
Performance Evaluation of FMOSSIM,
a Concurrent Switch-Level Fault Simulator’

Randal E. Bryant Michael D. Schuster
Carnegie-Melfon University California Institute of Technology
Dept. of Computer Science Computer Science 256-60

Pittsburgh, PA 15213 Pasadena, CA 91125

Abstract

This paper presents measurements obtained while performing
fault simulations of MOS circuits modeled at the switch level. In
this model the transistor structure of the circuit is represented
explicitly as a network of charge storage nodes connected by
bidirectional transistor switches. Since the logic model of the
simulator closely matches the actual structure of MOS circuits,
such faults as stuck-open and closed transistors as well as short
and open-circuited wires can be simulated. By using concurrent
simulation techniques, we obtain a performance level comparable
to fault simulators using logic gate models. Our measurements
indicate that fault simulation times grow as the product of the cir-
cuit size and number of patterns, assuming the number of faults to
be simulated is proportional to the circuit size. However, fault
simulation times depend strongly on the rate at which the test
patterns detect the faults.

Concurrent simulation techniques [l] have long been used to en-
hance the performance of gate.level fault simulators. Such
programs simulate the good circuit in its entirety and keep track of
how the behavjor of each faulty circuit differs from that of the
good circuit by selectively simulating portions of the faulty circuit.
It appears to the user as if many circuits are being simulated at

once, but the computational effort is greatly reduced from that of
serial simulation, in which each faulty circuit is simulated

separately. Published performance figures for concurrent
simulators [2] indicate that the fault simulation time for a large
circuit with many faults remains within a factor of 6 of ;he simula-

tion time for the fault-free circuit alone.

There has been a growing recognition within the testing

community [3] that logic gate simulators do not adequately model
the behavior of MOS circuits, especially in the presence of such
nonclassical faults as stuck-open and closed transistors, and
short and open-circuited wires. These faults can cause even a

simple logic gate to become a seemingly complex sequential
device. As an alternative, researchers have suggested modeling
MOS circuits at a level of detail that more accurately represents

*This research was supported at Callcch by the IBM Corporation and by the
Delensa Mvmrced Research Proiects Agency, ARPA Order 3771. Michael
Schuster was supported in part by a Sell Labwalorics Ph.D. Scholarship.

their electrical characteristics [4].

We recently implemented a fault simulator for MOS digital

circuits [5] based on the switch-level model, [S] with the transistor
structure of the circuit represented explicitly, but with each tran-

sistor modeled in a highly idealized way. This approach has
proved successful for logic simulation in programs such as MOS-

SIM II, [S] because such properties as the bidirectional nature of
MOS transistors and the ability of nodes to store charge are

modeled explicitly, rather than by some artificial translation into
logic gates. Unlike the timeconsuming algorithms used by circuit
simulators, switch-level simulators model the circuit in a suf-

ficiently simplified way that they operate at speeds comparable
with conventional logic gate simulators. The switch-level logic
model is well suited for modeling a variety of failures in MOS cir,
cuits in a reasonably realistic way, because many faltki can be
viewed as creating new switch-level networks which differ from
the switch-level representation of the good circuit. Hence, while
the switch-level model has proved successful for logic simulation,
It seems especially attractive for fault simulation.

Our program FMOSSIM utilizes concurrent simulation techniques
to minimize the amount of time spent simulating each faulty cfr-
cuit. In contrast to other concurrent faultsimufators for MOS, [7]
our simulator places no restrictions on the topology of the tran-
sistor networks. Adapting the concurrent technique to such a

switch-level simulator required major changes to the data struc-

tures and method of processing events. With such a program,
many questions arise regarding its performance, since a fault
simulator must achieve very high performance if it is to be applied
to circuits of VLSI complexity. In particular, we would like to

answer such questions as:

l How are fault simulation times affected by the circuit
size, number of test patterns, and number of faults?

l How can the properties of the test patterns affect fault
simulation times?

. How would fault simulation times be affected if we
simulate only a random sample of the possible faults?

22nd Design Automation Conference

0738-100X/85/0715$01.00@ 1985 IEEE
Paper 43.2

715

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216245141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We measured the performance of FMOSSIM while fault simulating
circuits of moderate complexity (up to 1148 transistors.) We will

present the details of this investigation in this paper. Cur most

important findings are sLimmarized as follows:

l Fault simulation times grow as the product of the cir-
cuit size and the number of patterns, assuming the
number of faults grows with the circuit size. This
represents a significant improvement over the perfor.
mance of a serial fault simulator, which requires time
proportional to the product of the circuit size, number
of patterns, and nblmber of faults.

l Fault simulation times are considerably better for test
patterns that detec:t the most severe faults quickly.

l Under random fault sampling, the simulation time
grows linearly with the sample size.

2. Network Model

FMOSStM implements the same network model as the logic

simulator MOSSIM II [6]. This model and its characteristics have
been discussed in detail elsewhere, and we will only describe it
briefly here. A switch.tevel network consists of a set of nodes
connected by a set of transistors. No restrictions are placed on
how the nodes and the transistors are interconnected. Each node
has a state 0, 1, or X, where 0 and 1 represent low and high vol-
tages, res;cctively. The X state represents an indeterminate vott-
age arising from an uninitialized node, from a shortcircuit, or from

improper charge sharing.

Each node is classified as either an input node or a storage node.
An input node provides a strong signal to the network, as does a

voltage source in an electrical circuit. Its state is not affected by
the actions of the network. Examples include the power and
ground nodes Vdd and Cnd, which act as constant sources of the
states 1 and 0, respechvely, as wet1 as any clock or data inputs.
The state of a storage node is determined by the operation of the
network. A storage node holds its state when not connected to
input nodes, much as a capacitor in an electrical network. To
model the effects of charge sharing, each storage node is as

signed a discrete size (from a small set of possible values), where
a larger storage node is assumed to have much greater
capacitance than a smaller one. Most circuits can’ be modeled

with just two node sizes, with high capacitances nodes such as
busses assigned larger r.ize values than all other nodes.

A transistor is a device with terminals labeled gate, source, and

drain. No distinction is made between the source and drain con-
nections - each transistor is symmetric and bidirectional. Tran-

sistors can be either n-type, p-fype, or d-type so that both nMOS

and CMOS circuits can be modeled. A d-type transistor cor-

responds to a negative !:hreshold depletion mode device. A tran-

sistor acts as a resistive switch connecting or disconnecting its

source and drain nodes according to its type and the state of its
gate node, as shown in Table 1. Transistor states 0 and 1

represent open (nonconducting) and closed (fully conducting)

conditions, respectively. The X state represents an indeterminate

condition between open and closed, inclusive.

gate state n-type P-type d-type
0 0 1 1
1 1 0 1
X X X 1

Table 1 Transistor State as Functicv~ of Gate Node State

To model ratioed circuits, each transistor is assigned a discrete
strength from a small set of values, where a stronger transistor is
assumed to have much greater conduceance than a weaker one.

The total number of strengths required depends on the circuit to
be modeled. Most CMOS circuits do not utilize ratioed logic and
hence can be modeled with just one transistor strength. Most
nMOS circuits require only two strengths, with pull-up loads as

signed a weaker strength than all other transistors. However, we
can introduce additional strengths to model more peculiar circuit
structures or to model fault effects.

3 Fault Infection L-

The switchJevef model can represent the behavior of a MOS cir.
cuit in the presence of a variety of node, transistor, and wire faults.

FMOSSIM directly implements both ncde and !ransistor faults,
where a node fault causes the node to behave as an input node
set to the specified state, while a transistor fault causes the tran-
sistor to be permanently stuck-open or stuck-closed, without
changing its strength. Other fault types can be injected by insert-

ing extra fault transistors in the network, much like the method
proposed by Lightner and Hachtel. [S] For example, a short circuit
can be represented by a transistor of very high strength between
the two nodes that is set to 1 in the faulty circuit and 0 in the good
circuit. Similarly, an open circuit can be represented by splitting a
node into two parts connected by a transistor of very high strength
where this transistor is set to 1 in the good circuit and 0 in the
faulty circuit. Most significantly, injecting these faults requires no

modeling capabilities beyond those already possessed by the
switch-level model.

&Concurrent Simulation

Our switch-level algorithm computes the behavior of a circuit for

each change in network inputs by repeatedly computing the

steady stafe response [6] of the network until a stable state is
reached. Each computation of the steady state response involves

setting the transistors according to the states of their gate nodes

and determining the new states that would appear on the storage

nodes due to the connections to input nodes and to other storage

nodes. To exploit the locality of activity in a logic circuit, only
node states in the vicinify of a perfurbed node are computed,

where a node is said to be perturbed if it 1s the source or drain of B

Paper 43.2
716

transistor that has changed state, or if it is connected by a con-
ducting (either 1 or X) transistor to an input node that has

changed state. The vicinity of a node consists of the set of all

storage nodes connected by paths of conducting transistors that
do not pass through input nodes. This definition exploits the
dynamic locality in the network where the source and drain of a
transistor in the 0 state are considered to be electrically isolated.
In contrast, earlier switch.level simulators [9] exploited only the

static locality in the where the network was partitioned only ac.

cording to its DC-connected components. Typically, a vicinity
contains only a few nodes, and hence activity remains highly lo.

calized.

The scheduling of activities in a switch-level simulator proceeds

much like that in an event-driven functional level simulator- the

simulation of a logic element causes one or more nodes to change
state, and the simulator schedules activities for those logic ele-

ments affected by these changing states. In a switch-level
simulator, however, the “logic elements” are transistor vicinities,
i.e. sets of nodes connected by transistors in the 1 or X state. The

boundaries between these logic elements depend on the current
state of the network and change during the course of the simula.

tiqn. This property presents the major challenge to applying con-
current simulation techniques - the boundaries between the logic
elements can be different in the different circuits being simulated.

In the conventional form of the concurrent algorithm, [l] a list is
maintained for each logic element indicating the states of inputs in
the fault-free circuit and in each faulty circuit for which the states
differ from those of the fault-free circuit. The scheduling of events
proceeds as with a conventional logic simulator, but the process.
ing of an event involves computing the outputs of the element for
every input combination on the list. Such an approach will not

work with our switch-level fault simulator, because of the dynamic
and data-dependent nature of the logic element boundaries. In.
stead, we maintain a separate state list for each node, containing
records of the form <i,~,>~ indicating that in circuit i (each circuit is

represented by an integer ID with the good circuit having ID 0),
this node has state si. Such records are maintained only for the
good circuit, and for those circuits isuch that si # s,,. Events are

scheduled on a circuit-by-circuit basis. That is, an “event”

specifies both a node and a circuit indicating that the state of this

node must be recomputed in this particular circuit. To simulate a
single time step the program first simulates all activities for the
good circuit. These simulations can create additional events for

the faulty circuits, because a node in a faulty circuit that previously
had the same state as the good circuit may now be different. Fol.
lowing the good circuit simulation, the program simulates the ac.

tivities for each faulty circuit in turn. By simulating each circuit

separately, we can exploit the locality of activity in the individual

circuits even though this locality is data-dependent. By keeping
the state and event Lists sorted according to the circuit ID’s, and

maintaining “shadow pointers” pointing to the current positions

on the state lists, we can minimize the time spent searching these

lists.

z Performance Results

To evaluate the performance of FMOSSIM, we simulated two

dynamic RAM circuits for different numbers of faults, and different
test sequences. All measurements were taken on a VAX 11/780
running Berkeley 4.2 Unix for a version of the program written in

C. The first circuit, RAM64, contains 378 transistors and 229
nodes, while the second, RAM256, contains 1148 transistors and

695 nodes. The circuits incorporate a variety of MOS structures
such as logic gates, bidirectional pass transistors, dynamic

latches, precharged busses, and three-transistor dynamic memory
elements. Memory circuits were chosen because they could

easily be scaled in size, and because they could be fully tested by
test sequences consisting of special tests of the control and
peripheral logic followed by a marching test [lo] of the memory
array. In terms of the performance of a switch.levef simulator,
these circuits provide rather difficult test cases, because the bit
lines act as large global busses, and hence activity is not well

localized. When faults such as stuck-at-one control lines occur,
the locality is further reduced. Furthermore, while memory circuits
exhibit a high degree of controllability, their observability is low,
because there is only a single output.

The circuits were simulated for randomly chosen subsets of the
following fault classes: single storage nodes stuck-at-zero, single
storage nodes stuck-at-one, and single pairs of adjacent bit lines
shorted together. To validate the program, we also simulated
other faults, including stuck-open and stuck-closed transistors.
The performance characteristics for such faults did not differ sig.

nificantly from those of node faults.

Figure 1 illustrates the typical behavior of FMOSSIM when simulat.
ing a large number of faults. It shows the data for a simulation of
RAM64 with 428 faults over a sequence of 407 patterns consisting
of 7 patterns to test the control and peripheral logic, 40 patterns to
perform a marching test of the row select logic, 40 patterns to
perform a marching test of the column select and bit line logic,
and 320 patterns to perform a marching Pest of the memory array.
Each “pattern” here actually represents a sequence of 6 input

settings to cycle the clocks. Any time the simulation of a faulty

circuit produces a result on the output data pin different than the
good circuit simulation, the fault is considered detected, and the

simulation of that circuit is dropped.

The rising curve in Figure 1 indicates the cumulative number of

faults detected as the simulation proceeds. The falling curve in.
dicates the CPU time required to simulate each pattern. This

curve divides into two parts: the “head” consists of the first 87

patterns during which all faults in the control and bus logic are

detected, followed by the “tail” during which the faults in the

memory array are detected. The simulation time starts at 45

Paper 43.2
717

Faults Detected Seconds/Pattern Faults Detected Seconds/Pattern

i”

Patterns Patterns

Fig. 1 Test Seqlrence 1 for RAMS? Fig. 2 Tat Sequence 2 for RAM0

seconds per pattern while the circuit is initialized and major faults
such as frozen clock lines are being simulated. Those faults that
create behavior vastly different from that of the good circuit and
hence require the most additional effort to simulate are detected

quickly. Once these faults are dropped the performance improves
markedly. During the tail portion the simulator runs on average
just 3 times slower than it would to simulate only the good circuit,
even though as many as 190 circuits are being simulated simul-
taneously. The faulty circuits remaining during this portion be-

have much like the good circuit, because they contain only bit
errors in the memory, which have no effect unless the faulty bit is
selected. The entire fault simulation requires 21.9 minutes of CPU
time, with 71% of the time consumed during the first 87 patterns.

In contrast, the simulation of the good circuit alone requires 2.7

minutes, and a serial fault simulation in which each faulty circuit is
simulated individually until it produces an output different from
that of the good machine would require 404 minutes (6.7 hours).**

This performance ratio of 18 for concurrent versus serial simula-

tion is gained largely during the tail end of the simulation, when
many faults can be simulated concurrently at little additional cost.

*‘All serial tault simulation times were estimated by summing over all faults the
number of patterns required 10 delect lhr? fault times lht? average time to simulate
the good circuit for 1 pattern.

e

Figure 2 illustrates how the choice of test sequence can affect the
performance of the simulator. This simulation is the same as be-
fore, except that the patterns to test the row and column logic
were omitted, leaving a total of 327 patterns. As a consequence,

except for the 65 faults detected during the first seven patterns, all
other faults are detected slowly as the marching test of the
memory array proceeds, including faults m the address decoding

and bus control logic. The time per pattern drops more slowly
than before, because many faults that cause behavior much dif-
ferent from that of the good machine remain undetected for a long
time. This simulation required 49 minutes of CPU time, even
though the test sequence is shorter than before. Serial simulation,
on the other hand, would require 448 minutes (7.5 hours), and
hence concurrent simulation has a performance ratio of only 9,

due largely to the lack of a tail end effect. This result shows that

the shortest test sequence for a set of faults may not give the
shortest simulation time, and that the penalty is worse for concur-

rent simulation than for serial. On the other hand, most test en-

gineers look for a test sequence that detects many faults quickly,
and this helps the concurrent simulator,

To see how the simulation time scales with the size of the circuit,

we simulated RAM256 for a test sequence consisting of 1447 pat.
terns similar to the first test sequence applied to HAM64 Simulat-

ing the good circuit alone requires 25.3 minutes for this sequence.

Paper 43.2
718

To run the test for all 1382 possible single stuck-at and single bus

short faults, concurrent simulation requires a total of 202 minutes

(3.4 hours), while serial simulation would require 15,169 minutes

(IO.4 days!) Comparing these results to the time required for
RAM64, we see that both the time to simulate the good circuit
alone and the time for concurrent simulation has scaled up by a

factor of 9, while the time for serial simulation has scaled by a
factor of 37. This result makes concurrent simulation seem in-
creasingly attractive as circuits grow larger. It shows that concur-
rent simulation time scales as the size of the circuit times the num.

ber of patterns, assuming the number of faults is proportional to
the circuit size. Serial simulation time, on the other hand, scales

as the product of all three factors.

Seconds/Pattern

Serial concurrent

1000 10 T

1 600 6

600 -- 6
concurrent

400 _- 4

I

0 500

Faults
1000 1600

Fig. 3 Avg. Time per Pattern vs. Number of Faults for RAM256

Figure 3 shows the results of simulating RAM256 for different
nurnbers of randomly selected faults, where times are measured in
the average number of seconds per clock cycle over the entire
length of the sfmulation. Note that the scale for serial simulation is

100 times that for concurrent. Both concurrent and serial simula-
tinn show a linear dependence on the number of faults, with serial

being 85 times slower than concurrent. The linear growth of con-
current simulation can be viewed as both good and bad. On one
hand, it shows that we pay no penalty for the overhead of main-

taining the node states as lists that must be searched to find the
states for a given circuit. On the other hand, it shows ttiat our

simulator exploits only the commonality between each faulty cir-
cuit and the good circuit. In many cases, two faulty circuits will
behave more nearly like each other than like the good circuit, but

we do not exploit Ihis. Such a mechanism, if implemented without
excessive overhead, could improve the performance even further.

S. Conclusion

Our experience with FMOSSIM has shown that it is a very useful
tcol for developing test sequences. Even when developing a test

for a snlall section of an integrated circuit (such as an ALU or a

rcgirtcr array), the fault simulator provides information that is hard

to obtain by any other means. It quickly directs the designer to

those areas of the circuit that require further tests. For example,

in developing test sequences for the memory design described

previously, we discovered that a simple marching test provided
high coverage in the memory array itself, but that testing the con-

trol logic and peripheral circuits such as the input and output
latches was more difficult.

As the size of a circuit increases, both good circuit and concurrent
fault simulation times scale quadratically, because both the time
per pattern and the number of patterns scale linearly. Serial
simulation, on the other hand, scales cubically, because the num-
ber of faults also increases. FMOSSIM provides this performance
while also providing a more accurate model of the circuits, espe-
cially when realistic faults are present.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

References

E. Ulrich and T. Baker, “The Concurrent Simulation of
Nearly Identical Digital Networks”, /EEE Computer, April
1974, pp. 39-44.

E. Ulrich, et al, “High-Speed Concurrent Fault Simulation
with Vectors and Scalars”, Twentieth Design Automation
Conference, July 1983.

R. Wadsack, “Fault Modeling and Logic Simulation of
CMOS and MOS Integrated Circuits”, 8ell System Tech-
nical Journal, Vol. 57, May-June 1978, pp. 1449-1473.

J. Hayes, “A Fault Simulation Methodology for VLSI”,
Nineteenfh Design Automation Conference, July 1982, pp.
393-399.

M. Schuster, and R. Bryant, “Concurrent Fault Simulation
of MOS Digital Circuits”, Advanced Research in VLSI,
P. Penfield,ed., MIT, January 1984, pp. 129-138.

R.E. Bryant, “A Switch-Level Model and Simulator for MOS
Digital Systems”, IEEE Transactions on Computers, Vol.
C-33, No. 2, February 1984, pp. 160-177.

A. Bose, et al, “A Fault Simulator for MOS LSI Circuits”,
Nineteent Design Automation Conference, July 1982, pp.
400-409.

M. Lightner and G. Hachtel, “Implication Algorithms for
MOS Switch Level Functional Macromodeling, Implication,
and Testing”, Nineteenth Design Automation Conference,
July 1982, pp. 691-698.

R.E. Bryant, “MOSSIM: A Switch-Level Simulator for MOS
LSI”, Eighteenth Design Automation Conference, July
1981, pp. 786-790.

S. Winegarden and D. Pannell, “Paragons for Memory
Test”, lnfernafional Test Conference 7981, IEEE, 1981, pp.
44.48.

Paper 43.2
719

