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Introduction

Epilepsy results from “electrical storms” inside the brain that cause recurring seizures. 

About 2 in 100 people in the United States experience an unprovoked seizure at least once in 

their lives. The population and shape of involved epileptic neurons vary along the time 

course of each epileptiform event in a very short time span. Current clinical functional 

imaging methods, such as functional magnetic resonance imaging (fMRI), positron emission 

tomography (PET) and single-photon emission computed tomography (SPECT), are limited 

by their low temporal resolution in documenting such paroxysmal epileptiform events. High 

temporal resolution is critical to overcome the motion artifacts caused by patients or 

procedures during epilepsy surgery. Although optical mapping methods such as intrinsic 

optical imaging (IOS) (Bahar et al,. 2006; Inyushin et. al., 2001; Haglund and Hochman, 

2004; Schwartz et al., 2004; Schwartz and Bonhoeffer 2001) and voltage-sensitive dye 

imaging (VSD) (Cohen et. al,. 1986) have limitations in imaging depth and tissue toxicity, 
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the development of epileptic animal models has made them very useful (Raol et. al., 2012). 

More recent developments in the optical mapping of neural activities include the optical 

coherence tomography (OCT) (Satomura Y. et. al., 2004; Aguirre A. D. et. al., 2006; 

Rajagopalan U. M. et. al., 2007; Chen Y. et. al., 2009; Sato M. et. al., 2010; Liang et. al., 

2011; Lenkov et. al., 2012; M. Eberle et. al., 2012) and photoacoustic microscopy (PAM) 

(Hu et. al., 2009; Maslov et. al., 2008; Tsytsarev et. al., 2011; Wang et. al., 2003; Wang 

2008; Wang 2009; Liao et. al., 2010; Liao et. al., 2012a; Liao et. al., 2012b). OCT can 

image both the refractive index modulation of the tissue that surrounds epileptic neurons 

with optical scattering contrast and the neuron-vasculature coupled blood flow patterns with 

Doppler OCT contrast. PAM represents an innovation in the functional imaging of red blood 

cells and blood flow. It provides functional data such as the oxygen saturation of red blood 

cells in the microvasculature. Because PAM is based on pure optical absorption contrast, it 

does not require the dense optical scans required by Doppler OCT, and it is immune to axial 

motion artifacts that may significantly compromise the blood flow images generated by the 

Doppler OCT in in vivo applications. As a rapidly evolving imaging technology, PAM 

promises deep imaging into tissue due to its multi-scale imaging capability (Wang et. al., 

2012). By recording the optical refractive index modulation with OCT technology and 

simultaneously documenting the hemodynamic changes in epileptiform events with PAM, 

we can, for the first time, perform epilepsy mapping with high temporal and spatial 

resolution and dual optical contrasts. We expect our demonstrated technology to have great 

utility in applications such as epilepsy drug development and epilepsy surgery.

Materials and Methods

Animal preparations

For each experiment, a Swiss Webster mouse (Hsd: ND4, 25–30 g; Harlan, Indianapolis, IN) 

was anesthetized by an intraperitoneal (IP) injection of a mixture of ketamine (87 mg/kg) 

and xylazine (13 mg/kg). The anaesthetized animal was placed in a custom-made stereotaxic 

head holder, and the left dorsal portion of the skull was exposed by surgically removing the 

scalp and muscle. A cranial opening (~4–5 mm2) was made using a dental drill over the left 

hemisphere, and the exposed dura mater surface was cleaned with artificial cerebrospinal 

fluid (ACSF). Throughout the experiment, the animal was supplied with breathing-grade 

compressed air (AI B300, Airgas, MO) and maintained under anesthesia using isoflurane 

(1.0–1.5% with an airflow rate of ~1 L/min), while the body temperature of the animal was 

maintained at 37 °C by a temperature-controlled electrical heating pad. After each 

experiment, the animal was euthanized with an overdose of pentobarbital. All experimental 

animal procedures were carried out in conformance with the laboratory animal protocol 

approved by the Animal Studies Committee of Washington University in St. Louis.

Inducement of the epileptic seizures

After craniotomy, 0.35 μL of a 25 mM solution of 4-aminopyridine (4-AP) in artificial 

cerebrospinal fluid (ACSF) was injected into cortical layers II–III, using an injector device 

(Nanojet II) with a 15–25 μm diameter glass microcapillary (Bahar et al. 2006; Tsytsarev et 

al. 2011). The injector was mounted on a micromanipulator that allowed injections 0.2 – 0.3 

mm below the dura mater surface. A single channel electroencephalogram (EEG) was 
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recorded through a screw-type electrode placed in the left hemisphere in the skull, then 

amplified by an AC/DC differential amplifier (A-M Systems, Model 3000), digitized at 

5000 Hz, and recorded. The start of EEG data acquisition was manually initiated.

Optical epilepsy mapping with dual contrasts

A dual modality optical imaging system that can simultaneously provide a co-registered 

OCT image and a PAM image (Figure 1) was used to provide optical mappings of epilepsy. 

The OCT imaging channel provided depth-resolved brain tissue structure images based on 

optical scattering contrast (Rao et. al., 2008). The PAM channel provided depth-resolved 

brain vasculature images based on optical absorption contrast (Rao et. al., 2010a). OCT and 

PAM Alines were acquired sequentially for each scanning location. Thus, an OCT image 

and a PAM image were recorded virtually simultaneously. Each B-scan frame contained 800 

scanning points (A-lines). At an imaging speed of 5,000 A-lines-per-second, 500 B-scan 

frames were acquired within an 80-second time window (Rao et. al., 2010b). Similar to the 

procedures described in our previous publications (Tsytsarev et. al., 2011; Hu et. al., 2009), 

we identified two vessels close to the 4-AP injection site and performed repeated B-scans 

over the selected vessels to map epilepsy in both spatial and time dimensions. The temporal 

resolution of epilepsy mapping was 6.25 Hz. The spatial lateral resolutions of epilepsy 

mapping with OCT and PAM were 5.2 μm and 3.5 μm, respectively.

After image acquisition, three types of image data (EEG, OCT, PAM) were analyzed 

separately. The EEG data was simply displayed as voltage versus time. For the OCT data, 

the optical scattering signal intensity was calculated by Fourier transformation of the 

interference fringe recorded by a line-scan CCD camera. Using the first B-scan image as a 

baseline, we calculated the depth-resolved reflectivity change ΔR(x,t), where x represents 

depth and t represents the time or B-scan number, by averaging 800 A-lines within every B-

scan image. Then, ΔR(x,t) was averaged along the imaging depth to generate an averaged 

reflectivity change over time, ΔR(t). For PAM data, the A-line amplitude of the 

photoacoustic signal was extracted via Hilbert transformation. The vessel diameter was 

directly shown by the maximum amplitude projection (MAP) of PAM B-scan images. 

Changes in vessel diameter could be directly visualized from the plot of MAP images along 

the time axis.

Results

After a 4-AP intracortical injection, epileptic seizures occurred periodically for 2 – 4 h, 

lasting 20 – 200 s at intervals of 2 –20 min. Figure 2A records a typical seizure EEG signal 

course lasting about 80 seconds. Figures 2B and 2C plot the 1D vertical MAP images from 

PAM along the horizontal time axis. A large vasodilatation of the blood vessels (veins), as 

shown in figure 2B, signals the electrographic onset of seizure, which is well-correlated with 

the EEG signal. The vessel (artery) in figure 2C displays a similar vasodilatation effect, but 

with reduced amplitude and prolonged duration. It is interesting to note that significant 

vasodilatation occurred only near the injection site. Outside a cortical area of about 1 mm2, 

vasodilatation was below our detection threshold of about 10%. Additionally, it seems that 

the vasodilatation may signal the beginning of seizure earlier than conventional EEG 
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signals. From figure 2B, we observed that after the large vessel dilation the vessel was 

smaller than the baseline diameter. Further study might be interesting, but is beyond the 

scope of this communication.

The depth-resolved reflectivity change ΔR(x,t) during seizure is shown in figure 2D. From 

the plot of ΔR(x,t), we can easily visualize the depth-resolved reflectivity change along the 

whole time course of the seizure. A reflectivity change ΔR(t) averaged along the depth 

direction at each sampling time point can represent the trend of reflectivity variation in a 

simple plot, as shown in Figure 2E. The suddenly decreased reflectivity (represented by the 

color change from green to blue in Figure 2D and by the curved dip in Figure 2E) coincided 

with the start of vessel dilation. The changes in cortical reflectivity ended approximately at 

the seizure’s end. In spite of the low transparency of the brain tissue, we were able to record 

the tissue-scattering signal from 2 mm below the surface, which is deeper than the cortical 

thickness. With fair confidence, we conclude that both ΔR(x,t) and ΔR(t) are more sensitive 

in signaling the start and the end of the seizure than EEG signals.

Discussion

The 4-AP model of epileptic seizures (Bahar et. al., 2006; Tsytsarev et. al., 2011; Zhao et. 

al., 2011; Raol and Brooks-Kayal, 2012) allows us to investigate periods of induction, 

maintenance, and propagation of seizure discharges, and has been extensively studied using 

different optical methods. It is generally known that epileptic seizures are accompanied by a 

local increase in cerebral blood flow to the epileptic focus (Zhao et. al., 2011, Hirase et. al., 

2004; Santisakultarm et. al., 2011; Schwartz et. al., 2004), but the relationship between 

seizures and neuronal activity remains unclear. The trigger mechanism of the seizure as a 

synchronized activity of the neural network is also not very well established. Although it is 

unlikely that vasodilatation itself can initiate the seizure, fast vasodilatation might be a first 

indicator of the local biochemical process that accompanies the seizure’s beginning. It was 

proposed by de Vasconcelos et. al., (1995) that nitric oxide triggers vasodilation in response 

to focal epileptic seizures, but in their work, vasodilatation was observed in a relatively large 

area, including both the cortex around epileptic foci and also (bilaterally) the substantia 

nigra and the parafascicular thalamic nucleus. It seems possible that astrocytes’ release of 

glutamate in the area of the epileptic foci plays a causal role in synchronous firing of a large 

neural population (Carmignoto and Haydon, 2012; Inyushin et al, 2012). Synchronous 

activity of the astrocytic syncytium can cause changes in the optical features of the cortical 

tissue that can be observed by OCT.

OCT has been used for in vivo brain imaging in animal experiments (Satomura Y. et. al., 

2004; Aguirre A. D. et. al., 2006; Rajagopalan U. M. et. al., 2007; Chen Y. et. al., 2009; 

Sato M. et. al., 2010; Liang et. al., 2011; Lenkov et. al., 2012; M. Eberle et. al., 2012) and 

provides high spatial resolution and a wide field of view. The modulation of the optical 

refractive index by the epileptic neuronal activity during a seizure coincides with the 

observation of surface reflectivity changes. As demonstrated in our experiments, OCT 

represents a very effective direct optical epilepsy mapping method, with a depth range of 

about 2 mm. Due to the well-known neurovasculature coupling mechanism, dynamic blood 

flow changes such as the vasodilatation observed in our experiments may be established as 
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another effective optical epilepsy mapping method for documenting epilepsy seizure. 

Theoretically, most blood flow imaging methods, including Doppler OCT and its variants, 

could be used to record the dynamic blood flow change caused by an epileptic seizure. The 

recently invented PAM technology has major advantages due to both its high contrast (as 

high as 40 dB) and its multi-scale imaging capability, which provides a much deeper 

imaging depth not achievable by other optical imaging technologies. In this demonstration, 

we used a very simple epilepsy mapping protocol, which does not utilize the full speed of 

our imaging systems (20,000 A-lines-per-second). It is very straightforward to upgrade the 

dual contrast imaging system to a 100,000 or 200,000 A-lines-per-second imaging speed, 

enabling more sophisticated mapping protocols. The dual contrast optical epilepsy mapping 

method demonstrated in this short communication presents a new tool for epilepsy drug 

development with small animal models (Raol et. al., 2012). With appropriate modifications, 

it could be used as an intra-operative tool for determining the boundary of epileptic tissue in 

epilepsy surgery (Haglund et. al., 2004).

Conclusions

We demonstrate for the first time in vivo epilepsy mapping with high spatial and temporal 

resolution and dual optical contrasts in an animal model. Through the variations in a depth-

resolved optical coherence tomography signal with optical scattering contrast, we observed 

variations of the depth resolved optical reflection signal from epilepsy tissue. 

Simultaneously, through neurovascular coupling mechanisms and optical absorption 

contrast, we used photoacoustic signals to document the hemodynamic changes of the 

microvasculature surrounding the epileptic neurons. The epilepsy mapping results were 

confirmed by a simultaneously recorded electroencephalogram signal during epileptic 

seizure. Our new epilepsy mapping tool, with high temporal and spatial resolution and dual 

optical contrasts, may find many applications, such as in drug development and epilepsy 

surgery.
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Highlights

• Epileptic seizures in the mice neocortex were induced in vivo by intracortical 

injection of 4-aminopyridine

• Optical coherence tomography and photoacoustic images of the cortex were 

acquired simultaneously

• We have observed a decrease in optical scattering caused by the epileptic 

seizures

• We have observed vasodilatation of the small blood caused by the epileptic 

seizures
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Figure 1. 
Schematic of the dual-modality OCT/PAM imaging probe: The OCT system was connected 

to the dual-modality probe through a single-mode fiber (HI-780, Thorlabs). The 532 nm 

pulsed laser was connected to the probe with another single-mode fiber (460-HP, Thorlabs). 

The collimated OCT sample and the 532 nm PAM excitation beams were combined using a 

dichroic mirror and focused by a microscope objective (NA 0.1) at 200 μm below the tissue 

surface. Fast optical scanning along one axis (B-scan) was done by a galvanometer mirror. 

Upon the absorption of the laser pulse by the tissue, photoacoustic waves were generated. 

Thereafter, the waves were reflected by a glass plate placed at 45 degrees between the 

objective and the animal, and detected by the cylindrically focused ultrasonic transducer 

(GE, 25 MHz bandwidth). The whole probe was attached to a one-dimensional mechanical 

stage, which scanned perpendicularly to the fast optical scan axis. The OCT A-line image 

and the PAM A-line image were acquired sequentially for each A-line.
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Figure 2. 
Time course of an epileptic seizure development: A. Electroencephalogram (EEG) of the 

epileptic seizure. B. Plot of maximum amplitude projection (MAP) images from PAM 

versus time for a vein, capturing the vasodilatation process, which was well correlated with 

EEG signals. C. Plot of MAP images of PAM versus time of an artery, capturing a similar 

vasodilatation process during seizure, but with a reduced amplitude and prolonged time. D. 

Depth-resolved reflectivity change ΔR(x,t), where x represents depth and t represents time. 

E. Averaged optical reflectivity change ΔR(t) of the affected brain cortex tissue, showing 

how it is affected by the seizure.
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