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Abstract 

A series of new rhodium (I) complexes supported by bidentate nitrogen-donor ligands with varying 

electronic and steric properties were synthesized in situ and evaluated for catalytic arene C−H/D 

activation. In trifluoroacetic acid (HTFA), these complexes are proposed to mediate H/D exchange of 

arene C−H/D bonds by an electrophilic aromatic substitution mechanism that involves Rh-mediated 

activation of HTFA (or DTFA). DFT calculations support the proposed pathway for the H/D exchange 

reactions.  
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1. Introduction 

Efficient and selective functionalization of hydrocarbon C−H bonds has been an area of intense study 

[1-14], but many examples of transition metal mediated C−H bond functionalization rely on directing 

groups to promote selectivity and activity [15-18]. Thus, developing catalysts that functionalize 

unactivated hydrocarbons (e.g., arenes and alkanes) remains challenging [2, 19-23]. The discovery by 

Shilov and coworkers that simple Pt
II
 salts can activate C–H bonds resulted in the demonstration that 

electrophilic metals are viable catalysts for alkane and arene C–H functionalization [4, 24-26]. The 
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primary drawback of the initial Shilov process for alkane functionalization was the use of Pt
IV

 as a 

stoichiometric oxidant.  

Studies of Shilov type catalysts have proposed that the rate limiting step is C−H activation through an 

electrophilic substitution mechanism (Scheme 1) [8, 14]. Since the discovery that electrophilic Pt
II
 can 

catalytically functionalize hydrocarbons, new catalysts based on electrophilic Hg
II
[27], Pt

II
[28], Pd

II 
[29, 

30], Au
I
/
III

[31] and I2[32] have been reported. Importantly, over oxidation can be avoided by protecting 

the functionalized hydrocarbyl with electron-withdrawing groups. For example, in one variant a Pt 

catalyst is used to functionalize methane in oleum to produce methylbisulfate, which is protected against 

further oxidation by the electron-withdrawing bisulfate group through an increase in the activation barrier 

toward electrophilic C–H activation for CH3OSO3H [28, 33]). These catalysts appear to only operate 

efficiently in concentrated and oxidizing super acids, such as oleum, which makes product separation and 

solvent recycling difficult[34]. In addition, these electrophilic catalysts are readily poisoned by water (or 

other Lewis bases) and can suffer from product inhibition [33]. More recently, main group elements and 

transition metal complexes have been shown to activate and functionalize hydrocarbons in less acidic, 

trifluoroacetic acid [35-41]. 

 

 
Scheme 1. Activation of C–H bonds by electrophilic substitution.  

 

Extension of the general strategy for Shilov type hydrocarbon functionalization would benefit from 

catalysts that are less susceptible to inhibition by Lewis bases, which could allow chemistry in non-super 

acidic media. Developing reactivity with earlier transition metals (i.e., earlier than the Ni, Pd and Pt triad) 

could provide more tolerance of Lewis basic groups, but major challenges include avoiding oxidation of 

the metal to higher valent states that are incapable of C–H activation and developing complexes that 

possess electrophilic hydrocarbyl ligands (after C–H activation) [42-53]. Recently, a number of catalysts 

based on Ir and Rh have been shown to be active for benzene C−H activation [50-61]. Rhodium 

complexes are particularly attractive due to the possibility of C−H activation by Rh
I
 [62] or Rh

III
 [55]. 

Further, oxidation of the rhodium center can be achieved with air recyclable Cu(II) salts, which provides a 

strategy for indirect use of dioxygen or air as the terminal oxidant [60, 63]. 

A common method for generating an active electrophilic metal center is to generate a coordinatively 

unsaturated complex through halide abstraction from the metal with a silver salt of the form AgX (X = 

triflate, acetate, tetrafluoroborate, etc.). The recent report that Lewis acids can facilitate H/D exchange 

between arenes and acidic media complicates analysis of transition metal-mediated C–H activation [64]. 

Thus, we sought a method to generate active catalysts in situ without the use of an additive Lewis acid, 

such as AgX.   

Recently, two Rh
I
 complexes bearing neutral bidentate nitrogen donors were shown to be catalysts for 

the rapid H/D exchange between benzene and trifluoroacetic acid [62]. The most active catalyst for 

aromatic H/D exchange, (FlDAB)Rh(COE)(TFA) (FlDAB = N,N'-bis-(pentafluorophenyl)- 2,3-dimethyl-

1,4-diaza-1,3-butadiene, COE = cyclooctene, TFA = trifluoroacetate) possesses easily modulated aryl 

groups and therefore was chosen for a study of the impact of substituent variation on catalytic benzene 

H/D exchange reactions. This report focuses on understanding the impact of the diimine ligand on 

catalytic H/D exchange activity of arenes in DTFA (Scheme 2). By varying the electronic character of the 
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ligand, the influence of electron donating versus withdrawing is studied. Further, the impact of sterics on 

catalysis is reported. These catalysts were then explored for C−H functionalization of benzene in acidic 

and neutral media.  

 

 

 

Scheme 2. Diimine proligands designed to vary the electron donor ability and steric profile of Rh
I
 

catalysts (iPr = isopropyl). 

 

2. Experimental 

2.1 Materials and instruments 

Unless otherwise noted, all synthetic procedures were performed under anaerobic conditions in a 

nitrogen-filled glovebox or by using standard Schlenk techniques. Glovebox purity was maintained by 

periodic nitrogen purges and was monitored by an oxygen analyzer (O2 < 15 ppm for all reactions). 

Tetrahydrofuran, toluene, and n–pentane were dried by distillation from sodium. Benzene was purified by 

passage through a column of activated alumina. Hexamethylbenzene was used as received. C6D6 and 

toluene-d8 were stored under a N2 atmosphere over 4Å molecular sieves. Trifluoroacetic-d1 acid was used 

as received. Nitrogen (99.99%) was purchased from GTS Welco and used as purchased.  GC/MS analysis 

was performed using a Shimadzu GCMS–QP2010 Plus system with a 30 mm × 025 mm RTx-Qbond 

column with 8 µm thickness using electron impact ionization. All other reagents were used as purchased 

from commercial sources.  

2.2 Ligand and complex synthesis  

2.2.1 Ligand synthesis  
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Most of the diimine ligands (diazbutadienes, or DABs) were synthesized following a modified 

literature procedure [65]: To a round-bottomed flask, 2.1 equivalents of the aniline, 1 equivalent of 2,3-

butanedione, 0.1 equivalents of p-toluenesulfonic acid, and 4 equivalents of trimethylorthoformate were 

combined in 10 mL of anhydrous methanol under air. The reaction mixture was stirred for 8 hours 

accompanied by the precipitation of a yellow solid. The solid was collected by filtration, washed with 5 

mL of cold methanol, and dried under vacuum. The identity of the DABs was confirmed by comparison 

to reported NMR data for 3,5-diMeDAB = N,N'-bis-(3,5-dimethylphenyl)-2,3-dimethyl-1,4-diaza-1,3-

butadiene)[66], 2,6-dippDAB = N,N'-bis-(2,6-diisopropylphenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene) 

[67], 2,6-diClDAB = N,N'-bis-(2,6-dichlorophenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene) [68], 3,5-

diCF3DAB = N,N'-bis-(3,5di(trifluoromethyl)phenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene) [69], 2,6-

diFlDAB = N,N'-bis-(2,6-difluorophenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene)[70] (2,4-diFlDAB = 

N,N'-bis-(2,4-difluorophenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene), (4-FlDAB = N,N'-bis-(4-

fluorophenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene)[71], (FlDAB = N,N'-bis-(pentafluorophenyl)-2,3-

dimethyl-1,4-diaza-1,3-butadiene) [65]. The ligands (2,6-dip-4-nitroDAB = N,N'-bis-(2,6-diisopropyl,4-

nitrophenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene)  and (4-nitroDAB = N,N'-bis-(4-nitrophenyl)-2,3-

dimethyl-1,4-diaza-1,3-butadiene) were prepared according to literature procedures [72], 4-nitroDAB was 

confirmed to reported NMR data [73].  

 

2.2.2 Procedure for synthesis of in situ generated diimine rhodium complexes 

Under nitrogen, the diimine ligand (2 equiv, 414.5 μmol) in THF (10 ml) was added to a stirring 

solution of [Rh(-TFA)(
2
-C2H4)2]2  (1 equiv, 207 μmol) in THF (15 mL). The solution immediately 

became deep purple to black. After 1 hour the solvent was removed in vacuo, and the resulting solid was 

washed with n-pentane (20 mL) and then dried under vacuum to yield the corresponding in situ rhodium 

catalyst.  

2.3. General Procedure for benzene H/D exchange  

Stainless steel reactors were used for all H/D exchange reactions. Prior to use, the interior of the 

reactor and stir bars were treated with 35% hydrogen peroxide, washed with acetone and dried at 180 °C. 

A stock solution of catalyst was made by placing 0.02 mmol of the Rh complex into a glass vial and 

dissolving in 6.2 mL (80.4 mmol) of trifluoroacetic acid-d1. C6H6 (360 μL, 4 mmol) was then added to the 

stock solution. Then, 1 mL of the stock solution was added to each pressure reactor, which was sealed 

under N2, pressurized with 800 psi N2, and placed in a heating block set to 120 °C, 150 °C or 180 °C. At 

the end of the reaction, the pressure reactor was allowed to cool to room temperature, slowly vented, and 

opened. An aliquot (1 μL) of the reaction mixture was placed into a vial that contained 1 mL of acetone. 

This vial was then analyzed by GC-MS. The extent of H/D exchange was analyzed by deconvolution of 

the GC-MS spectrum using an excel sheet developed by Periana, Goddard and coworkers [74].  

2.4 General Procedure for toluene H/D exchange  

To a glass vial, a stock solution was made by dissolving 12 μmol of Rh catalyst in 7.8 mL of 

trifluoroacetic acid and 240 μL of toluene-d8. Then, 0.8 mL of stock solution was placed into a J-young 

NMR tube. The J-Young NMR tube was then placed in an oil bath at 120 °C, 150 °C or 180 °C. After 15 

minutes, the J-Young NMR tube was removed from the high temperature oil bath, allowed to cool to 
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room temperature, and a capillary tube filled with DMSO-d6 was added. Then the reaction mixture was 

analyzed by 
1
H NMR spectroscopy.   

2.5 General Procedure for aliphatic H/D exchange  

Stainless steel reactors were used for H/D exchange reactions. All pressure reactors and stir bars were 

treated with 35% hydrogen peroxide, washed with acetone and dried at 180 °C before use. For liquid 

aliphatics (cyclohexane) the same procedure described for benzene (see above) was used. For methane, 

the following procedure was followed: A stock solution was made by placing 0.02 mmol of Rh catalyst 

into a glass vial and dissolved into 6.2 mL (80.4 mmol) of trifluoroacetic acid-d1. Then, 1 mL of the stock 

solution was added to each reactor, which was sealed under N2, pressurized with 100 psi of methane, and 

placed in a heating block set to 120 °C, 150 °C or 180 °C. At the end of the reaction, the reactor was 

allowed to cool to room temperature. Then, 2 uL of reactor headspace was analyzed by GC-MS. Extent of  

H/D exchange was analyzed by deconvolution of the GC-MS spectrum using an excel sheet developed by 

Periana, Goddard and coworkers [74] .  

2.6 General Procedure for arene functionalization in trifluoroacetic acid 

A solution was made by placing 0.02 mmol of Rh catalyst into a glass pressure tube and dissolved in 

6.125 mL (80 mmol) of trifluoroacetic acid. Benzene (90 μL, 1 mmol) and hexamethylbenzene (65mg, 

0.4 mmol) was added to the solution. Then, 2 mmol of oxidant was added to the glass pressure tube. The 

pressure tube was sealed and then heated at 150 °C or 180 °C. At the end of the reaction, the reactor was 

allowed to cool to room temperature. An aliquot (1 μL) of the reaction mixture was placed into a vial with 

1 mL of acetone. The solution was analyzed by GC-MS.  

2.7 General Procedure for arene functionalization in non-acidic media 

A solution was made by placing 0.02 mmol of Rh catalyst and hexamethylbenzene (65mg, 0.4 mmol) 

into a glass pressure tube and dissolved into 6.5 mL (80 mmol) of benzene. Then, 2 mmol of oxidant was 

added to the glass pressure tube. The pressure tube was sealed and then heated at 150 °C or 180 °C. At the 

end of the reaction, the reactor was allowed to cool to room temperature. An aliquot (1 μL) of the reaction 

mixture was placed into a vial with 1 mL acetone. The solution was then analyzed by GC-MS.  

2.8 Calculations for mechanistic investigation  

DFT calculations were performed using the M06 functional [75, 76] and the triple-zeta basis set 6-

311G**++ [77, 78] for all atoms except for rhodium. For rhodium, the triple-zeta basis set and 

pseudopotential LACV3P**++ [79] was used. Further details may be found in the supporting 

information. 

3. Results and discussion 

3.1 Synthesis of (DAB)Rh(TFA)(
2
-C2H4) complexes 

Diimine proligands were coordinated to Rh by reaction of [Rh(-TFA)(
2
-C2H4)2]2 with the diimine 

in THF (Scheme 3). To a yellow-brown stirring solution of [Rh(-TFA)(
2
-C2H4)2]2 in THF, the 
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appropriate diimine ligand was added. Almost instantaneously, the solutions turn deep purple/black. The 

Rh complexes are not isolated, but rather were used after in situ generation. 

 

 

 

 

 

 

 

Scheme 3. General in situ synthesis of rhodium catalyst precursors from diimines and [Rh(-TFA)(
2
-

C2H4)2]2. 

3.2 Catalytic Benzene H/D Exchange 

In 1958 H/D exchange of arenes with trifluoroacetic acid-d1 was shown to occur, albeit quite slowly 

(especially at lower temperatures) [80]. Therefore, for all reactions reported herein, we determined the 

extent of uncatalyzed H/D exchange between the substrates and trifluoroacetic acid-d1. The background 

H/D exchange reaction increased with temperature and was determined to be the equivalent of 7(1), 

15(4), and 96(9) turnovers (TO) (relative to standard amount of Rh catalyst, see below) at 120 °C, 150 °C 

and 180 °C, respectively (numbers in parenthesis are standard deviations from multiple experiments). 

These TO were subtracted from the results for catalytic H/D exchange using the various Rh catalysts. Our 

standard screening conditions incorporated 0.5 mol % (relative to benzene) of Rh catalyst with 20 

equivalents of trifluoroacetic acid-d1 relative to benzene for 4 hours (eq 1).  

 

Figure 1 shows the results of the catalytic H/D exchange between benzene and trifluoroacetic acid-d1. 

The effect of temperature was studied for all catalysts. The optimal temperature for catalysts 1, 5, and 7-

11 is 150 °C. Complexes 2-4 and 6 showed minimal catalytic activity at all temperatures studied. 

Catalysts 1, 5, and 7-11 are all active at 120 °C; however, only complexes 5, 7, 9 and 11 show activity at 

180 °C. The inactivity of complexes 1, 8, and 10 at 180 °C is likely due to catalyst decomposition. In 

general, more electron-withdrawing ligands appear to enhance catalysis. Catalyst 11 shows the highest 

TO at 150 °C with 140(14) TO after 4 hours, which corresponds to an apparent turnover frequency (TOF, 
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calculated by TO/time) of 9.7(9) x 10
-3

 s
-1 

(Table 1). Relative to the catalyst with a phenyl substituent 

(complex 1), which gives 25(7) TO after 4 hours (TOF ~ 1.7(5) x 10
-3

 s
-1

), the apparent activity of 5 is 

approximately 5.5 times greater. The complexes 8-10 all show TO after 4 hours between catalyst 

precursors 1 and 11. This is expected due to the increased number of electron withdrawing fluorine 

substituents on the aryl ring relative to 1 but decreased relative to 11. Comparison of data using 

complexes 8-10 reveals that the position of fluorine substituents on the phenyl rings makes little 

difference to catalytic activity. Comparison of data using catalytic precursors 2 and 5 highlights the 

impact of electron-withdrawing groups. Complex 2 possesses electron-donating methyl groups in the 3 

and 5 positions on the phenyl ring whereas 5 has trifluoromethyl groups in the 3 and 5 positions on the 

ring. No TO above background reactivity is observed using 2; however, complex 5 is an active precatalyst 

with 55(2) TO which corresponds to an apparent TOF of 3.8(1) x 10
-3

 s
-1

 at 150 °C. Furthermore, 

installing electron-withdrawing nitro groups in the para position of the the DAB phenyl results in the 

second most active catalyst of the series, as catalyst as 7 gives 82(2) TO (apparent TOF of 5.7(1) x 10
-3

 s
-

1
).  

 

We propose three possible rationalizations for increased efficacy for benzene/trifluoroacetic acid-d1 

H/D exchange using Rh complexes with electron-withdrawing substituents on the DAB ligand: 1) The C–

H activation occurs at the Rh
I
 oxidation state, and less donating ligands stabilize Rh

I
 in the presence of 

oxidizing trifluoroacetic acid whereas more donating ligands result in oxidation to Rh
III

; 2) the C–H 

activation occurs by an electrophilic substitution process (regardless of the exact mechanism, which could 

be "classic" electrophilic substitution, see Scheme 1, or concerted-metalation deprotonation) [81] and is 

enhanced by less electron-rich Rh catalysts; 3) the C–H "activation" occurs by an electrophilic aromatic 

substitution pathway, as we have previously demonstrated for other metals in acidic media [64], and more 

electrophilic Rh complexes enhance reactivity. We have no evidence that the DAB-Rh
I
 complexes are 

oxidized in the presence of trifluoroacetic acid. For example, no color changes are observed as would be 

expected for oxidation from Rh
I 
to Rh

III
.
 
As discussed below, the results of H/D exchange with toluene is 

most consistent with the electrophilic aromatic substitution pathway.   

 

Fig. 1. Results from Rh catalyzed H/D exchange between benzene and trifluoroacetic acid-d1 using 

complexes 1-11 (see Scheme 2). Conditions: 0.5 mol % Rh relative to benzene, 20 equivalents of 

trifluoroacetic acid-d1 relative to benzene for 4 hours at 120 °C, 150 °C or 180 °C.  

Increased steric bulk around the rhodium metal inhibits the catalytic H/D exchange. At all 

temperatures studied, complexes 2 and 4 show minimal to no activity above the background reactions. 
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There is a possibility that the alkyl groups are too electron-donating resulting in a rhodium center that is 

not sufficiently electrophilic. Installing a nitro group should mitigate the electron-donating effects of the 

alkyl groups. However, even installing a nitro group on the ligand, as in the comparison of 4 and 6, does 

not result in catalytic H/D exchange. This observation provides support that alkyl groups on the aryl 2,6-

positions sterically hinder access to the rhodium center, which likely inhibits coordination of benzene or 

trifluoroacetic acid.   

Table 1. Rhodium catalyst precursors and apparent TOFs (s
-1

) after 4 hours at 120 °C, 150 °C and 180 °C 

for H/D exchange between benzene (C6H6) and trifluoroacetic acid-d1.
a
  

Catalyst Precursor 
TOF (s

-1
) 

120 °C 150 °C 180 °C 

1 6(3) x 10
-4

 1.7(9) x 10
-3

 0 

2 0 0 0 

3 0 0 0 

4 0 0 0 

5 2.5(2) x 10
-3

 3.8(2) x 10
-3

 1.8(8) x 10
-3

 

6 0 0 0 

7 2.3(1) x 10
-3

 5.7(2)  x 10
-3

 3.3(7) x 10
-3

 

8 1.3(5) x 10
-3

 4(1) x 10
-3

 0 

9 1.5(7) x 10
-3

 2.9(6) x 10
-3

 1.6(8) x 10
-3

 

10 2(1) x 10
-3

 3(1) x 10
-3

 0 

11 5(2) x 10
-3

 9(2) x10
-3

 5.2(7) x 10
-3

 

a
 Reactions performed using 1 mL of a solution containing 80.4 mmol (6.2 mL) of trifluoroacetic acid 

with 4 mmol (360 L) of benzene with the Rh catalyst (0.5 mol % relative to benzene).  

 

3.3 Attempted H/D exchange with toluene, cyclohexane and methane 

The Rh catalyzed H/D exchange between toluene-d8 and trifluoroacetic acid was studied. The 

regioselectivity of the reactions was determined using 
1
H NMR spectroscopy (eq 2). For reactions with 

toluene, electrophilic aromatic protonation mechanisms favor the ortho and para positions whereas 

organometallic complexes often favor activation of the meta and para positions [64, 82]. The Rh 

complexes (0.5 mol % relative to toluene-d8) were heated (120 °C, 150 °C, or 180 °C) in trifluoroacetic 

acid with toluene-d8. After 15 minutes, the solutions were analyzed by 
1
H NMR spectroscopy to 

determine o:m:p ratio for proton exchange (Table 2). All of the Rh catalysts exhibited selectivity for H/D 

exchange at the ortho and para positions with (ortho + para) to meta ratios > 6:1, which is very similar to 

the ratio for trifluoroacetic acid electrophilic aromatic substitution (Table 2, Entry 1). None of the Rh 

catalysts activate the methyl group of toluene. These results point to a likely reaction pathway that 

involves protic electrophilic aromatic substitution rather than Rh mediated C–H activation. In this 

proposed reaction pathway, the Rh catalyst activates HTFA to liberate H
+
 (from HTFA) or D

+
 (from 
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DTFA), which then adds to the arene to form a Wheland type arenium intermediate. We have previously 

proposed a similar reaction pathway for Lewis acid mediated H/D exchange between arenes and acidic 

media [64].  

 

 

 

Table 2. Evaluation of Rh catalyst precursors 1-11 for the H/D exchange of toluene-d8 with 

trifluoroacetic acid and ortho:meta:para selectivity.
a 

Entry Catalyst Precursor 
Ratio of o:m:p 

120 °C 150 °C 180 °C 

1 HTFA  8(2) :1 : 7(2) 12(1) : 1 : 11(1) 9(0.2) : 1 : 7(0.4) 

2 [Rh(-TFA)(
2
-C2H4)2]2  8(0.3) : 1 : 7(0.3) 14(0.7) : 1 : 13(0.5) 12(1) : 1 : 9(1) 

3 1 12(3) : 1 : 16(3) 5(1) : 1 : 6.4(1) 8(2) : 1 : 8(2) 

4 2 5.8(1) : 1 : 7(2) 9(2) : 1 : 9(2) 12(4) : 1 : 10(3) 

5 3 4(2) : 1 : 3(2) 9.1(1) : 1 : 9(1) 11(1) : 1 : 10(1) 

6 4 5(2) : 1 : 6(2) 8(2) : 1 : 8(1) 7(1) : 1 : 6(1) 

7 5 9(0.2) : 1 : 8(0.2) 16(2) : 1 : 14(2) 14(2) : 1 : 10(1) 

8 6 9(0.1) : 1 : 9(1) 10(0.4) :1 : 10(0.3) 10(1) : 1 : 10(0.3) 

9 7 7(2) : 1 : 8(0.3) 7(0.03) : 1 : 7(0.2) 14(2) : 1 : 15(2) 

10 8 6(1) : 1 : 7(0.01) 8(0.3) : 1 : 8(0.3) 9(0.2) : 1 : 10(1) 

11 9 9(0.04) : 1 : 9(0.1) 8(1) : 1 : 7(1) 9(1) : 1 : 7(1) 

12 10 4(2) : 1 : 3(1) 9(0.7) : 1 : 9(1) 11(1) : 1 : 10(1) 

13 11 9(2) : 1 : 8(2) 10(0.3) : 1 : 9(0.3) 12(2) : 1 : 10(1) 
a
 Reactions performed using 0.8 mL of a solution containing 101 mmol (7.8 mL) of trifluoroacetic acid 

with 2.26 mmol (240 L) of toluene with the Rh catalyst (0.5 mol % relative to toluene).  

 

A recent report by Ison and coworkers disclosed that the mechanism for catalytic H/D exchange 

between arenes and acids using Cp*Ir(III) complexes varies as a function of acid identity [82]. The study 

showed that electrophilic aromatic protonation dominates in trifluoroacetic acid whereas an 

organometallic mechanism, where an Ir−Ph is formed and is subsequently protonated by the deuterated 

solvent, occurs in methanol and acetic acid. Under our standard conditions with rhodium complexes 7 and 



10 

 

11, no catalytic H/D exchange was observed between benzene and acetic acid, trifluoroethanol or 

methanol. These weaker acids (compared to trifluoroacetic acid) are most likely insufficiently acidic to 

promote the protic electrophilic aromatic substitution. These results suggest that Rh−Ph bonds are not 

likely formed under these conditions. 

C−H activation reactivity with other hydrocarbon substrates was attempted with the most active Rh 

catalyst precursors. Solutions of 0.5 mol % of 7 or 11 in trifluoroacetic acid-d1 were pressurized with 100 

psi of CH4 and heated to 120 °C, 150 °C or 180 °C. After 4 hours, the headspace of the reactors was 

analyzed by GC/MS. Analysis revealed no deuterium incorporation into methane beyond the natural 

isotope abundance. Under the same conditions C−H activation of cyclohexane was also examined, but 

again no deuterium incorporation was detected. This lack of reactivity is consistent with the proposed 

mechanism for arenes in trifluoroacetic acid which relies on the formation of an arenium ion. 

3.4 Attempted benzene oxidation in trifluoroacetic acid 

Rhodium complexes 7 and 11 were examined for benzene oxidation with a number of chemical 

oxidants. In previous work, we have shown (FlDAB)Rh(-TFA)(
2
-C2H4) catalyzes the oxidative 

hydrophenylation of ethylene (using Cu(II) salts as oxidant) to produce styrene [60]. Therefore attempts 

to generate other oxidation products from benzene were undertaken. A 0.5 mol % solution of 11 in 

trifluoroacetic acid with 50 equivalents of benzene and 100 equivalents of copper(II) acetate was heated 

to 150 °C for 4 hours. The reaction mixture was then analyzed by GC-MS. However, no evidence of 

benzene oxidation was obtained (i.e., no observation of PhOAc, PhTFA or biphenyl). Silver oxidants 

(AgTFA, Ag2O) and hyper-valent iodine (III) compounds, such as (Ph)I(OAc)2, were also used as 

potential oxidants, but the only functionalized arene products detected were from direct reaction with the 

oxidant alone.   

3.5 Benzene oxidation in non-acidic media 

The lack of benzene oxidation in HTFA (see above) could result from the failure of the Rh complexes 

to mediate benzene C–H activation in trifluoroacetic acid. We speculated that non-acidic solvents might 

allow arene functionalization chemistry (eq. 3). A 0.5 mol % solution of 7 or 11 in benzene with 100 

equivalents of copper (II) acetate was heated to 150 °C and 180 °C for 4 hours. Analysis by GC/MS 

revealed no benzene functionalization at 150 °C. However, at 180 °C the production of biphenyl and a 

minor quantity of PhOAc was observed when using Cu(OAc)2. Control experiments at 180 °C without 

rhodium catalyst produced the same quantity of phenyl acetate; however, no biphenyl was observed. The 

formation of PhOAc presumably is due to reaction with Cu(OAc)2. This was confirmed by running a 

control reaction in toluene and producing significantly more benzylic acetate than tolylacetate (see 

Supporting Information, Scheme S1). The production of biphenyl was also observed with catalyst 4, 7, 11 

and [Rh(-TFA)(
2
-C2H4)2]2 in similar yields. 

 

3.6  Computational investigation of mechanism 
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Our assertion that H/D exchange occurs by a Rh-mediated electrophilic aromatic substitution pathway 

is supported by DFT calculations. Table shows the calculated change in Gibbs free energy for protonation 

of arenes (benzene and toluene) by either HTFA or H2TFA
+
. H2TFA

+
 is formed upon Rh-mediated 

activation of HTFA: [Rh]
n+

 + 2HTFA  {[Rh]-TFA}
(n-1)+

 + H2TFA
+
. In Table 3 column 3, we see that 

HTFA solvent can indeed support the formation of arenium cations, since they are less acidic than 

TFAH2
+
. Also, protonation of the meta position in toluene is comparable to that of benzene since there is 

no stabilization of resonance structures due to a tertiary carbocation. Protonation of the ortho or para 

positions is more favorable due to the resonance structure with a tertiary carbocation. However, due to the 

high self-ionization energy of HTFA, formation of the arenium cation in neutral HTFA solution is quite 

uphill (Table 3 column 4).  

Our assertion is that our Rh complexes act as Lewis acids, coordinating to HTFA and enhancing its 

Brønsted acidity. We performed calculations for this process with 11 and our results are shown in Scheme 

4. The calculations reveal that (FlDAB)Rh
+
 is a very strong Lewis base and will coordinate two 

equivalents of TFAH in solution, forming (FlDAB)Rh(TFAH)2
+
 (top right). It is only 12.3 kcal/mol uphill 

to produce TFAH2
+
 from this species, much lower than the 45.8 kcal/mol required by HTFA self-

ionization. These results are provide an explanation for the catalytic ability of 11 and related complexes to 

help arenes undergo H/D exchange. 

 

Table 3. Calculated free energies of the formation of various arenium cations in uncatalyzed TFAH 

solution. In all cases, the temperature was set to 150°C. Note that the difference in ΔG's for the two 

rightmost columns is due to the self-ionization free energy of TFAH: 45.8 kcal/mol for       
         
         

       at 150 °C. 

 

Entry Reaction 
ΔG (kcal/mol) 

X = TFAH 

ΔG (kcal/mol) 

X = TFA
-
 

1 
 

-9.7 kcal/mol 36.0 kcal/mol 

2 

(ipso)  
-2.8 kcal/mol 43.0 kcal/mol 

3 

(ortho)  
-12.1 kcal/mol 33.6 kcal/mol 

4 

(meta) 
 

-8.1 kcal/mol 37.6 kcal/mol 
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5 

(para) 
 

-13.4 kcal/mol 32.4 kcal/mol 

 

 

Scheme 4. Energetics of (11)Rh
+
 complexing with TFAH. All free energies calculated at 150 °C and in 

kcal/mol. Note that the lowest energy species is (11)Rh(TFAH)2
+
 (top right) and that release of a proton 

from this species to form (11)Rh(TFAH)(TFA) (bottom right) is uphill by only 12.3 kcal/mol. 

4. Conclusion 

Eleven new Rh
I
 diimine complexes have been generated in situ and examined for catalytic H/D 

exchange between arenes and acidic media. The most active catalyst precursors possess electron-

withdrawing substituents on the diimine ligands. The mechanism of the arene H/D exchange reactions 

most likely involves protic electrophilic aromatic substitution with Rh acting as a Lewis acid to activate 

DTFA and provide access to D2TFA
+
. This was shown by monitoring the selectivity for H/D exchange of 

toluene, which revealed selectivity for the ortho and para positions over the meta position. DFT 

calculations demonstrate the viability of our proposed mechanism of H/D exchange. Attempts to extend 

catalysis to other solvents and aliphatic hydrocarbons were unsuccessful, which is consistent with the 

proposed protic electrophilic aromatic substitution. Although, attempts to functionalize benzene in acidic 

media were unsuccessful with a range of chemical oxidants, catalysis in neat arene was successful, but 

with low turnover number of ~2.  
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Figure S1. Pressure reactors used in H/D exchange. Left – Unassembled reactor parts. Middle - 
Assembled reactor. Right – Fully assembled reactor in aluminum heating block. 
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Figure S2. Representative 1H NMR spectrum of H/D exchange of toluene-D8 in HTFA.	   

 

	   	  

Ortho-‐position	  

Meta-‐position	  

Para-‐position	  



S4 
	  

	  

Details on the DFT calculations 

All DFT calculations were carried out using the Jaguar software version 8.4 developed by 

Schrödinger Inc. [1] Geometry optimizations were carried out on initial guess structures, and 

vibrational frequencies were calculated to confirm the optimized geometries as intermediates (no 

negative curvatures) and to calculate the zero-point energy, entropy, and temperature corrections 

to obtain the free energy profile. Solvation energies were calculated using the PBF Poisson-

Boltzmann implicit continuum solvation model [2] in Jaguar, with a dielectric constant of 8.55 

and a probe radius of 2.451 Å based on trifluoroacetic acid. 

All geometry optimization and vibrational data were calculated using the double-ζ basis set 

6-31G** [3] for all elements except Rh, and the double-ζ basis set and pseudopotential 

LACVP** for Rh [4]. The B3LYP density functional [5] was used for Rh species whereas M06 

[6] was used for the organic molecules. In both cases, the Grimme post-SCF D3 correction for 

van der Waals interactions was added a posteriori [7]. After geometry optimization and 

vibrational calculations, single point gas-phase and solvated energies were calculated using M06-

D3 with the triple-ζ Los Alamos basis set and pseudopotential (LACV3P**++) modified to 

include f functions and diffuse functions for rhodium [8], and the 6-311G**++ basis set [9] for 

the other atoms.  

The enthalpy for each molecular species in solution was calculated using the formula H = 

Egas + ΔEsolv + ZPE + Htot, whereas the free energy was calculated using the formula G = H – 

TStot + RTln(34.7) where the last term represents the free energy change of compressing 1 mol of 

an ideal gas (volume 34.7 L at 150°C) to 1 L (for 1 M standard concentration). Note that all 

calculations were performed with T set to 423.15 K (150 °C).  
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