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Abstract 

This paper presents measurements obtained while performing 
fault simulations of MOS circuits modeled at the switch level. In 
this model the transistor structure of the circuit is represented 
explicitly as a network of charge storage nodes connected by 
bidirectional transistor switches. Since the logic model of the 
simulator closely matches the actual structure of MOS circuits, 
such faults as stuck-open and closed transistors as well as short 
and open-circuited wires can be simulated. By using concurrent 
simulation techniques, we obtain a performance level comparable 
to fault simulators using logic gate models. Our measurements 
indicate that fault simulation times grow as the product of the cir- 
cuit size and number of patterns, assuming the number of faults to 
be simulated is proportional to the circuit size. However, fault 
simulation times depend strongly on the rate at which the test 
patterns detect the faults. 

Concurrent simulation techniques [l] have long been used to en- 
hance the performance of gate.level fault simulators. Such 
programs simulate the good circuit in its entirety and keep track of 
how the behavjor of each faulty circuit differs from that of the 
good circuit by selectively simulating portions of the faulty circuit. 
It appears to the user as if many circuits are being simulated at 

once, but the computational effort is greatly reduced from that of 
serial simulation, in which each faulty circuit is simulated 

separately. Published performance figures for concurrent 
simulators [2] indicate that the fault simulation time for a large 
circuit with many faults remains within a factor of 6 of ;he simula- 

tion time for the fault-free circuit alone. 

There has been a growing recognition within the testing 

community [3] that logic gate simulators do not adequately model 
the behavior of MOS circuits, especially in the presence of such 
nonclassical faults as stuck-open and closed transistors, and 
short and open-circuited wires. These faults can cause even a 

simple logic gate to become a seemingly complex sequential 
device. As an alternative, researchers have suggested modeling 
MOS circuits at a level of detail that more accurately represents 
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their electrical characteristics [4]. 

We recently implemented a fault simulator for MOS digital 

circuits [5] based on the switch-level model, [S] with the transistor 
structure of the circuit represented explicitly, but with each tran- 

sistor modeled in a highly idealized way. This approach has 
proved successful for logic simulation in programs such as MOS- 

SIM II, [S] because such properties as the bidirectional nature of 
MOS transistors and the ability of nodes to store charge are 

modeled explicitly, rather than by some artificial translation into 
logic gates. Unlike the timeconsuming algorithms used by circuit 
simulators, switch-level simulators model the circuit in a suf- 

ficiently simplified way that they operate at speeds comparable 
with conventional logic gate simulators. The switch-level logic 
model is well suited for modeling a variety of failures in MOS cir, 
cuits in a reasonably realistic way, because many faltki can be 
viewed as creating new switch-level networks which differ from 
the switch-level representation of the good circuit. Hence, while 
the switch-level model has proved successful for logic simulation, 
It seems especially attractive for fault simulation. 

Our program FMOSSIM utilizes concurrent simulation techniques 
to minimize the amount of time spent simulating each faulty cfr- 
cuit. In contrast to other concurrent faultsimufators for MOS, [7] 
our simulator places no restrictions on the topology of the tran- 
sistor networks. Adapting the concurrent technique to such a 

switch-level simulator required major changes to the data struc- 

tures and method of processing events. With such a program, 
many questions arise regarding its performance, since a fault 
simulator must achieve very high performance if it is to be applied 
to circuits of VLSI complexity. In particular, we would like to 

answer such questions as: 

l How are fault simulation times affected by the circuit 
size, number of test patterns, and number of faults? 

l How can the properties of the test patterns affect fault 
simulation times? 

. How would fault simulation times be affected if we 
simulate only a random sample of the possible faults? 
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We measured the performance of FMOSSIM while fault simulating 
circuits of moderate complexity (up to 1148 transistors.) We will 

present the details of this investigation in this paper. Cur most 

important findings are sLimmarized as follows: 

l Fault simulation times grow as the product of the cir- 
cuit size and the number of patterns, assuming the 
number of faults grows with the circuit size. This 
represents a significant improvement over the perfor. 
mance of a serial fault simulator, which requires time 
proportional to the product of the circuit size, number 
of patterns, and nblmber of faults. 

l Fault simulation times are considerably better for test 
patterns that detec:t the most severe faults quickly. 

l Under random fault sampling, the simulation time 
grows linearly with the sample size. 

2. Network Model 

FMOSStM implements the same network model as the logic 

simulator MOSSIM II [6]. This model and its characteristics have 
been discussed in detail elsewhere, and we will only describe it 
briefly here. A switch.tevel network consists of a set of nodes 
connected by a set of transistors. No restrictions are placed on 
how the nodes and the transistors are interconnected. Each node 
has a state 0, 1, or X, where 0 and 1 represent low and high vol- 
tages, res;cctively. The X state represents an indeterminate vott- 
age arising from an uninitialized node, from a shortcircuit, or from 

improper charge sharing. 

Each node is classified as either an input node or a storage node. 
An input node provides a strong signal to the network, as does a 

voltage source in an electrical circuit. Its state is not affected by 
the actions of the network. Examples include the power and 
ground nodes Vdd and Cnd, which act as constant sources of the 
states 1 and 0, respechvely, as wet1 as any clock or data inputs. 
The state of a storage node is determined by the operation of the 
network. A storage node holds its state when not connected to 
input nodes, much as a capacitor in an electrical network. To 
model the effects of charge sharing, each storage node is as 

signed a discrete size (from a small set of possible values), where 
a larger storage node is assumed to have much greater 
capacitance than a smaller one. Most circuits can’ be modeled 

with just two node sizes, with high capacitances nodes such as 
busses assigned larger r.ize values than all other nodes. 

A transistor is a device with terminals labeled gate, source, and 

drain. No distinction is made between the source and drain con- 
nections - each transistor is symmetric and bidirectional. Tran- 

sistors can be either n-type, p-fype, or d-type so that both nMOS 

and CMOS circuits can be modeled. A d-type transistor cor- 

responds to a negative !:hreshold depletion mode device. A tran- 

sistor acts as a resistive switch connecting or disconnecting its 

source and drain nodes according to its type and the state of its 
gate node, as shown in Table 1. Transistor states 0 and 1 

represent open (nonconducting) and closed (fully conducting) 

conditions, respectively. The X state represents an indeterminate 

condition between open and closed, inclusive. 

gate state n-type P-type d-type 
0 0 1 1 
1 1 0 1 
X X X 1 

Table 1 Transistor State as Functicv~ of Gate Node State 

To model ratioed circuits, each transistor is assigned a discrete 
strength from a small set of values, where a stronger transistor is 
assumed to have much greater conduceance than a weaker one. 

The total number of strengths required depends on the circuit to 
be modeled. Most CMOS circuits do not utilize ratioed logic and 
hence can be modeled with just one transistor strength. Most 
nMOS circuits require only two strengths, with pull-up loads as 

signed a weaker strength than all other transistors. However, we 
can introduce additional strengths to model more peculiar circuit 
structures or to model fault effects. 

3 Fault Infection L- 

The switchJevef model can represent the behavior of a MOS cir. 
cuit in the presence of a variety of node, transistor, and wire faults. 

FMOSSIM directly implements both ncde and !ransistor faults, 
where a node fault causes the node to behave as an input node 
set to the specified state, while a transistor fault causes the tran- 
sistor to be permanently stuck-open or stuck-closed, without 
changing its strength. Other fault types can be injected by insert- 

ing extra fault transistors in the network, much like the method 
proposed by Lightner and Hachtel. [S] For example, a short circuit 
can be represented by a transistor of very high strength between 
the two nodes that is set to 1 in the faulty circuit and 0 in the good 
circuit. Similarly, an open circuit can be represented by splitting a 
node into two parts connected by a transistor of very high strength 
where this transistor is set to 1 in the good circuit and 0 in the 
faulty circuit. Most significantly, injecting these faults requires no 

modeling capabilities beyond those already possessed by the 
switch-level model. 

&Concurrent Simulation 

Our switch-level algorithm computes the behavior of a circuit for 

each change in network inputs by repeatedly computing the 

steady stafe response [6] of the network until a stable state is 
reached. Each computation of the steady state response involves 

setting the transistors according to the states of their gate nodes 

and determining the new states that would appear on the storage 

nodes due to the connections to input nodes and to other storage 

nodes. To exploit the locality of activity in a logic circuit, only 
node states in the vicinify of a perfurbed node are computed, 

where a node is said to be perturbed if it 1s the source or drain of B 
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transistor that has changed state, or if it is connected by a con- 
ducting (either 1 or X) transistor to an input node that has 

changed state. The vicinity of a node consists of the set of all 

storage nodes connected by paths of conducting transistors that 
do not pass through input nodes. This definition exploits the 
dynamic locality in the network where the source and drain of a 
transistor in the 0 state are considered to be electrically isolated. 
In contrast, earlier switch.level simulators [9] exploited only the 

static locality in the where the network was partitioned only ac. 

cording to its DC-connected components. Typically, a vicinity 
contains only a few nodes, and hence activity remains highly lo. 

calized. 

The scheduling of activities in a switch-level simulator proceeds 

much like that in an event-driven functional level simulator- the 

simulation of a logic element causes one or more nodes to change 
state, and the simulator schedules activities for those logic ele- 

ments affected by these changing states. In a switch-level 
simulator, however, the “logic elements” are transistor vicinities, 
i.e. sets of nodes connected by transistors in the 1 or X state. The 

boundaries between these logic elements depend on the current 
state of the network and change during the course of the simula. 

tiqn. This property presents the major challenge to applying con- 
current simulation techniques - the boundaries between the logic 
elements can be different in the different circuits being simulated. 

In the conventional form of the concurrent algorithm, [l] a list is 
maintained for each logic element indicating the states of inputs in 
the fault-free circuit and in each faulty circuit for which the states 
differ from those of the fault-free circuit. The scheduling of events 
proceeds as with a conventional logic simulator, but the process. 
ing of an event involves computing the outputs of the element for 
every input combination on the list. Such an approach will not 

work with our switch-level fault simulator, because of the dynamic 
and data-dependent nature of the logic element boundaries. In. 
stead, we maintain a separate state list for each node, containing 
records of the form <i,~,>~ indicating that in circuit i (each circuit is 

represented by an integer ID with the good circuit having ID 0), 
this node has state si. Such records are maintained only for the 
good circuit, and for those circuits isuch that si # s,,. Events are 

scheduled on a circuit-by-circuit basis. That is, an “event” 

specifies both a node and a circuit indicating that the state of this 

node must be recomputed in this particular circuit. To simulate a 
single time step the program first simulates all activities for the 
good circuit. These simulations can create additional events for 

the faulty circuits, because a node in a faulty circuit that previously 
had the same state as the good circuit may now be different. Fol. 
lowing the good circuit simulation, the program simulates the ac. 

tivities for each faulty circuit in turn. By simulating each circuit 

separately, we can exploit the locality of activity in the individual 

circuits even though this locality is data-dependent. By keeping 
the state and event Lists sorted according to the circuit ID’s, and 

maintaining “shadow pointers” pointing to the current positions 

on the state lists, we can minimize the time spent searching these 

lists. 

z Performance Results 

To evaluate the performance of FMOSSIM, we simulated two 

dynamic RAM circuits for different numbers of faults, and different 
test sequences. All measurements were taken on a VAX 11/780 
running Berkeley 4.2 Unix for a version of the program written in 

C. The first circuit, RAM64, contains 378 transistors and 229 
nodes, while the second, RAM256, contains 1148 transistors and 

695 nodes. The circuits incorporate a variety of MOS structures 
such as logic gates, bidirectional pass transistors, dynamic 

latches, precharged busses, and three-transistor dynamic memory 
elements. Memory circuits were chosen because they could 

easily be scaled in size, and because they could be fully tested by 
test sequences consisting of special tests of the control and 
peripheral logic followed by a marching test [lo] of the memory 
array. In terms of the performance of a switch.levef simulator, 
these circuits provide rather difficult test cases, because the bit 
lines act as large global busses, and hence activity is not well 

localized. When faults such as stuck-at-one control lines occur, 
the locality is further reduced. Furthermore, while memory circuits 
exhibit a high degree of controllability, their observability is low, 
because there is only a single output. 

The circuits were simulated for randomly chosen subsets of the 
following fault classes: single storage nodes stuck-at-zero, single 
storage nodes stuck-at-one, and single pairs of adjacent bit lines 
shorted together. To validate the program, we also simulated 
other faults, including stuck-open and stuck-closed transistors. 
The performance characteristics for such faults did not differ sig. 

nificantly from those of node faults. 

Figure 1 illustrates the typical behavior of FMOSSIM when simulat. 
ing a large number of faults. It shows the data for a simulation of 
RAM64 with 428 faults over a sequence of 407 patterns consisting 
of 7 patterns to test the control and peripheral logic, 40 patterns to 
perform a marching test of the row select logic, 40 patterns to 
perform a marching test of the column select and bit line logic, 
and 320 patterns to perform a marching Pest of the memory array. 
Each “pattern” here actually represents a sequence of 6 input 

settings to cycle the clocks. Any time the simulation of a faulty 

circuit produces a result on the output data pin different than the 
good circuit simulation, the fault is considered detected, and the 

simulation of that circuit is dropped. 

The rising curve in Figure 1 indicates the cumulative number of 

faults detected as the simulation proceeds. The falling curve in. 
dicates the CPU time required to simulate each pattern. This 

curve divides into two parts: the “head” consists of the first 87 

patterns during which all faults in the control and bus logic are 

detected, followed by the “tail” during which the faults in the 

memory array are detected. The simulation time starts at 45 
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Faults Detected Seconds/Pattern Faults Detected Seconds/Pattern 

i” 

Patterns Patterns 

Fig. 1 Test Seqlrence 1 for RAMS? Fig. 2 Tat Sequence 2 for RAM0 

seconds per pattern while the circuit is initialized and major faults 
such as frozen clock lines are being simulated. Those faults that 
create behavior vastly different from that of the good circuit and 
hence require the most additional effort to simulate are detected 

quickly. Once these faults are dropped the performance improves 
markedly. During the tail portion the simulator runs on average 
just 3 times slower than it would to simulate only the good circuit, 
even though as many as 190 circuits are being simulated simul- 
taneously. The faulty circuits remaining during this portion be- 

have much like the good circuit, because they contain only bit 
errors in the memory, which have no effect unless the faulty bit is 
selected. The entire fault simulation requires 21.9 minutes of CPU 
time, with 71% of the time consumed during the first 87 patterns. 

In contrast, the simulation of the good circuit alone requires 2.7 

minutes, and a serial fault simulation in which each faulty circuit is 
simulated individually until it produces an output different from 
that of the good machine would require 404 minutes (6.7 hours).** 

This performance ratio of 18 for concurrent versus serial simula- 

tion is gained largely during the tail end of the simulation, when 
many faults can be simulated concurrently at little additional cost. 

*‘All serial tault simulation times were estimated by summing over all faults the 
number of patterns required 10 delect lhr? fault times lht? average time to simulate 
the good circuit for 1 pattern. 

e 

Figure 2 illustrates how the choice of test sequence can affect the 
performance of the simulator. This simulation is the same as be- 
fore, except that the patterns to test the row and column logic 
were omitted, leaving a total of 327 patterns. As a consequence, 

except for the 65 faults detected during the first seven patterns, all 
other faults are detected slowly as the marching test of the 
memory array proceeds, including faults m the address decoding 

and bus control logic. The time per pattern drops more slowly 
than before, because many faults that cause behavior much dif- 
ferent from that of the good machine remain undetected for a long 
time. This simulation required 49 minutes of CPU time, even 
though the test sequence is shorter than before. Serial simulation, 
on the other hand, would require 448 minutes (7.5 hours), and 
hence concurrent simulation has a performance ratio of only 9, 

due largely to the lack of a tail end effect. This result shows that 

the shortest test sequence for a set of faults may not give the 
shortest simulation time, and that the penalty is worse for concur- 

rent simulation than for serial. On the other hand, most test en- 

gineers look for a test sequence that detects many faults quickly, 
and this helps the concurrent simulator, 

To see how the simulation time scales with the size of the circuit, 

we simulated RAM256 for a test sequence consisting of 1447 pat. 
terns similar to the first test sequence applied to HAM64 Simulat- 

ing the good circuit alone requires 25.3 minutes for this sequence. 
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To run the test for all 1382 possible single stuck-at and single bus 

short faults, concurrent simulation requires a total of 202 minutes 

(3.4 hours), while serial simulation would require 15,169 minutes 

(IO.4 days!) Comparing these results to the time required for 
RAM64, we see that both the time to simulate the good circuit 
alone and the time for concurrent simulation has scaled up by a 

factor of 9, while the time for serial simulation has scaled by a 
factor of 37. This result makes concurrent simulation seem in- 
creasingly attractive as circuits grow larger. It shows that concur- 
rent simulation time scales as the size of the circuit times the num. 

ber of patterns, assuming the number of faults is proportional to 
the circuit size. Serial simulation time, on the other hand, scales 

as the product of all three factors. 

Seconds/Pattern 

Serial concurrent 

1000 10 T 

1 600 6 

600 -- 6 
concurrent 

400 _- 4 

I 

0 500 

Faults 
1000 1600 

Fig. 3 Avg. Time per Pattern vs. Number of Faults for RAM256 

Figure 3 shows the results of simulating RAM256 for different 
nurnbers of randomly selected faults, where times are measured in 
the average number of seconds per clock cycle over the entire 
length of the sfmulation. Note that the scale for serial simulation is 

100 times that for concurrent. Both concurrent and serial simula- 
tinn show a linear dependence on the number of faults, with serial 

being 85 times slower than concurrent. The linear growth of con- 
current simulation can be viewed as both good and bad. On one 
hand, it shows that we pay no penalty for the overhead of main- 

taining the node states as lists that must be searched to find the 
states for a given circuit. On the other hand, it shows ttiat our 

simulator exploits only the commonality between each faulty cir- 
cuit and the good circuit. In many cases, two faulty circuits will 
behave more nearly like each other than like the good circuit, but 

we do not exploit Ihis. Such a mechanism, if implemented without 
excessive overhead, could improve the performance even further. 

S. Conclusion 

Our experience with FMOSSIM has shown that it is a very useful 
tcol for developing test sequences. Even when developing a test 

for a snlall section of an integrated circuit (such as an ALU or a 

rcgirtcr array), the fault simulator provides information that is hard 

to obtain by any other means. It quickly directs the designer to 

those areas of the circuit that require further tests. For example, 

in developing test sequences for the memory design described 

previously, we discovered that a simple marching test provided 
high coverage in the memory array itself, but that testing the con- 

trol logic and peripheral circuits such as the input and output 
latches was more difficult. 

As the size of a circuit increases, both good circuit and concurrent 
fault simulation times scale quadratically, because both the time 
per pattern and the number of patterns scale linearly. Serial 
simulation, on the other hand, scales cubically, because the num- 
ber of faults also increases. FMOSSIM provides this performance 
while also providing a more accurate model of the circuits, espe- 
cially when realistic faults are present. 
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