decay rates, the restiftn, and the frequency of the resonance recurrences matches
in Eq. (30) corresponds to a single exponential rigt) thallt observed for the separation of steps in the product sig-
=1—ekt, nal.
For sufficiently short times, the product signal can al- A number of theoretical studies have been made on this
ways be described by a single exponential rise system. For the present discussion we note, in particular, that
the lifetimes of a number of the quasi-bound resonance states
P()=1- |Cn|2e—knt~1_<1_2 |Cn|2knt) allre_knovvlrﬁ"' see Table | and Fig. 2. A large variation in
n n lifetimes is observed and to that end, it has also been ob-
_—e (42) served that the temporal recurrences in the pump—probe sig-
' nal of the activated molecule, in particular, depends strongly
in the limit k,t<1, where the average decay rate is definecon the parameters of the pump laé&f! We note that the
by (k)=3,|c,|%k,. That is, from a short time fit to the prod- energy levels in Table(in an energy range corresponding to
uct signal, we can obtain an average decay rate directly frora pump at 330 npnare almost evenly spaced with an average
the pump—probe signal. spacing of 36 cm!, which gives a period for the wave
It can for sufficiently short times, in some cases, be juspacket oscillation of 0.94 ps, in good agreement with
tified to characterize the decay as bi-exponential. If the dyexperimentg?~16
namics cover two groups of states, one with large decay rates We consider first the description of the pump—probe sig-
and another with small decay rates, then a better approximarals within the framework of decaying resonance states.
tion to the short-time behavior of the signal is obtained wherFrom the energies and lifetimes in Table I, which correspond

Eq. (30) is rewritten to to nonoverlapping resonances, we calculate the signals with
. . . . .. 2_
1 A (0 R ()t a Gaussian distribution of the coefficients,|*=exd —(E,
P()~1-Ae Be (43 —(E)4d?)(\Jwa). The distribution is centered at the energy

where A=3""T|c,|? and B=3,-.lc,?, and (k)s (E)=30250cm? corresponding to a pump pulse at 330 nm,
=3n""c,|%k, /A is the average decay rate for states withwith a width given byo=100cni ! (i.e., a pulse duration of
large decay rateghe exponential time dependence is valid about 50 f$. We calculate first the product signal for the rise
only at very short times and (k) =2~ m|cn|?k,/B is the  of Na. From Eq.(30), we obtained the smootliashed ling
average decay rate for the states with small decay (#ies rise shown in Fig. @). Thus, the explanation of the experi-
corresponding exponential time dependence is valid fomentally observed steps is clearly beyond the traditional de-
somewhat longer timgsThat is, in this case the product scription of resonance states. The steps are related to the
signal can, approximately, be described as bi-exponential. coherent excitation of a number of vibrational states, i.e.,

TABLE I. Energies and widths of resonance states; taken from Ref. 24.

E,(cm™) r,(cm?h E,(cm™?) I, (cm? E,(cm™Y) I, (cm?
30022.2 0.7236 30202.8 0.2582 30379.3 0.3076
30058.6 0.3354 30238.5 0.6081 30414.4 0.0803
30094.8 0.0946 30274.1 1.1053 30449.4 0.0015
30130.9 0.0013 30308.7 1.1476 30484.2 0.0477

30166.9 0.0558 30344.1 0.6607
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they cannot be accounted for by E80), but the more ac- Figure 4a) shows the signal according to E®3). Also
curate expression for the norm, E@4), must be used. In shown is the decay of the average populatioarm of the
Fig. 3, we have shown the results assuming that the offwave packetin the adiabatic well, which corresponds to
diagonal coupling elements are given by E2f) with 7,/ unimolecular decay. Thus, the signal decays faster than the
equal to 1(if these parameters are chosen to be smaller thanorm. In order to describe the decay of the signal, a single
1, the steps will be less pronounged exponential fit to the envelope function is shown on the fig-
The three parts of the figure show the signal for threeure. We denote this decay as an apparent decay, since the
different choices of the phases of. In (a) c,=|c,|, (b) decay of the signal envelope contains contributions from the
ch=exp(nm/2)|c,|, and (c) c,=exp(nm)|c,. These phase unimolecular decay as well as wave packet spreading. Figure
relations between the coefficients correspondgip, =0,  4(b) shows the autocorrelation functigqsee also Ref. 24
enn=(N—n")w/2, and ¢, =(n—n")7, respectively, in  This function is in the present case very similar to the signal
Eqg. (24). Since the energy levels in Table | are, essentially since the probe state is centered at the inner turning point of
equidistantly spaced, the last two choices translate into ththe well and, furthermore, it is highly localized.
phase shifts of a quarter and half a period, as observed in According to the discussion in connection with E88),
Figs. 3b) and 3c). In passing we note that in a harmonic it is possible to extract information on the time scale of wave
well, coherent states are formed by a superposition of eigerpacket spreading from the apparent depafyS(t) or C(t)]
states, where the square magnitude of the expansion coefind the unimolecular decay, at least in the case of a single
cients follow a Poisson distribution. The phase relation beunimolecular decay rate. We have applied this approach to
tween the expansion coefficients determine the location athe results shown in Fig.(d), in the following way: The
the coherent state in the well. With the usual signapparent decay has been divided by the decay of the average
conventiont? positive coefficients result in a coherent statepopulation. The result is shown in Fig(c} together with the
located at the right wall of the harmonic well whereas realcalculated signal where the unimolecular decay is artificially
coefficients with alternating sign result in a coherent stateeliminated. Excellent agreement is observed within the first
located at the left wall; a displacement corresponding to ongéen vibrational periods. Thus, from the unimolecular decay
half of an oscillation cycle. observed in the average product signal and the pump—probe
The figures show the observed periodic steps separategignal of the quasi-bound motion, we can gain insight into
by just under a picosecond. Furthermore, Fi@) 3hows, in
full agreement with the discussion in Sec. lll, that the signal
averaged over a vibrational period is identical to the signal
which is obtained when the coherent interference in the de-
cay of the resonance states is neglec¢teshed ling For the
purpose of making contact between reaction kinetics and the
pump—probe signal obtained in the quasi-bound region, we
consider in the following the average signal, that is, neglect
the oscillatory terms. We calculate, consequently, the signal
associated with the quasi-bound motion using 6§). We
choose the Franck—Condon window function to be a Gauss-
ian, Eq.(9), centered at the inner turning point of the adia-

batic well atE= 30250 cm?, with the width arising from a E“D
probe pulse with the same energy profile as quoted above for @
the expansion coefficients. Due to the steepness of the inner E
wall of the adiabatic well, this results in a very narrow win- £
dow function with a width~0.1 A. Within the Franck—
Condon window we can, therefore, approximate the reso-
nance statesp,(r), by Airy functions!!
125 (a) (b)
100
S 75
£ e —
3 50 0 1 2 3 4 5
3 Time (ps)
25
oL . J Ly | FIG. 3. Product signal for Nal. The dashed curve corresponds to the
30000 30100 30200 30300 30400 30500 situation where interference effects between the quasi-bound vibrational

states within the bandwidth of the pump laser are neglected(3}. The
Energy (cm'!) panels(a)—(c) correspond to different choices of the phases for the coeffi-
cients representing the initial state, in terms of the resonance states, see text.
FIG. 2. Distribution of lifetimes according to Table I. The lifetimes of the The arrows in(b) and(c) marks the shift in the induction time, defined as
states markeda) and (b) are off-scale; 4.1 and 3.5 ns, respectively. the first time products are observed.
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'*_3 FIG. 5. Decay of the recurrence areas in Fi¢p)4squares compared to
g 0.6 decay of the average population in the adiabatic well, 8 (dashed
g curve. For comparison, the decay of the envelope in Fig) & also drawn
g 04 (solid line).
< 0.2 (a2 S
10 \NWT’YMMMMAMM signall’ Here, the areas decayed by 6 ps, which was found to
© be similar to the fast rise time of free N#or a 310 nm
2 08 pump.
= .. .
3 From Table |, it is evident that the decay rates of Nal
@* 06 Topread ~ 9 PS fjepends strongly on the energy. This b_ehavior is als_o found
£ 4 in other systems. For example, detailed calculations on
g HO,—H+0,% show that, the decay rates of individual reso-
% 0.2 nance states can vary over several orders of magnitude even
=2 L d within a very narrow energy range. However, when the rates
0 0 10 were convoluted with a Gaussian with a width corresponding

to a few hundred crt, the rate constant agreed well with the
rate constant according to Rice—Ramsperger—Kassel—
FIG. 4. Pump-probe signal of the transition states. Pé@eshows the ~ Marcus(RRKM) theory. Thus, in many situations, knowing
(normalized signal according to our master equation, E88): The solid gl the individual decay rates is simply information which is

decay curve shows for comparison a single-exponential fit to the decay 0{00 detailed and an average rate constant suffices. To that
the signal, that is, the apparent decay of the signal. The dashed curve shows ’

the average decay of the population in the adiabatic well(ZR). Panel(b) end we Sh_owed in Eq42 how to eXtraCtl an average rate
shows the autocorrelation function, E§7): The behavior obtained in panel constant directly from the pump—probe signals.

(a) from our master equation is similarly reproduced by the auto-correlation Finally, for the unimolecular rate constant in systems

function. Panelc) shows the signal obtained when the unimolecular decay,. :
is artificially eliminated, noting the enhancement of the recurrences: The“ke Nal, it has been proposed that the rate constant can be

decay curve obtained is the ratio between the solid and dashed curves fXPressed as the frequency of the vibration times the non-
panel(a). This curve gives the time scale for wave packet spreading of 9 paadiabatic crossing probabiliﬁrl,“ where the probability is
(defingd as the time when the function has decayedd &ihd the agree-  eygluated according to the Landau—Zener formtfQ.It is
?Veer;;'gnsg:gﬁ;?;: t::p{ﬁ;';hpﬁﬂhtsspizaﬁﬁ(gg.'decay by the total rates of i, noting that this relation can be justified from a simple
analysis assuming a constgsmmal) reaction probabilityp,
in each period of vibration. In this case, the number of reac-
the spreading dynamics in the adiabatic well. tants,N;, aftern periods can be written
Compared to the product signal for the rise of Na, it is _ _
more difficult to extract information on the unimolecular de- = No(1~ P)"=Nge" P~ Noe ™, (49
cay rates from the pump-probe signal of the quasi-bounevhere we have takep to be relatively small such that In(1
motion. As shown above, the overall decay of the signal is—p)~—p, and that the number of periods corresponds, ap-
not a direct signature of the decay rates of the resonangeroximately, to the actual time divided by the period of os-
states. From the theoretical simulations of the sidfad.  cillation, n~t/T=wt. This (vp=Kk) is clearly not an expres-
4(a)], we calculate now the peak areas as a function of timesion for a genuine microcanonical rate constant. As shown
These areas are constant in the absence of unimolecular der Nal (Table ), the decay can depend strongly on the en-
cay, according to Eq40). We have plotted the areas in Fig. ergy of the populated states, and this cannot be explained
5. We observe that the areas decay, and they follow closelfrom the simple representation of the rate constant. Thus the
the decay of the average population of the adiabatic wellfrequency® as well as the Landau—Zener probability have a
Thus, the decay of the peak areas in the signal associatedlatively weak dependence on the energy. The proposed re-
with the quasi-bound motion gives the counterpart of thelation has indeed only been established for an average rate
multiexponential rise of the product signal. The decay of the(averaged over some energy rangea semiclassical limit!
peak areas has also been studied experimeritafiyom the If we calculate the rate constant according to Etp),
experimental signal, it was indeed concluded that the decaysing the vibrational period 0.94 ps, which gives the fre-
of the peak areas correspond to the rise of the produajuency»=1.06 10?s !, we obtain a rate constant in the
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range of 1.0610" to 1.60 10''s ! with a Landau—Zener ACKNOWLEDGMENTS
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