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We present and study a Langevin MCMC approach for sampling nonlinear diffusion
bridges. The method is based on recent theory concerning stochastic partial differential
equations (SPDEs) reversible with respect to the target bridge, derived by applying
the Langevin idea on the bridge pathspace. In the process, a Random-Walk Metropolis
algorithm and an Independence Sampler are also obtained. The novel algorithmic idea of
the paper is that proposed moves for the MCMC algorithm are determined by discretising
the SPDEs in the time direction using an implicit scheme, parameterised by θ ∈ [0, 1].

We show that the resulting infinite-dimensional MCMC sampler is well defined only
if θ = 1/2, when the MCMC proposals have the correct quadratic variation. Previous
Langevin-based MCMC methods used explicit schemes, corresponding to θ = 0. The
significance of the choice θ = 1/2 is inherited by the finite-dimensional approximation of
the algorithm used in practice. We present numerical results illustrating the phenomenon
and the theory that explains it. Diffusion bridges (with additive noise) are representative
of the family of laws defined as a change of measure from Gaussian distributions on
arbitrary separable Hilbert spaces; the analysis in this paper can be readily extended to
target laws from this family and an example from signal processing illustrates this fact.
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1. Introduction

We present an MCMC approach for generating paths of nonlinear diffusions subject

to constraints on their initial and ending points, i.e. diffusion bridges; we consider

the case of additive non-degenerate noise only. Diffusion bridges are prototypical of a

variety of conditioned diffusions arising in applications and it is hence of some inter-

est to understand the behaviour of MCMC methods in this context. Furthermore,

the corresponding target bridges are representative of the family of distributions

defined as a change of measure from Gaussian laws on arbitrary separable Hilbert

spaces. The algorithms and the analysis in the paper, though demonstrated in the

diffusion context, can be readily extended to target laws in this family and thus en-

compass a vast range of possible applications. The key transferable idea in the paper

is the use of well-chosen implicit proposals which ensure that the resulting MCMC

method is well defined on the Hilbert space, and hence has convergence and mixing

properties that do not degenerate under the finite-dimensional approximation of

the Hilbert space required in practice.

The MCMC sampler is defined on the space of paths satisfying the desired

end-point constraints and, in stationarity, delivers correlated samples from the tar-

get law. Understanding the MCMC method on pathspace yields insight into the

behaviour of practical algorithms which necessarily discretise the paths and ap-

proach the infinite-dimensional situation via vanishing discretisation increment. In

this sense our work complements existing work on the behaviour of MCMC meth-

ods in high dimensions (see [21] for a review). The methodology builds on recent

results on the derivation of infinite-dimensional Langevin SDEs with a pre-specified

equilibrium law corresponding to a conditioned diffusion process [11, 12, 13, 18, 24].

The Langevin equation is discretised to provide a proposal for a Metropolis-Hastings

algorithm on the pathspace.

The dynamics of the diffusion are determined by the SDE:

dX

du
= AX + f(X) +B

dW

du
, u ∈ [0, 1] , (1.1)

with:

f = −BB⊤∇V , (1.2)

for some V : R
d 7→ R. Also, A ∈ R

d×d, B ∈ R
d×d is invertible, andW is the standard

d-dimensional Wiener process. Generating uncorrelated numerical approximations

of (1.1) for a given starting point is relatively straightforward, see e.g. [15]. It is,

however, considerably harder to sample from conditional laws of (1.1), since their

dynamics are typically intractable. In this paper we consider the diffusion-bridge

sampling problem and develop an MCMC method for the numerical solution of

(1.1) under the conditions:

X(0) = x−, X(1) = x+ , (1.3)

for arbitrary x−, x+ ∈ R
d. We denote by Π the distribution of the target bridge

(1.1)-(1.3) and by Π̃ the (Gaussian) distribution of the corresponding bridge for
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vanishing nonlinear term f ≡ 0. Under standard regularity conditions, Π and Π̃ are

equivalent (we denote this by Π ≈ Π̃) with density provided by Girsanov’s theorem

([17]). The gradient form of the drift in (1.2) and Itô’s Lemma provide the following

expression for Π used in the sequel:

dΠ

d Π̃
(x) ∝ exp {−〈1,Ψ(x)〉} , x ∈ H , (1.4)

where 〈·, ·〉 is the inner product on the Hilbert space H = L2([0, 1],Rd) and Ψ :

R
d 7→ R is given by:

Ψ(z) = |B−1f(z)|2/2 + divf(z)/2 + f(z)⊤(BB⊤)−1Az, z ∈ R
d . (1.5)

See [12, 18] for analytical calculations in the case of bridge diffusions; see [8, 12, 27]

for other connections between SPDEs and different forms of conditioned diffusions.

As stated above, the target Π defined via the Girsanov transformation (1.4) is

representative of the generalised family of target laws Π defined via a change of

measure from a Gaussian law as follows:

dΠ

dGaussian
(x) ∝ exp{−Φ(x)}, x ∈ H , (1.6)

where H is an arbitrary Hilbert space and Φ : H 7→ R. The theory that follows can

also be applied to target laws from this family. We revisit this important point in

Section 5 and in the conclusions; furthermore, in Section 6 we include a numerical

example from a signal processing application.

Diffusion-bridge sampling is a major ingredient of parametric inference methods

for diffusion processes, see e.g. [2, 3, 20] for applications in finance and economet-

rics. Numerical methods based on the h-transform [23], yielding an initial-value

problem with the desired bridging property, are inefficient since they require the

identification of the transition density of the unconditional process. The approach

followed in [3, 20] is to build MCMC samplers (namely, Independence Samplers)

by proposing independent samples from a simpler bridge process (such as Brown-

ian bridge). The same idea is used in a discretised context in [5, 6]. The method of

this paper is fundamentally different and based on extending the Langevin sampling

idea to an infinite-dimensional setting, although one family of MCMC methods con-

tain the Independence Sampler as a special case. We expect that our method will

be competitive in situations where the target paths are far from Gaussian, when

Independence Samplers are inefficient.

On Euclidean spaces and given a target density π : R
n 7→ R w.r.t. the n-

dimensional Lebesgue measure, the Langevin method is based on the SDE

dX

dt
= ∇ log π(X) +

√
2
dW

dt
. (1.7)

This s known to be reversible w.r.t. π.a Assuming that (1.7) is ergodic, realisations

aThroughout, we use t to denote algorithmic time and u to denote the real time that parameterises
the bridge path. Real time u will be the spatial variable in the SPDEs which generalize (1.7) for
targets π in infinite dimensions.
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of its solution over long time intervals will provide (in a limiting sense) samples from

π. In practice, (1.7) must be discretised; the induced bias can then be removed using

a Metropolis-Hastings correction specifying an accept/reject rule for the discretised

transitions. The result is a discrete-time Markov chain with invariant density π.

The complete MCMC method is referred to as the Metropolis-adjusted Langevin

algorithm (MALA) in the literature ([19]).

The methodology of this paper extends the Langevin MCMC sampler to the

infinite-dimensional problem of sampling from the bridge law Π given by (1.4). The

target process is now treated as a probability density on the pathspace L2([0, 1],Rd)

invariant under a path-valued Langevin SDE, namely a stochastic partial differen-

tial equation (SPDE), developed in [12, 18]. In fact, we will use two SPDEs, with

distinct dynamics, the second one derived from the initial Langevin SPDE after

appropriate application of a Green’s operator. We discretise the Langevin SPDEs

in the algorithmic time direction to obtain path proposals for the MCMC method.

The key new algorithmic idea of this paper is to use a form of implicit discretisa-

tion scheme. The scheme will introduce an implicitness parameter θ; θ = 0 yields

the standard Euler-Maruyama scheme. Critically, the pathspace MCMC sampler

(both versions of it, corresponding to the two Langevin SPDEs) is well defined only

when θ = 1/2. Roughly speaking, the specification θ = 1/2 provides paths with the

correct quadratic variation. The significance of the choice θ = 1/2 is inherited by

the finite-dimensional approximation of the algorithm used in practice (derived by

discretising the paths in L2([0, 1],Rd)). We demonstrate this fact with a numerical

study.

The structure of the paper is as follows. In Section 2 we review the Langevin

approach as applied to finite-dimensional Euclidean spaces. In Section 3 we define

the two Langevin SPDEs reversible with respect to the target diffusion bridge. In

Section 4 we construct the two corresponding versions of MALA in the context

of the infinite-dimensional diffusion-bridge targets and prove that the algorithm is

well-defined if and only if θ = 1/2. In Section 5 we show that, in the process, we

have additionally defined a Random-Walk Metropolis and an Independence Sampler

on the pathspace. We summarise the algorithms. In Section 6 we show numerical

examples illustrating the effect of the implicitness parameter θ in practical appli-

cations and demonstrating superiority of θ = 1/2. In particular, we apply MALA

to sample a double-well process conditioned by both a bridge condition and then

by a contiuous-time observation of a functional of the path. We finish with some

conclusions in Section 7. For completeness we review, in Appendix A, the definition

of the Gaussian distribution on an arbitrary Hilbert space and some of its properties

relevant to this paper. Proofs have been collected in Appendix B.

2. The Finite-Dimensional Langevin Sampler

Consider the following density w.r.t. the n-dimensional Lebesgue measure:

π(x) ∝ exp{ x⊤Lx/2 − ψ(x)}, x ∈ R
n , (2.1)
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for some function ψ : R
n 7→ R and a negative, symmetric matrix L ∈ R

n×n such

that the expression in (2.1) is integrable. For this target density, the Langevin SDE

given in (1.7) is:

dX

dt
= LX −∇ψ(X) +

√
2
dW

dt
. (2.2)

The density π is invariant for (2.2) since it solves the relevant steady Fokker-Planck

equation ([9]). Using again the Fokker-Planck equation one can show that the SDE:

dX

dt
= C {LX −∇ψ(X)} +

√
2C

dW

dt
, (2.3)

for any symmetric, positive-definite matrix C, has invariant density π. Assuming

ergodicity, simulating the Langevin SDE over long time intervals provides a method

(in the limit, as t → ∞) for sampling from π. Critically for most applications, π

needs to be known only up to a normalising constant. For results on the convergence

properties of the Langevin SDE and conditions on π that guarantee ergodicity see

e.g. [16, 22].

In practice, one must consider a discrete-time version of the continuous-time

process. The simplest such approximation is the (explicit) Euler scheme ([15]). How-

ever, to construct efficient algorithms in the bridge sampling context, we will use

an implicit scheme. For the case of the Langevin SDE (2.2) and given a current

position x ∈ R
n, the implicit scheme obtains the location y of the path after time

∆t > 0 via the formula:

y − x = {(1 − θ)Lx+ θLy −∇ψ(x)}∆t+
√

2∆t ξ, ξ ∼ N (0, I) , (2.4)

for some θ ∈ [0, 1]. When θ = 0, the update corresponds to the explicit Euler

scheme. We incorporate the implicitness parameter θ only in the linear part of the

drift to allow for analytical tractability. Since I−θ∆tL is symmetric positive-definite,

uniqueness of the location y is guaranteed. Convergence of such implicit methods

for SDEs is investigated in [15]. The dynamics of the discrete-time approximation

will differ from the actual discrete-time dynamics of the SDE: decreasing ∆t reduces

the bias, but increases the number of steps to reach stationarity and the correlation

among the different samples from π once stationarity has been reached.

A Metropolis-Hastings correction, employed in such cases, removes the bias and

allows for larger jumps in the state space. According to this theory, if q(x, y) is a

transition density on R
n × R

n proposing a move from the current location x to y,

then the corrected update:

x
′

=

{
y, with probability α(x, y)

x, otherwise
(2.5)

where

α(x, y) = 1 ∧ π(y)q(y, x)

π(x)q(x, y)
, (2.6)
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defines the transitions of a discrete-time Markov chain with invariant density π.

When q(x, y) corresponds to the Langevin transition dynamics (2.4) as deter-

mined by the explicit Euler scheme (θ = 0) the resulting sampling method is

the Metropolis-adjusted Langevin algorithm (MALA), see e.g. [19] and the refer-

ences therein. MALA will typically converge to stationarity faster than competitive

MCMC methods (like for instance, the ‘vanilla’ Random-Walk Metropolis) since it

is tailored to the specific target π and employs transitions that respect the invari-

ance of π, up to the discretisation error. For θ 6= 0 the algorithm is, to the best of

our knowledge, new. In fact, choosing θ = 1/2 will be the key for the construction

of efficient algorithms in the infinite-dimensional context of interest in this paper.

For an overview of the properties of MALA see [21]. In that paper, efficiency is

examined in the case of n-dimensional product measures, in the limit n → ∞; the

results give valuable insight into the behaviour of MCMC methods in high dimen-

sions. The work in [21] indicates that, as one might expect, the precise nature of

the high-dimensional measure has significant effect on the properties of the MCMC

sampler. In particular, in the product set-up of [21] the time step ∆t of MALA

must be scaled as O(n− 1

3 ), hence shrinks to zero in the limit. In contrast, we show

that for the bridge targets of this paper, a fixed positive ∆t may be used in the

infinite-dimensional limit, provided that θ = 1/2. Thus, when θ = 1/2 we antici-

pate that the time to converge to stationarity, the mixing time in stationarity and

other qualitative measures of cost, will be independent of the dimension n (which

in our context refers to an n-dimensional approximation of the target bridge used

in practice). In contrast, for θ = 0 these times typically grow as n→ ∞, see [21].

3. The Langevin SPDEs

We proceed to the infinite-dimensional diffusion bridge sampling set-up. We write

down the two Langevin SPDEs, defined in [12, 18, 24] and building on ideas appear-

ing in [7], which are invariant with respect to the target bridge law Π. Recall that

Π̃ denotes the corresponding Gaussian bridge. Let C be the covariance operator of

Π̃ (see Appendix A for a review on Gaussian laws on Hilbert spaces). Henceforth,

we set H = L2([0, 1],Rd).

The first Langevin SPDE, with solution x = x(t, u), is as follows:

∂tx = (∂u +A⊤)(BB⊤)−1(∂u −A)x−∇Ψ(x) +
√

2 ∂tw ,

x(t, 0) = x−, x(t, 1) = x+, t ∈ [0,∞) ,

x(0, u) = x0(u) .

(3.1)

The first of these equations refers to the evolution dynamics with ∂tw denoting

space-time white noise. The rest give the necessary boundary and initial value con-

ditions. The second SPDE, termed the preconditionedb SPDE, is derived from (3.1)

by using the covariance operator C in the same way that we used the matrix C in

bIn statistical terms, it can be thought of as a reparameterization of the initial setting.
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the finite-dimensional case (2.3); this correspondence will be made obvious below

when we write the SPDEs as H-valued SDEs. The preconditioned Langevin SPDE

is as follows:

∂tx = −x+ y(t, u) +
√

2 ∂tw̃ ,

(∂u +A⊤)(BB⊤)−1(∂u −A) y = ∇Ψ(x) ,

y(t, 0) = x−, y(t, 1) = x+ ,

x(0, u) = x0(u) .

(3.2)

Here w̃t, t ≥ 0, is a C-Wiener process, i.e. a Wiener process on H with increments

w̃t+h− w̃t distributed according to N (0, hC), for any t, h ≥ 0. The linear differential

operator

L = (∂u +A⊤)(BB⊤)−1(∂u −A)

appearing above is closely related with the covariance operator C of the reference

Gaussian law Π̃. When L is restricted on the domain:

D = {x ∈ H2([0, 1],Rd) | x(0) = x(1) = 0}

it is true that:

L = (−C)−1 , (3.5)

see [11]. Here H2([0, 1],Rd) denotes the Sobolev subspace, dense in H, consisting

of the functions whose derivatives (in the generalised sense) up to second order are

in H.

Remark 3.1. Without loss of generality we will assume that:

x− = x+ = 0 , (3.6)

so, in fact:

Π̃ ≡ N (0, C) .

The general case reduces to (3.6) after considering the process X −m, where X is

the target bridge, and m the (analytically identifiable) mean of the linear bridge

corresponding to f ≡ 0. If x solves (3.1) then x(t, ·) −m will sample in the limit

from X −m and its dynamics will be given by (3.1) but now with x− = x+ = 0

and ∇Ψ(·+m) in the place of ∇Ψ(·). The shift by m will not affect the linear part

of the drift since as shown in [11]:

(∂u +A⊤)(BB⊤)−1(∂u −A)m = 0 ,

m(0) = x−, m(1) = x+.
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The two SPDEs may be thought of as SDEs on a Hilbert space. Equations (3.1),

(3.2) correspond to the H-valued SDEs:

dx

dt
= Lx−∇Ψ(x) +

√
2
dw

dt
, (3.8)

dx

dt
= −x− C{∇Ψ(x)} +

√
2 C dw

dt
, (3.9)

respectively. The operator ∇Ψ : H → H is the Nemitski operator found from

∇Ψ : R
d → R

d and extending it to an operator in H via ∇Ψ(x)(u) := ∇Ψ(x(u)).

Here wt is a cylindrical Wiener process on H; see [4] for more technical details. In

the sequel, we will use these expressions to develop our methodology. The corre-

spondence between the two alternative expressions (3.2), (3.9) of the same precondi-

tioned SPDE is easily understood through the relation L = (−C)−1. Existence and

uniqueness of a mild solution for (3.8), a strong solution for (3.9), and ergodicity

for both cases, can be deduced under the following conditions on Ψ.

Assumption 3.1. The mapping Ψ : R
d 7→ R in (1.5) is continuously differentiable

and there exists constant C > 0 such that the Nemitski operator ∇Ψ : H → H
satisfies:

i) |∇Ψ(x) −∇Ψ(y)| ≤ C |x− y|, x, y ∈ H;

ii) |∇Ψ(x)| ≤ C, x ∈ H .

See [12], where weaker conditions on Ψ are also provided. For the analysis in the

rest of the paper we work under Assumption 3.1.

Remark 3.2. We have presented the initial Langevin SPDE (3.1) by referring

to the appropriate literature. We have yet to justify the prefix ‘Langevin’. The

correspondence between the pairs of equations (2.2), (3.8) and (2.3), (3.9) is already

suggestive. The drift of the Langevin SDE (3.8) on the Hilbert space is formed in

[13] after copying the finite-dimensional paradigm (1.7): instead of the gradient one

has to consider the variational derivative of the log-density (1.4). Reversibility of

(3.8) and (3.9) w.r.t. the target Π in (1.4) is proved in [12]. See [13] for further

discussion.

4. The Pathspace MCMC Samplers

This section is the heart of the paper. We construct path-valued MCMC methods

that sample from the target diffusion bridge Π. To do this, we will first discretise the

Langevin SPDEs in the algorithmic t-direction to obtain proposals for the MCMC

sampler. We use an implicit Euler scheme parameterised by θ. By introducing an

additional parameter, α ∈ {0, 1}, multiplying the nonlinear term in the proposal,

we define two alternate proposals. As well as the Langevin proposal (corresponding

to α = 1), another member of this family (α = 0) leads to a natural definition of a



January 16, 2008 18:35 WSPC/INSTRUCTION FILE article

MCMC Methods for Diffusion Bridges 9

Random Walk proposal on pathspace; we illustrate this in Section 5. We will then

provide some motivation concerning the significance of θ by showing, in Proposition

4.1, its effect on the quadratic variation of the bridge paths. It will become apparent

that θ = 1/2 is the unique choice that can deliver non-trivial MCMC algorithms on

pathspace. We prove this in Theorem 4.1 where we find the analytical expression

for the acceptance probability of the proposed paths.

4.1. MCMC Proposals on Pathspace

The H-valued Langevin SDEs, non-preconditioned (3.8) and preconditioned (3.9),

will be now discretised to provide refined proposals for the Metropolis-Hastings

accept/reject rule. Analogously to the finite-dimensional case (2.4), given the im-

plicitness parameter θ ∈ [0, 1] and some time increment ∆t > 0, the Langevin

proposal y for the update of a current path x is formally provided by the scheme:

y − x = {(1 − θ)Lx + θLy − α∇Ψ(x)}∆t +
√

2∆t ξ0 , (4.1)

with ξ0 ∼ N (0, I), for the case of (3.8) and by:

y − x = {−(1 − θ)x− θy − α C(∇Ψ(x))}∆t+
√

2∆t ξ , (4.2)

with ξ ∼ N (0, C), for the case of (3.9). As stated earlier, we have deliberately intro-

duced the tuning parameter α ∈ {0, 1} into the equations to distinguish Langevin-

like and Random Walk-like proposals. In the case α = 1 the proposal is an implicit

time-discretization of the SPDE; the convergence of such approximation methods

for SPDEs is investigated in [10, 14].

Note that, at present, equation (4.1) should not be conceived in a rigorous

manner. The identity mapping I is not a nuclear operator on H, so the Gaussian law

N (0, I) is not formally defined (see Appendix A). Also, x will be typically everywhere

non-differentiable, so the differentiation operation x 7→ Lx is unjustifiable. Yet, the

solution of (4.1) with respect to y given below is well defined.

We now write, in (4.3) and (4.4), the solutions of (4.1) and (4.2) respectively.

Also, for convenience, we introduce some labels.

IA : y = Aθx+ Bθ(ξ + C1/2h) , (4.3)

PIA : y = aθx+ bθ(ξ + Ch) . (4.4)

In both cases ξ ∼ N (0, C). We have set:

Aθ = (C + θ∆t I)−1(C − (1 − θ)∆t I), Bθ =
√

2∆t(C + θ∆t I)−1C1/2 ,

aθ =
1 − (1 − θ)∆t

1 + θ∆t
, bθ =

√
2∆t

1 + θ∆t
, (4.5)

h = −α
√

∆t/2 ∇Ψ(x) .

IA stands for ‘Implicit Algorithm’ and PIA for ‘Preconditioned IA’. For the case of

(4.3), we first multiplied both sides of (4.1) with C, replaced C1/2ξ0 with ξ ∼ N (0, C)

and then solved the resulting equation for y. If θ ∈ (0, 1] the operator C + θ∆t I
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is onto with a bounded inverse since its eigenvalues are bounded away from zero.

Thus, the update y in (4.3) is well defined for θ ∈ (0, 1]. For (4.4) it is well-defined

for θ ∈ [0, 1].

4.2. Proposed Paths and Quadratic Variation

We exhibit the central importance of θ for IA and PIA by showing its effect on

the quadratic variation of the paths. We begin with the definition of the quadratic

variation [x ] of a path x ∈ H:

[x ] := lim
N→∞

2N∑

i=1

| x(i2−N ) − x((i − 1)2−N) |2 .

The above limit refers to a.s. convergence w.r.t. a relevant path distribution. Con-

sider first the case when x ∼ Π̃. By definition, the Gaussian law Π̃ is equivalent

to the d-dimensional Brownian bridge law (considered on the unit length interval

[0, 1]) with diffusion coefficient matrix B = (bij), so [x ] will be a.s. constant:

[x ] =
∑

i,j

b2ij . (4.7)

From the equivalence Π ≈ Π̃, the same will be true for paths x ∼ Π. The following

result identifies the change in the quadratic variation of an input path x ∼ Π when

we apply the IA and PIA proposal updates.

Proposition 4.1. Let x ∼ Π. Consider the proposed path y, separately for IA and

PIA in (4.3), (4.4) respectively. In both cases, [ y ] will be a.s. constant with explicit

values:

IA : [ y ] =
(1 − θ)2

θ2
[x ] ,

PIA : [ y ] =
(
1 +

1 − 2θ

(1 + θ∆t)2
∆t2

)
[x ] .

Proof. See Appendix B.

Therefore, when θ 6= 1/2, both IA and PIA generate proposed paths of the wrong

quadratic variation, which will necessarily be rejected w.p.1. For θ 6= 1/2, the

quadratic variation provides a statistic for the magnitude of the discrepancy of

the proposed paths from the target distribution. The precise formulas in Propo-

sition 4.1 will be important for understanding, in Section 6, the behaviour of the

corresponding finite-dimensional algorithms used in practice.
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4.3. MCMC Acceptance Probability on Pathspace

We will identify the appropriate accept/reject ratio for the proposed path updates

that will guarantee reversibility of the Metropolis-adjusted dynamics with respect

to the target bridge Π. The complexity of the state space generates singularities not

taken into consideration in cases when the standard Metropolis-Hastings (M-H) or

MCMC theory is presented. For instance, the proposed transitions can be mutually

singular for varying starting point. We thus refer to a generalised definition of the

M-H algorithm developed in [25]. We denote by Q(x, dy) the transition probability

kernel corresponding to either of (4.3), (4.4).

We define the bivariate path distribution:

µ(dx, dy) = Π(dx)Q(x, dy) , (4.8)

and its transpose µ⊤(dx, dy) = µ(dy, dx). Theorem 2 of [25] states that if µ, µ⊤ are

mutually singular (denoted by µ ⊥ µ⊤) then the M-H acceptance probability will

have to be µ-a.s. zero. When µ ≈ µ⊤ with density

r(x, y) =
dµ

dµ⊤
(x, y) , (4.9)

the acceptance probability is as follows:

a(x, y) = 1 ∧ r(y, x) , (4.10)

and a(·, ·) will be µ-a.s. positive. Clearly, the standard acceptance probability ex-

pression in (2.6) is a special case of the generalised expression given here.

We exploit these results in Theorem 4.1 below. We show that, for both IA and

PIA, θ = 1/2 implies µ ≈ µ⊤. That θ 6= 1/2 implies µ ⊥ µ⊤ has already been shown

through the quadratic variation result of Proposition 4.1. Then, for θ = 1/2, we

identify the density (4.9). Instrumental in these constructions is the consideration

of the bivariate Gaussian measure:

µ̃(dx, dy) := Π̃(dx)Q̃(x, dy) , (4.11)

and its transpose µ̃⊤(dx, dy) = µ̃(dy, dx), where Q̃(x, dy) is equal to Q(x, dy) for

vanishing nonlinear term Ψ ≡ 0 anf Π̃ is the Gaussian reference measure used to

define the target measure. The proof of the theorem is based on two results. First,

the density dµ/dµ̃ can be found using theory in the literature on perturbations of

Gaussian measures. Then, µ̃ is symmetric, that is µ̃ ≡ µ̃⊤. So in fact:

dµ

dµ⊤
(x, y) =

dµ

dµ̃
(x, y) /

dµ⊤

dµ̃⊤
(x, y) =

dµ

dµ̃
(x, y) /

dµ

dµ̃
(y, x) . (4.12)

Theorem 4.1. Let µ = µ(dx, dy) in (4.8) refer to the IA or PIA proposed path

update in (4.3) or (4.4) respectively. Then:

i) If θ 6= 1/2 then µ ⊥ µ⊤ and the M-H acceptance probability a(x, y) will

be µ-a.s. zero, whereas if θ = 1/2 then µ ≈ µ⊤ and a(x, y) will be µ-a.s.

positive.
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ii) For θ = 1/2, the acceptance probability is:

a(x, y) = 1 ∧ ρ(y, x)

ρ(x, y)
(4.13)

where log ρ(x, y), for each of the two cases, is given by the expression:

IA: c− 〈1,Ψ(x)〉 − α2∆t

4
〈∇Ψ(x),∇Ψ(x)〉

− α

2
〈∇Ψ(x), y − x〉 − α∆t

4
〈∇Ψ(x), C−1(y + x)〉 ,

PIA: c− 〈1,Ψ(x)〉 − α2∆t

4
〈 C1/2{∇Ψ(x)}, C1/2{∇Ψ(x)} 〉

− α

2
〈∇Ψ(x), y − x〉 − α∆t

4
〈∇Ψ(x), y + x〉 ,

for the same constant c ∈ R.

Proof. See Appendix B for the detailed proof. Here we only make some comments

on the integral 〈∇Ψ(x), C−1(y+x)〉. By definition, C−1 is a second order differential

operator, so one should be careful when applying it on non-differentiable paths. We

note first that for a fixed h ∈ H and ξ ∼ N (0, C), the random variable 〈h, C−1/2ξ〉
makes sense as an L2-limit w.r.t. N (0, C); see Theorem A.1 in Appendix A. Thus,

〈h, C−1/2ξ〉 can be understood as a stochastic integral. Using equation (4.5) for

θ = 1/2 and Ψ = 0, we find that under the reference measure µ̃:

z := C−1/2(y + x) = 2∆t C1/2(x− y) +
√

8∆t ξ .

One can then show that the random variable 〈∇Ψ(x), C−1/2z〉 is also well defined

as an L2-limit w.r.t. the law of z. See the proof of the theorem for more details.

The shape of the average acceptance probability as a function of ∆t is of partic-

ular interest. Practitioners often tune algorithms to a desirable acceptance proba-

bility, so a continuous acceptance probability curve with limiting values 1 (resp. 0)

at ∆t = 0 (resp. ∆t = ∞) would imply that any such probability can be attained.

We prove such a behaviour in Proposition 4.2 below for PIA. For IA, the techni-

cal difficulties appearing when attempting a corresponding proof (due largely to the

presence of the stochastic integral in the expression of the IA acceptance probability

in Theorem 4.1) are beyond the scope of this paper. In any case, the mathematical

expression in Theorem 4.1 does not give any indication of discontinuity. We observe

experimentally the desirable shape for the average acceptance probability curve (for

both IA, PIA) in numerical examples in the next section.

Proposition 4.2. For θ = 1/2, the average Metropolis-Hastings acceptance proba-

bility:

A(∆t) := E [ a(x, y) ]
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of the PIA proposed update y in (4.4) when x is distributed according to the equi-

librium law Π has the following properties:

a) If Ψ ≡ 0 then A(∆t) = 1 for any ∆t.

b) If Ψ : R
d 7→ R and ∇Ψ : R

d 7→ R
d are continuous, then A(·) is continuous

and lim∆t→0A(∆t) = 1. If, additionally, α‖∇Ψ(x) −∇Ψ(y∞)‖ > 0 w.p.1,

where:

y∞ = −x− 2α C{∇Ψ(x)} , (4.15)

then lim∆t→∞A(∆t) = 0.

Proof. See Appendix B.

Thus for θ = 1
2 and α = 1, and in the general nonlinear case, one can obtain any

desirable acceptance probability with the appropriate ∆t.

5. Classification of Infinite-Dimensional Samplers

We have so far defined two Metropolis-Hastings Markov chains on the bridge

pathspace. We now show that particular choices for the tuning parameters α and

∆t provide algorithms that can be classified in terms of familiar MCMC samplers

used in general applications. Throughout this section θ = 1/2.

By construction, α = 1 corresponds to the (implicit version of the) Metropolis-

adjusted Langevin Algorithm (MALA). It then turns out that the choice α =

0 provides natural analogues of the Random-Walk Metropolis (RWM) for our

pathspace set-up. Indeed, for Euclidean state-spaces when the reference measure

is the Lebesgue measure, RWM is characterised by the symmetricity property

q(x, y) = q(y, x), where q(x, y) is the transition density of the proposed update.

In our context, the infinite-dimensional pathspace dynamics are determined w.r.t.

the reference Gaussian law Π̃. So, the analogue of the above symmetricity property

will be:

Π̃(dx)Q(x, dy) = Π̃(dy)Q(y, dx) ,

We saw in Section 4.3 that this measure relation is true if α = 0 (the bivariate

linear law µ̃(dx, dy) defined there, which coincides with Π̃(dx)Q(x, dy) when α = 0,

is symmetric). In agreement with standard RWM, when α = 0 the Metropolis-

Hastings acceptance probability in Theorem 4.1, for both IA and PIA, simplifies

to

1 ∧ Π(y)

Π(x)
, (5.2)

for Π(x) = (dΠ/dΠ̃)(x) given in (1.4). Another familiar sampler, the Independence

Sampler (InS), can be deduced from PIA for α = 0 and ∆t = 2. For these choices

the proposal is y = ξ ∼ N (0, C), independently of the current path x. Independence
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samplers on pathspace have already been used in the literature, see [20, 6, 5]. They

propose global moves in the pathspace as opposed to local moves suggested by

MALA and RWM developed in this paper (for the first time, to the best of our

knowledge, in the context of the target laws of the paper).

Summarising, particular instances of IA and PIA yield the following identifiable

MCMC proposals:

MALA: (α, θ) = (1, 1/2), y = A.5 x+ B.5 (ξ + C1/2h)

P-MALA: (α, θ) = (1, 1/2), y = a.5 x+ b.5 (ξ + Ch)
RWM: (α, θ) = (0, 1/2), y = A.5 x+ B.5 ξ

P-RWM: (α, θ) = (0, 1/2), y = a.5 x+ b.5 ξ

InS: (α, θ,∆t) = (0, 1/2, 2), y = ξ

for h = −
√

∆t
2 ∇Ψ(x). The prefix (P-) distinguishes preconditioned dynamics and

A.5, B.5, a.5, b.5 follow the definition of Aθ, Bθ, aθ, bθ in (4.5) when θ = 1/2 and,

therefore, depend only on the time increment ∆t. Note that:

A2
.5 + B2

.5 = I , a2
.5 + b2.5 = 1 ,

for any ∆t > 0, a property which has been instrumental for the definition of the

MCMC samplers in Theorem 4.1 and is an immediate consequence of selecting

θ = 1/2. The importance of this identity can be easily realised in the context of

P-RWM, when it provides the appropriate weighting of two independent Brownian(-

like) paths that delivers a path of the correct quadratic variation.

Note here that the above defined algorithms can also be applied to targets from

the more general family of distributions in (1.6) determined as change of measure

from Gaussian laws N (0, C) on general Hilbert spaces H. For RWM, P-RWM the

proposals will be exactly the same as above, considering now the corresponding

covariance operator of the reference Gaussian law; the acceptance probability will

be as in (5.2) using the relevant target law. The only difference is that the Nemitski

operator ∇Ψ(x) is replaced by the derivative DΦ : H → H in all proposals with

α = 1 and in the resulting acceptance probabilities.

6. Numerical Application

We will focus on Langevin dynamics and apply MALA and P-MALA to conditioned

nonlinear diffusion processes. Our objective is to illustrate the central role of the

parameter θ for the algorithms. We consider the scalar diffusion bridge process:

dX

du
= f(X) + σ

dW

du
, u ∈ [0, U ] ,

X(0) = x−, X(U) = x+ ,
(6.1)

where the drift f is the (negative) gradient of a double-well potential with two

stable equilibrium points at −1 and +1:

f(x) = −
( (x− 1)2(x+ 1)2

1 + x2

)′

= x
( 8

(1 + x2)2
− 2

)
. (6.2)
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At the end of the section we also consider MALA algorithms for the same diffusion,

but conditioned by observation of a functional of the solution, illustrating that the

ideas in this paper have applicability beyond the case of bridge diffusions.

6.1. The Langevin Algorithm in Practice

In the previous section we defined infinite-dimensional MALA and P-MALA al-

gorithms that sample from target bridges by proposing moves in pathspace with

step-size ∆t. The samplers are well-defined only for the unique choice θ = 1/2 of

the implicitness parameter. In practice, bridge paths will have to be discretised

along the u-direction, so an increment ∆u > 0 will be necessarily introduced. In

this finite-dimensional context, corresponding MALA and P-MALA algorithms are

well-defined for any θ ∈ [0, 1]. We will present these practical algorithms and exam-

ine the effect of the choice θ = 1/2 in this realistic set-up. Of course, for θ = 1/2 the

algorithm will correspond to the finite-dimensional approximation of the pathspace-

valued MALA and P-MALA defined earlier.

We construct the finite-dimensional MALA for the case of the target (6.1).

Following Remark 3.1 we assume that x− = x+ = 0. We proceed as follows.

a) The Langevin SPDE (3.1) is discretised in u-direction with grid spacing

∆u = U/N for some N ∈ N. The result is the following SDE on R
N−1:

dXN

dt
=

1

σ2
AXN − Ψ

′

(XN ) +

√
2

∆u

dW

dt
, (6.3)

where we have used the discretised version of the Laplace operator ∂2
u:

A =
1

∆u2




−2 1

1 −2 1
. . .

1 −2 1

1 −2




. (6.4)

Alternatively, one can obtain this SDE by applying the familiar finite-

dimensional Langevin dynamics (1.7) to a discretised version of the target

law Π. Indeed, following the Girsanov expression (1.4) of Π, we derive it’s

approximation:

π(x) = C1 exp

{
−

N∑

i=1

Ψ(xi−1)∆u+
∆u

2σ2
〈x,Ax〉

}
, x ∈ R

N−1 , (6.5)

for x0 = x− = 0, xN = x+ = 0 and a normalising constant C1 ∈ R. The

quadratic term comes from the discrete time dynamics of the Brownian

bridge Π̃ appearing at the Girsanov formula. We retrieve the SDE (6.3) by

applying the Langevin rule (2.3) with C = 1/∆u to this target π.
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b) The SDE (6.3) is discretised in t-direction with step size ∆t, using the

implicit θ-method as in (2.4). Given a current vector location x ∈ R
N−1,

this leads to the proposed update y such that:

Lθy = Rθx− Ψ′(x)∆t +

√
2∆t

∆u
ξ, ξ ∼ N (0, I) , (6.6)

where

Lθ = I − θ∆t

σ2
A, Rθ = I +

(1 − θ)∆t

σ2
A .

c) The Metropolis-Hastings correction (2.6) is then applied to the resulting

discretisation. The target law in the current context is π given above, and

the transition density is:

q(x, y) = C2 exp
(
− ∆u

4∆t

∣∣Lθy −Rθx+ Ψ′(x)∆t
∣∣2

)
, x, y ∈ R

N−1 ,

corresponding to the recursion (6.6).

We follow the same procedure for P-MALA. Instead of (6.3), we now get:

dXN

dt
= −XN − C Ψ′(XN ) +

√
2C

∆u

dW

dt
, (6.8)

where C = −σ2A−1. The rest of the algorithm proceeds as for MALA; we do not

give further details.

6.2. Numerical Results

We apply MALA and P-MALA to the target diffusion bridge (6.1)-(6.2). The the-

ory in Section 4 suggests that unless θ = 1/2, when there is a limiting infinite-

dimensional algorithm for ∆u → 0, both algorithms will eventually degenerate as

∆u → 0. In Fig.1 and Fig.2 we show the empirical average acceptance probability

in equilibrium, produced from a long run of MALA and P-MALA, for various grid

sizes ∆t and ∆u and various choices of the implicitness parameter θ.

Fig.1 shows that in the case of MALA minor deviations from the threshold

value θ = 1/2 can have dramatic effect on the behaviour of the algorithm even

for moderate ∆u. The middle and bottom panel show that one could empirically

conjecture about the existence of a well-defined limiting algorithm as ∆u→ 0 only

when θ = 1/2. Fig.2 shows a different behaviour for P-MALA. The algorithm does

not degenerate for θ 6= 1/2 and the values of ∆u used in the graphs. In fact, for these

∆u, there is no apparent difference among the acceptance probability curves over

the various choices of θ. A first line of explanation for this contrasting behaviour

of MALA and P-MALA can be provided by the quadratic variation expressions in

Proposition 4.1. In the liming pathspace context, the distortion, when θ 6= 1/2, at

the quadratic variation of the paths is of order O(∆t2) for P-MALA as opposed

to O(1) for MALA. Thus, in the case of MALA, the difference at the quadratic
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variation is sufficiently large for any ∆t to lead to almost certain rejection even for

moderate ∆u. For P-MALA, one must use ∆u of higher order to capture the effect

of θ 6= 1/2. The following proposition gives the precise statements about the effect

of the increments ∆u, ∆t on the properties of the algorithms, in the linear case.

Proposition 6.1. Consider the Langevin algorithms MALA and P-MALA as ap-

plied to the Gaussian target corresponding to the density π in (6.5) for vanishing

non-linear term Ψ ≡ 0. Let A(θ,∆u,∆t) denote the average acceptance probability

of the proposed vector y when the current vector x is distributed according to the

equilibrium law π. It is then true that:

a) If θ = 1/2 then for both algorithms A(θ,∆u,∆t) = 1 for any ∆u, ∆t.

b) If θ 6= 1/2, let ∆t = β∆uα for some α, β > 0. The asymptotic behaviour of

A(θ,∆u,∆t) is as below:

1) for α < α0: lim∆u↓0A(θ,∆u,∆t) = 0,

2) for α = α0: lim∆u↓0A(θ,∆u,∆t) ∈ (0, 1),

3) for α > α0: lim∆u↓0A(θ,∆u,∆t) = 1,

where, for each of the two algorithms, the threshold rate a0 is specified as

follows:

MALA: α0 = 7/3 ,

P-MALA: α0 = 1/3 .

Proof. See Appendix B.

So, P-MALA will degenerate (θ 6= 1/2) if ∆u is of the order ∆tα for α > 3. For

MALA, the corresponding values of ∆u are much larger: ∆tα, α > 3/7. To capture

the degeneration of P-MALA, keeping the same choices for the increment ∆u as in

Fig.1 and Fig.2 we should focus on larger values of ∆t. In Fig.3 we show numerical

results from an application of P-MALA, where the only difference with Fig.2 is that

the length of the target bridge is now U = 1 (compared to U = 10 of the previous

graphs). This choice provides non-negligible acceptance probabilities around the

values of ∆t which distinguish the algorithms for θ = 1/2 and θ 6= 1/2.

6.3. A Signal Processing Example

In this section we illustrate the effect of the implicitness parameter θ when solving

a filtering/smoothing problem. We use the MALA algorithm to sample from the

conditional distribution of an (unknown) signal {xt}t∈[0,U ], given an observation of

a path {yt}t∈[0,U ]. We assume that the joint evolution of signal and observation is

described by the SDE

dX

du
= f(X) +

dW1

du
, u ∈ [0, U ],

dY

du
= X +

dW2

du
, u ∈ [0, U ] ,

(6.9)
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where f is the double-well drift from (6.2). The distribution of x given y is known

as the smoothing distirbution and can be written as a measure change from the

Gaussian distribution (Kalman-Bucy smoother) found when f ≡ 0. Fig. 4 shows

that the dichotomy between the cases θ = 1/2 and θ 6= 1/2, illustrated in the

previous figures for bridge diffusions, also occurs for this smoothing problem. The

figure illusrates the MALA method using the appropriate underlying SPDE derived

in [12, 13]. For θ = 1/2 the acceptance rates do not significantly change when ∆u

is decreased whereas for θ 6= 1/2 decreasing ∆u requires a simultaneous decrease

in ∆t.

7. Conclusions

We have demonstrated the potential of Langevin-based MCMC methods in an

infinite-dimensional context. The methodology introduced relies on a special im-

plicit discretization of the Langevin equation and applies for target measures which

are defined via measure change from a reference Gaussian law. This results in

MCMC methods which are robust under finite-dimensional approximation of the

infinite-dimensional space. We have exposed the details in the case where the target

measure is a diffusion bridge with non-degenerate additive noise, for pedagogical

reasons. However the general setting is highlighted in Section 5.

In the context of bridge sampling the algorithm allows for tuned local moves in

the pathspace and is expected to behave better than previous methods based on

Independence Samplers, especially in various singular limits such as small diffusiv-

ity, or large length of the path. We have shown that standard numerical methods

for finite-dimensional SDEs (implicit scheme, preconditioning) are of particular im-

portance when employed in the SPDE setting arising for pathspace sampling. The

implicitness parameter choice θ = 1/2 is necessary for the infinite-dimensional algo-

rithm and optimal for its practical implementation in a (high but) finite-dimensional

approximation. There are two versions of the algorithm, one preconditioned. Dif-

ferent choices of path quantities lead to situations in which either method can be

superior in terms of rate of convergence of the empirical measure, but both methods

have the desirable property that the rate of convergence is not mesh-dependent, for

θ = 1
2 . We have also introduced Langevin and Random Walk versions of the algo-

rithm; again either can be more efficient, depending on the precise problem being

studied, but both give rise to convergence rates which are mesh-independent.

The method, as developed in this paper, considers target bridges where the drift

is a gradient plus linear term. Furthermore, the noise is additive. Future research

will be directed towards extending its applicability beyond this setting. See [12] for

discussion about the form of the Langevin SPDE in more general settings. In a

wider perspective, the methodology employed here can potentially be applied to a

large family of sampling problems for conditioned diffusions, including the problem

of signal processing illustrated in Section 6.

Another perspective on our work concerns its relation to existing analysis of
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MCMC methods in high dimensional spaces. Our work provides further insight into

this important general problem and provides a number of open avenues for investiga-

tion. In particular, it is of interest to extend the work in this paper to cover general

target distributions defined as change of measure from Gaussian laws N (0, C). It

is not necessarily the case that implicit methods will always be favourable. This is

because the additional cost of inverting linear combinations of the identity operator

and −L = C−1 must be traded against the improvement in the rate of convergence

that stems from choosing θ = 1
2 . It is also of interest to include the study of pro-

posals other than the Langevin one. As demonstrated here, a natural analogue of

Random Walk Metropolis in this pathspace setting it to make proposals from the

time-discrete SPDE with the nonlinear term Ψ set to zero.

Finally, we believe that working with the infinite-dimensional setting provides

a better insight into the properties of the algorithms used in practice and a clear

understanding of the effect of the involved parameters (as for instance θ in our

case). We anticipate that this idea could also be relevant in other cases involving

infinite-dimensional systems and their approximation.
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APPENDIX

A. Gaussian Law on Hilbert Space: An Excerpt.

Let H denote an arbitrary separable Hilbert space with inner product 〈· , ·〉.

Definition A.1. An H-valued random variable (r.v.) ξ is called Gaussian (and

its distribution a Gaussian distribution), if for any h ∈ H the r.v. 〈ξ, h〉 follows a

Gaussian distribution on R.

We will consider only non-degenerate Gaussian distributions: Gaussian laws exclud-

ing Dirac measures. We denote by L(H) the set of continuous, linear operators from

H to H.

Proposition A.1. If ξ is a Gaussian r.v. on H then there exist an m ∈ H and a

positive, self-adjoint, nuclear operator Σ ∈ L(H) such that:

E [ 〈ξ, h〉 ] = 〈m,h〉, h ∈ H ,

E [ 〈ξ −m,h〉 〈ξ −m, g〉 ] = 〈h,Σg〉, h, g ∈ H .

m,Σ are uniquely determined. Conversely, for m,Σ as above, there exists a unique

(up to its probability law) Gaussian r.v. satisfying the above moment conditions.
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We thus denote a Gaussian distribution on H as N (m,Σ) for appropriate m ∈ H,

Σ ∈ L(H). From standard operator theory, a positive, self-adjoint, nuclear operator

Σ ∈ L(H) is associated with an eigensequence {(λi, ei)} so that Σei = λiei for all

i ≥ 1, with the property that {λi} is a bounded sequence of positive reals with∑
λi <∞, and {ei} is an orthonormal basis for H, i.e. 〈ei, ej〉 = δij .

We proceed with the Karhunen-Loève expansion of Gaussian laws. Given an

orthonormal base {ei} of H, the Fourier expansion for an arbitrary x ∈ H is as

follows:

x =
∞∑

i=0

〈x, ei〉 ei .

We set xi = 〈x, ei〉. From the standard isometry of H and ℓ2,
∑

i x
2
i <∞. Assume

now that x ∼ N (m,Σ) and {(λi, ei)} is the eigensequence corresponding to Σ.

Proposition A.1 implies that 〈x, ei〉 ∼ N (mi, λi) with mi = 〈m, ei〉, independently

of 〈x, ej〉 for any j 6= i. We can now write the Karhunen-Loève expansion: if {ξi} is

a sequence of iid standard Gaussian variables then:

N (m,Σ) =

∞∑

i=1

{
√
λi ξi +mi} ei ,

in the sense that the right-hand random series converges in L2 to a random element

of law N (m,Σ). Therefore, a Gaussian law on an arbitrary Hilbert space can be

equivalently represented by a product of scalar Gaussian laws:

N (m,Σ) ≡
∞∏

i=1

N (mi, λi) .

We will now state a result on the absolute continuity properties of Gaussian

laws. In the light of the Karhunen-Loève expansion above such properties can be

directly implied by known results for product laws on R
∞.

Lemma A.1. The product Gaussian laws
∏∞

i=1 N (µi, σi) and
∏∞

i=1 N (0, τi) are

either equivalent or mutually singular; they are equivalent if and only if:

∞∑

i=1

µ2
i /σi <∞,

∞∑

i=1

(
σi

τi
− 1

)2

<∞ .

The result follows from the Hellinger distance of product laws, see Proposition 2.20

of [4]. It can also be derived by Kakutani’s dichotomy, see e.g. [26]. In the theorem

that follows, ImΣ1/2 denotes the image set of the operator Σ1/2.

Theorem A.1. The Gaussian laws µ = N (m,Σ) and ν = N (0,Σ) are equivalent

if and only if m ∈ ImΣ1/2. In the case of equivalence:

dµ

dν
(x) = exp

{
〈h,Σ−1/2x〉 − 1

2
〈h, h〉

}
, x ∈ H ,
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where h = Σ−1/2m; the random element x 7→ 〈h,Σ−1/2x〉 is defined as the L2(ν)-

limit:
∞∑

i=1

〈h, ei〉〈x, ei〉√
λi

, x ∈ H ,

where {(λi, ei)} is the eigensequence associated with Σ.

This is Theorem 2.21 of [4]. The proof of the absolute continuity follows directly

from Lemma A.1 since m ∈ ImΣ1/2 iff
∑

im
2
i /λi < ∞. The operator Σ1/2 is not

onto, so 〈h,Σ−1/2x〉 cannot make sense as a regular inner product and corresponds

to the extension of the Itô stochastic integral to general Hilbert spaces.

B. Proofs

Proof of Proposition 4.1:

We will prove the quadratic variation statements assuming that x ∼ Π̃ and h ≡ 0,

where h is the nonlinear term appearing in the definition of the proposed paths in

(4.3), (4.4). The result will then also hold for the required setting since a.s. proper-

ties are preserved among equivalent probability measures. In our case Π ≈ Π̃ and,

from Theorem A.1 in Appendix A, the laws of ξ, ξ + C1/2h and ξ + Ch, where

ξ ∼ N (0, C), are all equivalent.

For the case of PIA the result follows directly from the independence of x and

ξ. The quadratic variation of the proposed path aθx + bθξ, for scalars aθ, bθ, will

be simply:

[ y ] = a2
θ [x ] + b2θ [ ξ ] ,

for the quadratic variation [x ] = [ ξ ] given in (4.7). Substituting aθ, bθ with their

expressions in (4.5) gives the required result.

For IA, we will have to work with the Karhunen-Loève expansion of Gaussian

laws reviewed in Appendix A. Let {λi} be the eigenvalues of the covariance operator

C and {ei} the orthonormal base of H formed by the corresponding eigenvectors of

C, thus Cei = λiei. From (4.3) we find the i-th Fourier coefficient of the proposed

path y:

〈y, ei〉 =
λi − ∆t(1 − θ)

λi + ∆tθ
〈x, ei〉 +

√
2∆tλi

λi + ∆tθ
〈ξ, ei〉 . (B.1)

We have assumed that x ∼ Π̃ ≡ N (0, C). From the Karhunen-Loève expansion

of this Gaussian law, 〈x, ei〉 ∼ N (0, λi) independently of the rest of the Fourier

coefficients. Similarly 〈ξ, ei〉 ∼ N (0, λi) independently of each other and of x. From

(B.1) we now trivially get that 〈y, ei〉 ∼ N (0, aiλi) where:

ai =

(
λi − ∆t(1 − θ)

)2
+ 2∆tλi

(λi + ∆tθ)2



January 16, 2008 18:35 WSPC/INSTRUCTION FILE article

22 Beskos et al.

so the (Gaussian) distribution of y corresponds to that of the product of scalar

Gaussian laws
∏∞

i=1 N (0, aiλi). From the properties of a covariance operator, λi > 0

for any i ≥ 1 with
∑

i λi <∞. Using this, we find that:

lim
i→∞

ai = (1 − θ)2/θ2 =: a ;

∞∑

i=1

(ai/a− 1)2 <∞ .

Lemma A.1 in Appendix A now implies the equivalence:

∞∏

i=1

N (0, aiλi) ≈
∞∏

i=1

N (0, aλi) .

Recall that the left-hand side law is the distribution of y; the right-hand side law

is trivially identified as the distribution of
√
a x which has a.s. constant quadratic

variation. Therefore, [ y ] is also a.s. constant and given as:

[ y ] = a [x ] =
(1 − θ)2

θ2
[x ] .

The proof is now complete.

�

Proof of Theorem 4.1:

We prove the statements i) and ii), first for IA.

Proofs for IA:

i) We will use the bivariate Gaussian law µ̃(dx, dy) = Π̃(dx)Q̃(x, dy). It is useful

to write side-by-side the definition of the involved kernels:

Q(x, dy) : y = Aθx+ Bθ(ξ + C1/2h)

Q̃(x, dy) : y = Aθx+ Bθξ ,
(B.6)

for ξ ∼ N (0, C). From Theorem A.1 in Appendix A, the laws of ξ + C1/2h and ξ

are equivalent. Thus, Q(x, dy) ≈ Q̃(x, dy) for any x ∈ H. Since also Π ≈ Π̃, it

follows directly from Fubini’s theorem ([1]) that µ ≈ µ̃ and, equivalently, µ⊤ ≈ µ̃⊤.

Therefore, investigation of equivalence or singularity for the nonlinear laws µ, µ⊤

has now been reduced to exploring the same properties for the centred Gaussian

bivariate laws µ̃ and µ̃⊤. From the definition of the Gaussian distribution on a

Hilbert space, see Appendix A, we find that the covariance operators of µ̃ and µ̃⊤

are equal to:
( C CA⊤

θ

Aθ C⊤ C1

)
,

( C1 AθC⊤

CA⊤
θ C

)
,

respectively, where:

C1 = Bθ C B⊤
θ + Aθ CA⊤

θ .
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One can easily verify that C = C1 iff θ = 1/2. Also, for any θ, Aθ C⊤ = CA⊤
θ . Thus,

if θ = 1/2 the centred Gaussian laws µ̃, µ̃⊤ coincide which, from the relation µ ≈ µ̃,

implies that µ ≈ µ⊤. Singularity for θ 6= 1/2 follows directly from Proposition 4.1.

ii) From the symmetricity of µ̃, a(x, y) is as in (4.13) for:

ρ(x, y) =
dµ

dµ̃
(x, y) .

See (4.12) for an explanatory calculation. Recall the conditional structure of the

two laws, µ(dx, dy) = Π(dx)Q(x, dy) and µ̃(dx, dy) = Π̃(dx)Q̃(x, dy). The density

of Π w.r.t. Π̃ is available from Girsanov’s theorem, and is given in (1.4). We now

fix some x ∈ H and consider the definition of the kernels Q(x, dy) and Q̃(x, dy) in

(B.6). From Theorem A.1 in the Appendix, the density of the law of ξ+C1/2h w.r.t.

the law of ξ, with ξ ∼ N (0, C), is:

ρx(z) = exp

{
〈h, C−1/2z〉 − 1

2
〈h, h〉

}
,

for the random element 〈h, C−1/2 ·〉 defined as an L2(Π̃)-limit in Theorem A.1. The

laws Q(x, dy) and Q̃(x, dy) are derived via the location-scale transformation:

gx(z) = A.5x+ B.5z, z ∈ H ,

of the Gaussian laws ξ + C1/2h and ξ respectively, thus their density is:

dQ(x, ·)
dQ̃(x, ·)

(y) = ρx

(
g−1

x (y)
)
. (B.11)

From Fubini’s theorem the bivariate density ρ(x, y) is the product of the densities

(1.4) and (B.11). So:

log ρ(x, y) = c− 〈1,Ψ(x)〉 − 1

2
〈h, h〉 + 〈h, C−1/2g−1

x (y)〉 , (B.12)

where exp(c) is the normalising constant of the expression of dΠ/dΠ̃ in (1.4). From

the analytical expressions for A.5, B.5 we can rewrite:

g−1
x (y) = C1/2(y − x)/

√
2∆t+ C−1/2(y + x)

√
∆t/8 .

Let {(λi, ei)} be the eigensequence corresponding to the covariance operator C.

From the definition of the stochastic integral 〈h, C−1/2 ·〉 in Theorem A.1:

〈h, C−1/2g−1
x (y)〉 =

∞∑

i=1

〈h, ei〉 〈g−1
x (y), ei〉√
λi

=

=
1√
2∆t

〈h, y − x〉 +

√
∆t

8

∞∑

i=1

〈h, ei〉 〈C−1/2(y + x), ei〉√
λi

,
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where both limits are in the L2-norm w.r.t. the law y ∼ Q̃(x, dy). In agreement

with the definition of the stochastic integral 〈h, C−1/2 ·〉, as the first of the two

series above, the second series provides the following definition:

〈h, C−1(y + x)〉 :=
∞∑

i=1

〈h, ei〉 〈C−1/2(y + x), ei〉√
λi

.

The discussion in the main body of the proof shows that we can make sense of this

as an L2−limit. From these last two equations and the analytical expression for h

from (4.5), the initial formula for log ρ(x, y) in (B.12) can be rewritten as the one

given at the statement of the Theorem.

Proofs for PIA:

The proof of i) is exactly the same as the proof for IA above, with the exception

that the operators Aθ and Bθ should be now replaced by the scalars aθ and bθ. The

same holds for ii) as well: a.5 and b.5 should now be used in the place A.5 and B.5.

�

Proof of Proposition 4.2:

Part a) of the proposition follows trivially from the expression for the acceptance

probability in Theorem 4.1. We proceed to part b). The expected acceptance prob-

ability in equilibrium is formally calculated as follows:

A(∆t) =

∫

H×H

(
1 ∧ ρ(y, x)

ρ(x, y)

)
Π(dx)Q(x, dy) .

The dependence of the integrating measure on the time increment can be removed

after rewriting:

A(∆t) =

∫

H×H

(
1 ∧ ρ(y(∆t), x,∆t)

ρ(x, y(∆t),∆t)

)
Π(dx) Π̃(dξ) ,

since, from the definition of the proposed path y in (4.4) with θ = 1/2, y =

y(x, ξ,∆t) for ξ ∼ Π̃. We simplified y(x, ξ,∆t) to y(∆t) for notational convenience

and also wrote ρ(·, ·,∆t) instead of ρ(·, ·) to emphasise the dependence of the density

ρ on ∆t. The integrand in the above expression is bounded, thus, from the bounded

convergence theorem, to prove continuity of ∆t 7→ A(∆t) it suffices to prove a.s.

continuity of the mappings ∆t 7→ ρ(y(∆t), x,∆t) and ∆t 7→ ρ(x, y(∆t),∆t). A sim-

ple inspection of the analytical formulae from Theorem 4.1 and the expression for

y in (4.4), indicates that the logarithm of both of these mappings is a linear combi-

nation of inner products between the paths x, y(∆t), Ψ(x), Ψ(y(∆t)), ∇Ψ(x) and

∇Ψ(y(∆t)) or C1/2-transformations of them. Fix some continuous paths x, ξ ∈ H.

The continuity of Ψ : R
d 7→ R and ∇Ψ : R

d 7→ R
d and the formula for y(∆t)

imply that ∆t 7→ y(∆t), ∆t 7→ ∇Ψ(y(∆t)) are continuous as mappings from [ 0,∞)

to L2([0, 1],Rd) while ∆t 7→ Ψ(y(∆t)) is continuous as a mapping from [ 0,∞) to

L2([0, 1],R). Thus, from the continuity of the inner product and C1/2, any of the
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above inner products are continuous functions of ∆t. Continuity of ∆t 7→ A(∆t) has

now been demonstrated. Clearly, A(∆t) → A(0) = 1 when ∆t → 0. Let ∆t → ∞.

Using the analytical formulae, we find that the coefficient of (−∆t/4) at the expres-

sion log ρ(y(∆t), x,∆t) − log ρ(x, y(∆t),∆t) converges a.s. to:

α2‖ C1/2{∇Ψ(y∞)}‖2 + α〈∇Ψ(y∞), x+ y∞〉 + α2‖ C1/2{∇Ψ(x)}‖2 ,

for y∞ = lim∆t→∞ y(∆t), in L2([0, 1],Rd) or pointwise, given explicitly in (4.15).

Using the formula in (4.15), we find that the above expression is actually equal to:

α2‖ C1/2{∇Ψ(y∞) −∇Ψ(x)}‖2 .

Therefore, if α‖∇Ψ(x) −∇Ψ(y∞)‖ > 0 w.p.1, then:

lim
∆t→∞

ρ(y(∆t), x,∆t)

ρ(x, y(∆t),∆t)
= 0, w.p.1 ,

which implies that lim∆t→∞A(∆t) = 0.

�

Proof of Proposition 6.1:

From (6.5), the target law is now the (N − 1)-dimensional Gaussian distribution

π ≡ N (0,− σ2

∆uA
−1) One can verify that the eigenvalues of A are −λ1, . . . ,−λN−1

where:

λi =
2
(
1 − cos(iπ/N)

)

(∆u)2
.

Let Λ be the diagonal matrix with i-th diagonal element λi and Z the orthonormal

matrix such that Z⊤ (−A)Z = Λ.

Proofs for MALA:

The 1-1 transformation

x 7→
√

∆uZ⊤x

of the original MALA Markov chain corresponds to an MCMC algorithm with the

following target and proposal:

Target: π ≡ N (0, σ2Λ−1)

Proposal: (I +
θ∆t

σ2
Λ) y = (I − (1 − θ)∆t

σ2
Λ)x+

√
2∆t ξ ,

(B.21)

where ξ ∼ N (0, I). Since the acceptance probability of this algorithm is identical to

the acceptance probability of the original algorithm, we henceforth assume that we

work with the transformed MALA in (B.21). After some calculations one can find

that the acceptance probability of (the transformed) MALA is:

a(x, y) = 1 ∧ exp

{
1

4
(1 − 2θ)σ−4∆t

N−1∑

i=1

λ2
i (x

2
i − y2

i )

}
. (B.22)
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Proof of a): For θ = 1/2, a(x, y) = 1 so also A(θ,∆u,∆t) = 1.

Proof of b): We now assume that θ 6= 1/2 and set ∆t = β∆uα. Consider the

following set:

Γ = {(x, y) : π(x)q(x, y) < π(y)q(y, x)} .

From the definition of the acceptance probability a(x, y) in (2.6) we get:

E [α(x, y) ] = E [α(x, y) IΓ(x, y) ] + E [α(x, y) IΓc(x, y) ] = 2 P [ Γ ]

since one can trivially check that each of the two summands above is equal to the

probability of Γ. From (B.22), we can equivalently write:

A(θ,∆u,∆t) = 2 P [ (1 − 2θ)

N−1∑

i=1

λ2
i (x

2
i − y2

i ) > 0 ] . (B.25)

We will calculate the expectation and variance of the random variable:

ZN = (1 − 2θ)
N−1∑

i=1

λ2
i (x

2
i − y2

i ) . (B.26)

The dynamics of x, y are determined by (B.21). One can easily find that:

E [x2
i ] =

σ2

λi
, E [ y2

i ] =
σ2

λi
+

(1 − 2θ)σ2∆t2λi

(σ2 + θ∆tλi)2
.

Combining the two results we find the expectation:

E [ZN ] = −(1 − 2θ)2σ2
N−1∑

i=1

λi
(∆tλi)

2

(σ2 + θ∆tλi)2
. (B.28)

An elementary, but tedious, calculation gives the variance:

Var [ZN ] = 2σ4(1 − 2θ)2×
N−1∑

i=1

∆tλ3
i

(1 − 2θ)2(∆tλi)
3 + 4θ2σ2(∆tλi)

2 + 8θσ4 ∆tλi + 4σ6

(σ2 + θ∆tλi)4
. (B.29)

We consider separately the following cases.

• a < 2.

In this case ∆t λi → ∞ as N → ∞. Hence:

lim
N→∞

E [ ∆u3ZN ] = −(1 − 2θ)2σ2 lim
N→∞

N−1∑

i=1

∆u2λi
(∆tλi)

2

(σ2 + θ∆tλi)2
∆u =

= −(1 − 2θ)2σ2

∫ U

0

2
(
1 − cos(πu/U)

) 1

θ2
du < 0 .
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For the variance we get:

lim
N→∞

1

∆u
Var [ ∆u3ZN ] =

= 2σ4(1 − 2θ)2 lim
N→∞

N−1∑

i=1

∆u4λ2
i

(1 − 2θ)2(∆tλi)
4 +O((∆tλi)

3)

(σ2 + θ∆tλi)4
∆u =

= 2σ4(1 − 2θ)2
∫ U

0

4
(
1 − cos(πu/U)

)2 (1 − 2θ)2

θ4
du .

So, in the limit the expectation of ∆u3ZN is negative and its variance is zero.

Therefore:

lim
N→∞

A(θ,∆u,∆t) = 2 lim
N→∞

P [ ∆u3ZN > 0 ] = 0 . (B.30)

• α = 2.

Working as before we find that:

lim
N→∞

E [ ∆u3ZN ] = −(1 − 2θ)2σ2 lim
N→∞

N−1∑

i=1

∆u2λi
β2∆u4λ2

i

(σ2 + θβ∆u2λi)2
∆u =

= −(1 − 2θ)2σ2

∫ U

0

β2 8
(
1 − cos(πu/U)

)3

(
σ2 + θβ · 2

(
1 − cos(πu/U)

))2 du < 0 ,

and that Var [ ∆u3ZN ]/∆u converges to a finite real. So, (B.30) will apply in this

case as well.

• α > 2.

Now, ∆tλi → 0 as N → ∞ and:

lim
N→∞

E [ ∆u7−2αZN ] = −(1 − 2θ)2σ2 lim
N→∞

N−1∑

i=1

β2∆u6λ3
i

1

(σ2 + θ∆tλi)2
∆u =

= −(1 − 2θ)2σ2

∫ U

0

β2
(
2
(
1 − cos(πu/U)

))3 1

σ4
du < 0 .

For the variance we find:

lim
N→∞

1

∆u7−3α
Var [ ∆u7−2αZN ] =

= 2σ4(1 − 2θ)2 lim
N→∞

N−1∑

j=1

β∆u6λ3
j

O(∆tλi) + 4σ6

(σ2 + θ∆tλj)4
∆u =

= 2σ4(1 − 2θ)2
∫ U

0

β
(
2
(
1 − cos(πu/U)

))3 4

σ2
du .

So, for 7− 3α > 0 the acceptance probability still converges to zero, and part b)-1)

of the Proposition has been proven. For 7 − 3α = 0 the distribution of ∆u7−2αZN
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converges to a non-degenerate Gaussian distribution with mean and variance given

by the above two limits. Since the limiting mean is negative, part b)-2) of the

Proposition follows directly. For 7 − 3α < 0 the variance of ∆u7−2αZN increases

without bound while the mean converges as above. Thus:

lim
N→∞

A(θ,∆u,∆t) = 2 lim
N→∞

P [ ∆u7−2αZN > 0 ] = 2 · 1

2
= 1 ,

which gives part b)-3) of the Proposition.

Proofs for P-MALA:

The original P-MALA algorithm has target π ≡ N (0,− σ2

∆uA
−1) and proposed

transitions determined by the θ-solution of (6.8), that is:

y − x = −(1 − θ)∆t x− θ∆t y +

√
2∆t C

∆u
ξ, ξ ∼ N (0, I) .

Recall that C = −σ2A−1. The 1-1 transformation:

x 7→ Λ1/2σ−1
√

∆uZ⊤x

of this Markov chain corresponds to the following MCMC algorithm:

Target: π ≡ N (0, I)

Proposal: (1 + θ∆t) y = (1 − (1 − θ)∆t)x +
√

2∆t ξ ,
(B.34)

with ξ ∼ N (0, I). Comparing (B.34) with (B.21) we see that the two algorithms

coincide if in (B.21) we replace:

Λ ↔ σ2I .

Thus, the acceptance probability of the P-MALA algorithm (B.34) can be analysed

in terms of the equations (B.22)-(B.29) just by replacing λi ↔ σ2. The expressions

for the expectation and the variance of ZN are now greatly simplified. One can easily

find that E [ZN ] is negative and of order ∆u2α−1, and Var [ZN ] is of order ∆uα−1.

Then, ∆u1−2α ZN has a limiting negative mean and variance of order ∆u1−3α. The

required result for the various values of α follows directly from the relation:

A(θ,∆u,∆t) = 2 P [ ∆u1−2αZN > 0 ] .

�
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Fig. 1. MALA: Average acceptance probability in equilibrium for sampling paths of the double-well
process (6.1) on [0, 10] with x− = 0, x+ = 0 and σ = 1. The diagram shows the average acceptance
probability as a function of the algorithmic step size ∆t for different values of θ and ∆u.



January 16, 2008 18:35 WSPC/INSTRUCTION FILE article

32 REFERENCES

Fig. 2. P-MALA: Graphs similar to those of Fig.1, now derived using the preconditioned algorithm.
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Fig. 3. P-MALA: Graphs from an application of P-MALA, similar to those of Fig.2 with the only
difference that the target bridge is now considered on the unit length interval [0, 1]. Notice the
difference at the scale of the ∆t-axis compared to the previous graphs.
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Fig. 4. This figure illustrates how the acceptance rates of the MALA algorithm for a discretised
version of the smoothing problem from Section 6.3 depend on the time discretisation step size ∆t.
The different curves correspond to different space discretisations ∆u. The upper panel gives the
average acceptance probabilities in equilibrium for θ = 1/2. In this case the Metropolis-Hastings
algorithm can also be applied to the infinite dimensional problem. The lower panel illustrates the
case θ = 0.4 which only makes sense for the discretised equation. One can see that the method
degenerates as ∆u → 0.


