Supporting Information for:

Wafer-size and single-crystal MoSe₂ atomically thin films grown on GaN substrate for light emission and harvesting

Zuxin Chen[†], Huiqiang Liu[†], Xuechen Chen[†], Guang Chu[‡], Sheng Chu^{*†}, and Hang

Zhang[§]

^{*t*} State key Laboratory for Optoelectronics Materials and Technology Sun Yat-sen University, Guangzhou, 510275, China.

^{*‡*} School of Metallurgy and Environment, Central South University, Changsha, 410083, China.

[§] Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA, 91125. Institute of Engineering Thermophysics, Chinese Academy of Science, Beijing, China, 10090.

^oZ. Chen, H. Liu and X. Chen contributed equally.

*corresponding author: S. Chu (<u>chusheng@mail.sysu.edu.cn</u>)

1. SEM characterization of the MoSe₂/GaN samples from Phase 1-3.

Figure S1: SEM images at different distances from the source, showing the increasing

coverage of GaN surface. Scale bar: 2 μm

2. XPS characterization of the MoSe₂/GaN sample.

Figure S2: XPS survey and Mo- and Se-related peaks.

Four elements are present in the spectra acquired: Mo and Se from the CVD products, as well as Ga and N from the GaN substrate. Mo $3d_{3/2}$ and $3d_{5/2}$ core levels peaks are located at ~232 and 228.8 eV, respectively, while the peak of Se 3d is located around 54.0 eV, in agreement with the values obtained in other MoSe₂ systems.^{1,2} The peaks at 228.8 and 232 eV are attributed to the doublet Mo $3d_{5/2}$ and Mo $3d_{3/2}$ binding energies, respectively, for Mo⁴⁺. The peaks at 54.3 and 55.1 eV, corresponding to the Se $3d_{5/2}$ and Se $3d_{3/2}$ orbitals of divalent selenide ions (Se²⁻). The XPS analysis demonstrates that the obtained material is MoSe₂ without other impurities.

3. Raman spectrum of the Phase 1 MoSe₂/GaN sample.

Figure S3: Raman spectrum of the Phase 1 sample.

4. Raman spectrum of the GaN surface area in the Phase 2 sample.

Figure S4: Raman spectrum of point A in Figure. 3 a.

5. PL characterizations of MoSe₂ films with different phase.

Figure S5: PL spectra of the as-grown samples with different growth modes. We can

obviously observed that the PL peaks of Phase 1-3 are similar.

6. Raman spectrum of the GaN surface area in the Phase 2 sample.

Figure S6: Low-magnification TEM image of the FIB-processed

sample slice. MoSe₂ film exists between GaN substrate and the covered Pt.

7. MoSe₂ growth on p-type GaN on a sapphire substrate.

Figure S7: SEM images of the MoSe₂ grown on a p-type GaN surface.

8. UPS characterizations of MoSe₂ on a GaN substrate and on a p-type GaN film.

Figure S8: (a) UPS spectra of MoSe₂ (red) and the GaN substrate (black). (b) UPS spectra of MoSe₂ (black) and the p-type GaN substrate (red).

Referances

Gong, Y. J.; Liu, Z.; Lupini, A. R.; Shi, G.; Lin J. H.; Najmaei, S.; Lin, Z.; Elias, L.;
Berkdemir, A.; You, G.; Terrones, H.; Terrones, M.; Vajtai, R.; Pantelides, S. T.; Pennycook, S. J.;
Lou, J.; Zhou, W.; Ajayan, P. M. Band Gap Engineering and Layer-by-Layer Mapping of
Selenium-Doped Molybdenum Disulfide. *Nano Lett.* 2013, 14, 442-449.

Wang, X.; Gong, Y.; Shi, G.; Chow, W. L.; Keyshar, K.; Ye, G.; Liu, Z.; Ringe, E.; Tay,
B. K.; Ajayan, P. M. Chemical Vapor Deposition Growth of Crystalline Monolayer MoSe₂. *ACS Nano* 2014, 8, 5125-5131.