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We formalize the procedure of functional development, in a general theoretical framework.
Expansion in a functional basis set, and fitting via an error functional to a data set, casts functional
development as a variational problem to obtain the functional basis-set and data-set limits.
Overfitting is avoided by defining the optimum number of parameters. We implement our theory for
an investigation of first- and second-order generalized gradient approximdiba) to the
exchange-correlation and kinetic energy functionals, withinaéninitio model. A variety of
functional basis sets, including a general finite-element representation, is constructed to represent
both one-dimensional and multidimensional GGA enhancement factors. An extensible data set
consisting of 429 atomic and diatomic, neutral and cationic species, at stretched and equilibrium
geometries, is constructed from Moller—Plesset level exchange-correlation energies, and Hartree—
Fock kinetic energies. The range of chemically relevant density and gradient variables is examined.
Exhaustive fitting investigations are carried out, to determine the accuracy of the GGA
representation of thab initio models. In the exchange-correlation case we demonstrate that we can
reach the functional basis-set and data-set limit, which correspond to a root-mean¢sgseageror

of ~10 mH (6.3 kcal/mo). Changing the functional basis set, higher-order density variables such as
the kinetic energy density, multidimensional enhancement factors, and exact exchangeoyield
significant improvementand our fits represent an effective solution of the GGA problem for
exchange-correlation, at the Mgller—Plesset level. In the kinetic energy case, accurate functionals
with rms errors of~80 mH (50 kcal/mo) are developed. These exhibit a beautifully simple kinetic
energy enhancement factor, and are a step towards orbital-free calculatiorZ008©American
Institute of Physicg.S0021-960600)30110-4

I. INTRODUCTION wards more systematic approaches to functional develop-
ment(see, for example, Refs. 13 and)lido general theory
of functional development has yet appeared.

In this work, we tackle the problem of functional devel-
opment afresh. We move away from functionals based on a
specific physical model. Instead, in common with recent ap-
proaches of Becke and othérs:’ we rely on extensive fit-

Elp]=Tdpl+Exdpl+Ilp]+ f p(r)v(r)dr, (1)  ting. A general theory of functional development, whigys-

tematizeshe procedure of fitting, is developed. In Sec. II, we
where TJp]=—3 ming_ (W[SVIV), JIpl=3/fp(r;) define the functional basis, data set, and error functional.
X p(ry)r drydr,, andu(r) is the external potential. Within such a language, functional development is reduced

As an approximate theory, the accuracy is limited by theto the attainment of the functional basis and data set limits.
exchange-correlation functionglJ p]. Another open ques- This is facilitated, in practice, by a rigorous solution of the
tion remains an approximation to the Kohn—Sham kineticproblem of overfitting.
energy functionalT{ p], which will facilitate orbital-free Our methodology will be applied to the determination of
calculations. E,dp] andT4 p]. However, we need to limit thieorm of the

Recent years have seen an increase primarily in the nuniunctional. We choose the GGA as our framework to study
ber of exchange-correlation functiondisith notable devel- the question: what is the limiting accuracy of our represen-
opments in kinetic energy functionals). These have been tation of the exchange-correlation and kinetic energies? In
of the generalized gradient approximatiaciBGA) form>*  sec. |1l we review the density variables, and enhancement
which are integrals of local functions of density variabtes  factors, which define the GGA functionals. In the case of
[Vpl, VZp, 2|V ¢i|* (where ¢ is an orbita), or of higher £ [,] we also review exact exchange.
order. Different philosophies in functional development are | sec. v, we proceed, within aab initio philosophy,
summarized in the revi%vvs by Perdew and co-workefd 5 5 practical implementation of our fitting theory. Since ex-
and Becke and othefS-*" Although the trend has been to- ¢t data sets are generally hard to obtain, we aim instead to
choose awvell-defined ab initianodel, and proceed therein to
dElectronic mail: gkc1000@hermes.cam.ac.uk exhaustively examine how exact is a density functional rep-

Density functional theory is now a mature field. Many
applications are routinely found in the literatdre.

Kohn—Sham density functional theoty,partitions the
total energyE[p] as
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resentation possible within the GGA framework. We aimto f can be expanded in afunctional basis

(i) reproduce the exchange-correlation energy of a secondu(vy,vs, .- .,)},

order Mgller—PlesséP2)—Hartree—FockdF) model, and

(i) reproduce the HF kinetic energy. Multiple functional ba- = c,ui(vq,v9, .. .,); (4
i

sis sets inp, |Vp|, V2p, 2|V ¢;|? are defined. A new fea-
ture of this work is the introduction diinite-elemenfunc-  ;, may be truncated to yield a finite functional basisrof
tional basis sets, which are general and easily extensible ®nctions.

new density variables and multiple dimensions. A simple,  The complete data séd will be the exact functional
extensible data set is constructed frah initio Mgller— Fexacfp]_ It is the choice of data for a finite data set which
Plesset and Hartree—Fock calculations, containing 429 atomgaracterizes different philosophies in functional develop-
and diatomic molecules, charged and neutral species, at equfrent A finite data set is often a set gfdata pairs{p,F},
librium and stretched geometries. such as the G2 thermochemical data'eised by many
Our extensive fits are presented in Sec. V. We perform &orkers(see, e.g., Refs. 15,17, and) 18ut may equally well
set of fitting experiments, which tests the ideas develope@e constructed from limits and asymptotic conditions, as ad-
abOVe, for the eXChange'Correlation and kinetic energy fUnCvocated by Perdew and CO-WOI’ké?‘ﬁO’lee shall denote

tionals. By exhaustive optimization, we reach the functionakhe finite data set aB(p), with p data pairs or conditions.
basis-set limit ofE,J p] and T4 p] within the GGA form.

The exchange-correlation GGA problem is nearly solvedC Fitting and testing sets
within our MP2—HF model. In the case of the kinetic energy,
accurate kinetic energy functionals ef80 mH (50 kcal/ Let us consider fitting with a finite function basisu to
mol) rms accuracy are developed. a finite data seD(p). Our optimum functionaFqy(n,p,u),
We summarize our work and conclusions in Sec. VI. is determined through
min A[F(n,p,x),D(p)]=F(n,p,u) —Fo(n,p,u). (5

II. GENERAL THEORY OF FUNCTIONAL Fet

DEVELOPMENT The data seD(p) is known as thditting set which defines

Here. we introduce the theoretical concents in the emthe functionalFg(n,p, ). For brevity, we shall now write
T O ' P! the errorA[Fo(n,p,u),D(p)] asAel (NP, ), p].

pirical construction of functionals. In what follows, function- To fully utilize the information in our data set, we can

als A[B] are often written in the abbreviated forf evaluate the error of the functiong}(n,p,x) over a differ-
A. A formal statement of fitting enttesting seD(p’). This error is denoted o[ (n,p,«),p’].

The empirical procedure to fit a functionglto data set ) . o
D may be stated as follows: gived, we wish to find the D- Functional basis set and data-set limits

closest possible function&l[ p] in a trial functional spacé. The data set limit of the errak, and the optimum func-

If we define a metric, or error functiondl[F,D], then by  tional F, are easily defined. If we expand the data set to
minimizing the errorA with respect td-, the optimum func- completion, which we write loosely as the linpt— o, then

tional Fq is given by the corresponding limits of the erraky[(n,p,u«),p] and
min A[F,D]=F—F,. (2)  functional Fo[n,p,,u] are their data set_limits._ _
FeT We would like the functional basis-set limit to be de-

fined analogously as the limit— . However, for finite data
sets, if the number of basis functionsis greater than the
B. The functional basis and data set number of data pointg, the error vanishes and the coeffi-
cients in the basis expansidd) are not uniquely defined.
This is the well-known problem ajdverfitting In general, the
degeneracy iF; may be felt long before>p, resulting in
unstable fits, and functionals that perform poorly outside of
the fitting set.
We digress to emphasize thaterfitting is not limited to
ta sets of the forfp,F}. The exact fittinglor overfitting
of asymptotic and exact conditiorsn also worseifor not
improve the performance of a functional; such conditions

The space of all functionals is very large. Naively, we
expect the space of all functionals @fto map each point in
peR®toF eR; thus, the dimension of the space of all func-
tionals would be, in some rough sensR3(R. Clearly this
is too large a spac@& within which to perform the minimi-
zation (2).

Instead, we restrict ourselves to the subspace spanned
general nonlocal functionals of the multi-dimensional inte-

gral form . o
are usually termed too restrictive. For example, it is gener-
F= [ oo | fLoyry (r) ally believed that successful GGA exchange functionals do
vatfa)s - Uallm/s not reduce to the exact gradient correction in the slowly
(3)  varying electron gas limi? Similarly, the exact reproduc-
Uz(rl), e ,l)z(rm), [P ]drl, e ,drm,

tion of the asymptotic exchange energy density in finite sys-
where v; is a density variable; that isw;e{r,p, tems is now not believed to be particularly important for the
|[Vp|2,V2p, ... }. The kernelf is afunctionof an arbitrary  success of an exchange energy functidiah any case, al-

finite number of density variables. though the use of exact conditions to construct functionals is
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undoubtedly successful and useftilf must still be regarded  with two basis sets: a functional basis, and a data set. This
as a fitting procedure, and consequently a careful consideconcludes our discussion of the formal theory of fitting. We
ation of the general validity of the fit is important. now apply our formal machinery, to the determination of

One way forward is to observe that a useful functionalE,Jp] and T4 p]. First, however, we consider the general-
basis-set limit is obtained when fitting over a complete datdzed gradient approximation form.

set. Here, we define the functional basis-set limits as Ill. THE GENERALIZED GRADIENT APPROXIMATION

Aol (0,%0),%]= lim lim Aq[(n,p,u),p]=0, (6) FORM
n—e poe As noted in Sec. II B, if we wish to determine a func-
Fo(e,%0) = lim lim Fo(n,p, ), ) ti'onal in pragtice, the minimi;ation procedure must be car-
N poo ried out within some approximate form. The workhorse of

. . . - density functional theory is the generalized gradient approxi-
where the dependence gnis lost in the functional basis-set mation (GGA), a subset of the fornf3). We shall use the

limit. Fy(e°,0) may be regarded as the best functional that
can be written in the approximate for(8). Since the trial GGA as the framework for our study G p] andE,d p].
space of the approximate form is smaller than the space of all. The exchange-correlation functional

functionals, we have the inequalit$6). Thus, the error
Ag[ (e0,),%)] is a measure of the severity of the restriction
of F to an approximate form. Informally, we say that func-
tional F may not be fitted exactly by an approximate form,
although any finite set of data may be fitted arbitrarily well.

Let us now consider the spin-density functional
Exd paspgls Which admits a separation into like-spior¢)
exchange, correlation and opposite-spi@B) correlation
components?2

Exc[pa va] = ECa,B[pa =pﬁ]

E. Convergence to the limit and overfitting

. - . + E +E . 9
Given a finite data set, how can we approximate the (re%,ﬂ}( xoolPoltEcool pol) ©

dataTset an(Ij b<t':1S|sths et (I;mtlts. ¢ limit id itabl Although the above separatiof®) admits a particularly
0 eévaluate the data-se |m!, consider a suita esimple treatment of spin effects, it must be remembered that
sequenceD(p;),D(py), . .. .D(p), with D(p;)CD(p2)C,

Do . as one equatioit does not uniquely define three unknowns
" ’,CD(p)’ and the data-set limits o, andFo may in Ecag Exvo Ecoos- FOr example, we may trivially redefine
principle be extrapolated. Ecos—Ecyst AEc
. . . L aB af oo
th tHdovf\{ever,ﬂ:no[)e care 'f Ir?e%detlj:m tfz_ik_|tng thte S_OUb:E limit The GGA form, first introduced by Perd@and Becke,
hat defines the basis-set _mf ). For finite p, faking the attempts an extrapolation from the uniform electron gas
limit n— o results in overfitting. Thus, we now introduce the

notion of anoptimum number of parameterg nfor a finite (UEG) energy densitiesiz

data seD(p). The corresponding erraxg[ (ng,p,x),p] and

functional Fy(ng,p,u) may loosely be regarded as the

“functional basis-set limits” for the finite data s&(p), if

the dependence on the type of bagiss sufficiently weak. ECU(,:f €0 cor(V1g U0y - - - I, (11
Let us first assume that we do have a complete data set

Exa'crzf GQESfXUG(UlovUZ(r! s 7)dr! (10)

D(<0), but we only fit to the finite subs&(p). Then, let the B UEG
complete data set be the testing set, and evaluate the error ECas™ €CapfCap(v1,V2, ... )N, (12)
Aol(n,p,p),]. The opt_lmum_ ”.“'T‘ber of parameters is wherev; is a density variable. The exchange energy density
then seen to be that which minimizes the error, UEG : . UEG
€x,o Can be written in closed form ey,
Aol (Ng,p,1),%]= minAg[(n,p,u),%]. (8)  =—3(3/4m)3p, while accurate parametrizations exist for
n—ng the correlation energy densitieg,,, andec,g. In this work

Equation (8) is the definition ofn, and does not rely on We choose the widely implemented Vosko—Wilk—Nusair
statistical assumptions common to the usual goodness-of-fiversion V) functional (VWN),?® with the oo anda 8 com-
approach. ponents extracted following Stodit al?*

Now, the above procedure may easily be modified to ~ The choice of density variables specifies therder of
accommodate the reality of finite data sets. The quantitfh® GGA. Up to second order, it is conventional to use the
Ao[(Ng,p,u),] is a data-set limit and may be obtained by density variables; e {p,x?,y,}, wherex,y, = are defined to
a suitable extrapolation from a sequence of data sets, as d@e dimensionless gradients

scribed above. Thus, we may obtain an estimateyefeven x=|Vpl|/p*?, (13
for the largestof our finite data set®(p). s 53
- y=Vplp> (14)
So far we have assumed the existence of some error
functionalA. For finite data sets, the choice &fmay lead to N
different functionalg=,. We return to this point in Sec. IV C. =2, |Vi|2p%"?, (15)
I

Thus, to summarize: for giver, once the optimum
number of parameters has been determined, the problem ahd the generalization to spin requires addingubscripts to
functional determination is a variational minimizatidb) all density variables. The inclusion aof, defined via the
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Kohn—-Sham orbitals of the systeand here chosen to be A second-order orbital-free GGA approximation will have
dimensionlessstems from a consideration of the series ex-enhancement factors of the form
pansion of the off-diagonal elements of the Kohn—Sham _ 2
density matrixt®?> Higher-order gradients may also be con- fr =1 (X5 Yo). @7
sidered(see Neumann and Harfdy but lead to numerical
difficulties in quadrature.

From the above, we define a class fowét-order GGA
functionals, where the enhancement factors have the form In the previous sections, we developed a general theory

_ 2 of fitting, and introduced the GGA framework. We now pro-
fX(r(r fX(m’(Xa-) ’ (16) . . . .
ceed to a practical implementation, with a development of

IV. DEVELOPMENT OF A FITTING METHODOLOGY

fevo=fcoo(Po X2), (17 functional basis setg, data set®, and an error functional
fCa,B: fCaﬁ(p!XZ) . (18) i .
. A. The functional basis
Second-order GGAs, also sometimes called
meta_GGAS’L’O have enhancement factors of the form The enhancement factors defined in Secs. Il A and 1l B
) are one- or multidimensional functions of density variables.
fxoo=Fxooe(XG Yo 7o), (19 \We now construct basis sets to expand these functions, in-
Fone=Fcma(pu X Yo T (20) cluding a general purpose finite-element representation. Our
A A A approach will be numerical in fashion, i.eve do not con-
feap= fCaﬁ(p,xz,y,r). (21) cern ourselves with a specific physical model to generate our
basis sets

It is often neglected that even in the first-order GGA, the
correlation components araultidimensionaffunctions (the )
exchange component has palependence from homogene- 1- The B97 basis

ity under coordinate scalif. Most commonly, however, A widely used basis for the first-order exchange-
first-order GGAs are constructed as functionsxéfonly.>  correlation GGA form was introduced by Beckewhere

At the second-order level, all enhancement factors are mul-

Yoo
tidimensional. _ 2 2\7i—-1
fxoo= Cil Yxoo X5/ (L Yx oo XS, , 28
In recent years, the GGA form has been extended to X izl L (147 )] @8
include a fraction of exact exchan{&?®?° Denoting the ne
GGA component byEZ® p] and the exact exchange com- ¢ _ V' 2 2\7i-1
= Ci Xl (1+ X , 29
ponent byE® p], such hybrid functionals are of the form coo ;1 LveraXol (1 7e00XG )] 29
Exd P psl=E Lpawppltex 2 (EX*p,)). & -
R e SRR Y feap= 2, Gl veapa/(1+ yeapia) ™ (30

(22)
with x5,=x%+x5 (twice s, in Becke’s work®), and yy,,
B. The kinetic energy functional =0.004, ycye=0.2, yco5=0.006(preoptimized by Becke
The coefficients in the basis expansidty. (4)] are clearly
the coefficientgc;}, of which there arevy,,+ NcyotNeap
in total. We shall refer to this basis as the B97 basis.

The B97 basis has obvious shortcomings, as it does not
span the complete space of first-order GGAs, since the cor-
relation enhancement factors have no expjcitependence,
and depend owfw as opposed t&?. However, it is acknowl-
edged as a successful basis, and thus we shall often use it as

B 5/3 2 a standard basisagainst which to compare our other basis
Ts[p,,]—f P ( Cet CuG -+ )dr, @) gets. Replacindy,, by fr_in Eq.(28), we also use the B97
where Ce=2(672)23, Cy=<. The first term is usually Dasis to expand the kinetic energy enhancement factor.

referred to as the Thomas—Fermi term, and the second as the
von Weizsaker term. The expansiof24) immediately sug-
gests the GGA form, first investigated by Lee, Lee, and*Parr

We first consider spin,

Tlpl= > Tdp,l. (23
oefa,p}

Although empirical studies of kinetic energy functionals are

scarce, there is a well-known gradient expanbiahich to

second order is

2. Finite-element basis F1,F2

Little is known about the general form of the enhance-
Ts[pg]=f erfr (V1o:V2g, ... )N, (25  ment factor, particularly in the case of the kinetic energy
° e enhancement factor. For this reason, we now introduce
where ETS=p‘2/3. From the coordinate scaling i p], the finite-element representations.
enhancement factor has no explipitdependence; thus, the A simple way to generate a grid inlacal density vari-
first-order GGA enhancement factor has the form able is to choose grid points that divide the density variable
2 into intervals, which each carry an equal probability of find-
fTs: fTs(Xa)' (26) ing an electron within. For example, let us consider a grid in



J. Chem. Phys., Vol. 112, No. 13, 1 April 2000 Energy functionals 5643

Linéarinterl?dation flo,w)=(1-t)(1-uw)f(v;,w)+t(1-u)f(vis, W) (33

i) / f Ftuf(u g W)+ (I-uf(ow,y),  (34)

/\ t=(0=0)/(v41-v)), (35)

‘ | U= (W= W)/ (Wi = W) (36)
\ ‘ / For eacherllhancement.facto_r represen.ted in thi; fa;hion,

v, Vo v, the numberof linear coefficients in our basis expansions

clearly the number of grid points used to represent the factor.
Equiprobable intervals in v For example, in two dimensions, wittl,,d, grid points
along each of the two directiona=d;d,.
FIG. 1. F1 basjs: schematic reprgse_ntation of enhancement factor repre-  This conceptually simple basis, denoted by F1 in 1-D,
sented by function valueK(v;) on grid inv; . and F1d,,d,] in 2-D, may be considered as the workhorse
of the finite-element representation.

b. Basis F2[d] - Polynomial interpolationRestricting
the density variable e {p,x?,y,7}, with i—1 intervals of ourselves to a one-dimensioralpoint grid{v;}, we define
the form[v;,v;;1]. Choosing some data séwe shall use a transformed variable(v) =y, (v —v;)/(1+ v,(v—v)):v;
our largest data set in this workat each point in space <v<vj;1, giving
there is a densityp(r) associated with the corresponding d
v(r); thus, the probability of an electron within the inter- f(v)= 2 Ci,jz(v)j, (37)
val [v;,vi;+1], P;(v) is given by j=0

whered is the maximum degree of the interpolating polyno-
Pi(v)zf p(r)drivi<v<v;,;. (31 mial, and y,=1/v, wherev is the median ofv over the
largest data sdtisted in Table J. Continuity of the enhance-
We then choose the grid poinfs;} such thatP;(v) is the ~ Ment factor at each of the grid pointsfixes one coefficient,
same for alli. Such an “equiprobability” partitioning is ap- Cchosen to be; 4=c; .1~ ={-g¢; ;2(v;+1)'
plicable to all density variableg,x?,y,~ and spin counter- The number of linear coefficients associated with this
parts. representation isl(m—1)+ 1. For fixedn, by increasingd,

Multidimensional enhancement factors are represente€ are balancing an increase in the order of the interpolation
on multidimensional grids that are product grids of one-2gainst a decrease in the number of points at which we
dimensional grids generated in the above fashion; for exsample. Extensions to higher dimensions are possible, but
ample, the enhancement factiy,,(p, ,x2) would be rep- have not been pursued.
resented on a grid formed from the pairs of grid points ~ The advantages of the finite-element representation are
{poi ,X(er}' Where{p(,i},{x(z,j} are generated from E¢31). clear. Enhancement fa_ct_ors in any den_5|ty variable may be

The second feature of a finite-element basis is the choickePresented, and multidimensional basis sets that span the
of interpolating function between the grid points. We inves-entire space of GGA functions are easily constructed. A
tigate two different types of functions: drawback is that the grid pqints, by their construc_t(Gﬂ),

a. Basis F1/F1[d,d,]- Linear interpolation Let us de- formally depend on the choice of data $&t buF ev!dence
note our generic enhancement factorfbyhen, we represent Suggestdsee Sec. IV B Pthat such a construction is stable
our enhancement factor simply by the values af the grid ~ OVer the range othemically relevantlensities.Finally, we
points, denoted;. These form the linear coefficients to op- Note that our finite-element basis set does not have the
timize in the basis expansion, i.€¢;}={f;}. In between usual phy.s,lcazl1 " motivations characteristic of other
grid points, we interpolate, e.g., in 1-D, for density variablerepresentations®
velp,x?y,7} such that;<v<wv;,,, our basis representa- 3 wixed basis M

tion of f(v) is The B97 basis provides a global representation of the

F(0)=F (o) (0 — ) F (v s ) — F(p: ) enhancement factor, while the finite-element basis sets are
=1+ =) =T (Vi ~v) 3p  Piecewise in nature. We might thus imagine a mixed basis as
being the most flexible representation. For an enhancement

This representation is illustrated in Fig. 1. factor f, with total linear parameters, we may choosel;
Extensions to higher dimensions are simple. In 2-D, withterms of the B97 form, and, terms of the F1 form, giving
density variableg ,w, with vi<v<v;, 1, Wisw<w;, 1, the mixed basis Wd,,d,], wheren=d;+d,.

TABLE I. Median values of density variables ovByg.

Pu s p X2 X5 X Ta 75 T Yo Vg y
0515 0709 1.064 26977 28.619 17.608 11.847 12.061 7.635 8932 9250 5811
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We finish by mentioning that any basis set may be augTABLE IIl. Number of systemg in data setD, .
mented by exact exchande® through theansatz(22).
This introduces the parametex; .

6 9 12 15 18

m

p 68 144 216 303 429

B. The data set

Choosing a data set must remain a somewhat arbitrar?z.)
procedure. We have been guided by the followaiginitio .
aims (i)—(iii ):

Choose a maximunz, z,,. If z,,=18, for example,
we consider all species containing elements up to Ar.
(i) Choose geometriege.g., re, Stretched, etg.and

(i) it must be systematically extensible; chargegqneutral, cations, etcfor the systems.

(i) it must coverchemically relevantensities;

(i) it should be well-balanced across the periodic table  For this work, we chosa,=2, z,,=18, diatomics at

(i.e., nonbiased, like aab initio method. bondlengths¢,1.5r,, and neutral and-1 cationic species.
In principle these parameters generate a total of 719 systems,
1. The MP2—HF model system these being
To systematically extend a data $eim (i)], we must be a=1 : HHeHeLiLi*---ArArt

able to generate pairg (F) at will. This will not be possible
with an experimental data set, such as the G2 data set. In
principle, ab initio methods may be used to generate such HeHe HeHe - HeAr HeAr"
data, i.e., to provide a mapping gf to the exchange-
correlation and kinetic energies.

In this study, we choose the simpledi initio model of
correlation, namely MP2 theory. We choose the unre- Note that by changing the parameters, the data set may be
stricted form to handle open-shell systems. The density systematically enlarged, in a well-balanced fashion.

(and orbital$ and corresponding density variabley, = are We would have liked to increasa,,, as our data set
generated from unrestricted HF theory, while the exchangecontains only systems of low atomicity. In particular, there
correlation energy corresponding to such an HF density isire effects which are believed to be more important in larger
defined as the sum of the MP2 correlation and HF exchangsystemdfor example, exact exchang®.However, since the
energies number of systems increases exponentially vath, and

E ]:E""P2+ EHF 39) since we have also included stretched systems, we believe

xclP c X our data set to be a reasonable compromise between univer-

We shall refer to this as the MP2—HF model of exchange-sa"ty and practicality. Extensions to triatomics and larger

correlation. Similarly, the kinetic energy correspondin tomolecules are possible if we limit the type of atoms in-
- >lmiarly, gy P 9 volved; i.e., choosing some smallay, for such systems.
the HF density is defined as

For our analysis in Sec. Il E, we will require a partition-

Tdp]=THF. (39)  ing of our data set into a sequence of data sets. Fixing all

other parameters, a simple sequence of datalsgntss ob-

tained by varyingz,,,; thus, our largest data set is written as

D.g, while the data seD,q, for example, would contain all
The set ofchemically relevant densitigsim (ii)] is the  atoms, diatomics, at bondlengths1.5r., neutral and cat-

set of densities of molecular species, with arbitrary numbersons, for elements up to Ne. The sizéhe number of data

of atoms, nuclear charges, electron number, and geometrpairsp) of D, for different z,, are listed in Table II.

Thus, a chemically relevant density may conveniently be in-

dexed by four parametefs,z,9,q}, these being
a: the number of atoms;

a=2(re,1.5ry) : HyH; HHe HHe™ --- HArHAr*

ArAr ArAr * .

2. Specification of the data set

3. Technical construction

Z: a vector denoting the nuclear charges; Geometries of the 719 systems in the data set were op-
g: a vector bundle denoting the geometry of the systemtimized at the UHF/TZ2P level. The exchange-correlation
g: the total charge of the system. energy was then computed using E8g) at the UMP2/TZ2P

To develop a functional witlab initio predictive charac- level, and the kinetic energy at the UHF/TZ2P level. The
teristics [aim (iii)], our data set must be evenly balancedspecific Gaussian TZ2P basis 48t4? are available as
across the periodic tablenlike existing data sets such as the supplementary Table Asee Sec. VI
G2 data set Also, since chemistry can be described prima-  Spin multiplicities were assigned using a simple algo-
rily on a local level(e.g., in terms of atoms and functional rithm based on the aufbau principle. Note that data were not
groups, we construct our data set “from the bottom up” in collected for systems which
terms of system size. This suggests the following algorithmti)

for constructing a class of data sets: dissociated, or did not converge in the geometry

optimization,
(i) Choose the maximura, a,,. If a,=2, for example, (ii)  did not converge in the HF-self-consistent fi¢BICH
we consider atoms and diatomics. procedure.
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Probability of density variable less than v, {P(v'):v'<v}

FIG. 2. Chemically relevant regions of density variableés.v=p, (i) v
=x, (ii)v=7, (iv) v=y.

Of these,(ii) was the greatest difficulty, since the SCF

procedure converges poorly for many systems, and does not

always converge to a minimum.

After removing systems according to critefia and (i),
our largest data sdb,g contains 429 systems. The specific
429 systems are available as supplementary Tabise®
Sec. VII.

The density variablep,x?,y, (and spin components
were computed at the UHF/TZ2P
Euler—Maclaurif® + LebedeV® quadrature grid using the
CADPAC program packag&. The grid error is estimated to be
better than 1 in 10for all quantities. Our use of Hartree—

Fock orbitals, rather than Kohn—Sham orbitals, will lead to a

slightly differentr, but for approximatind=,J p] (where the

contribution of the gradient correction is expected to be

smal) this is unimportant.
The finite-element basis seB1,F2,M require the par-

titioning of the density variables into regions of equal prob-
ability. These equiprobability grids for each density variable

are constructed over the largest data Bgj. The finite-
element grids yield insight into the “chemically relevant”
ranges of the density variablgsx,y,r and spin counter-
parts. Figure 2 plots the variables={p,x?,y, 7} against the
probability of finding a particle withv’'<v, {P(v'):v’

<wv}. The exponential nature of the density and its gradient

can be clearly seen from the plots. The Laplagidakes on
predominantly positive values in the important regions of th
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A widely used error functional is given by the rms error
of the total energy components. Thistal error functional,
denotedA,, is defined as

1/2

A[F.Dl=| 2 (Flpi]=F)?p| (40)
where F[p;] is the trial (kinetic or exchange-correlatipn
functional, and~; is the corresponding “exact” input energy
component for syster) in the data seD with p data pairs.

However, it is most convenient to choose samehich
allows relative errors over the sequence of data Betszy,
=1,...,18to bairectly compared. Such& should remain
relatively invariant in magnitude over the sequence of data
sets, characterized I»4,, which is not true ofA,.

Define thegeneralizedormation energyr;, for the dif-
ferent classes of systefdiatomics AB and atoms JAin our
data set as

F:{[AB]=F[AB]-F[A]—F[B]. (42)
F{AB*]=F[AB*]-F[A]—F[B], (42)
FALAD)]=F[A(Z)]-F[A(Z-D)]. (43
F{AT]1=F[A"]-F[A]. (44)

Note that the name “generalized formation energy” encap-
sulates several familiar quantities: the first quantity above is

level on a largetne ysual atomization energy; the third represents the energy

released““fusion energy”) when a hydrogen atom is fused
with a neutral atom of chargé— 1, and the last is simply the
ionization energy.

Then, we define an approximately invariant error func-
tional A¢>° as

1/2
AfF.DI=| 2 (Filpil=Fn)?p (49
For most of the studies in this work, we shall useas our
error functional.

It remains to mention the least-squares equations. For
the functional basis expansidd) of F¢[ p;], minimizing the
coefficients{c;} of the error functionalg\; or A; leads to a
set of linear least-squares equations, which may be inverted
do find the optimum{c;} (which then may be used to con-
struct the enhancement factors, e.g., in the F1 basis, the

de={t.

data set. Further analysis shows that these plots exhibit simi-

lar characteristics if we construct the probabilRyv ') over
some smaller data sﬁzm:zm< 18 (although the range gb

would be smaller. This demonstrates the dimensionless na-

ture of the density variablet, y, 7), which implies that

over chemically relevant densities, the median values o
e

these density variables are approximately invariant to th
choice of systentor our data seD,g, the median values of
v are listed in Table I.

C. The error functional

We return to our choice of error functiond. In the
following discussion, we will us@nergy componerb de-
note thekinetic or exchange-correlation components

V. THE FITTING EXPERIMENTS

Recall from Sec. Il, the three important concepts in func-
]tional construction are the attainment of tuactional basis
setanddata-set limits and the choice ofunctional form

The above concepts are now examined by the following
general investigations:

(i)  functional basis-set limit: examination of conver-
gence, determination of the optimum number of pa-
rameters, and optimization for each of the basis sets.

(i)  data-set limit: information on the limit is provided by

the convergence to our largest data Bej.
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(iii)
first-order and second-order GGAs and multidimen
sional forms.

Subsection A is concerned with the exchange-correlation
functional, while Subsection B deals with the kinetic energy g

functional.
Because of the

scribed in the following format:
opt/eval(description A[ (x,Nn,zy),z,,]-

The notation for the error functional was introduced in

Sec. Il C. Note that, since our sequence of data sets is con

veniently indexed byz,, (see Sec. IVB we have changed
variables to consider the errdr as a function ofz,,, rather
thanp (the number of data points iDZm). In addition, opt/
eval: opt is a minimization oA over the parameters ifte-
scription. eval is an evaluation d, for the functionalF
determined in the preceding opt.

For example,

Opt({c},d,dl,nE)Af[(,u,n,Zm),z,’n],
for z,=z,=18,u={B97,F1,F2d],M[d1,d2}

{Nxoo Ncoo Neapf=11.1,1, ... {16,16,16

indicates:(i) optimize a functional over all expansion coef-
ficients ¢ (and basis parameters d, d1,n2) for some basis
={B97,F1, F2d],M[d1,d2}, by minimizing the error\ in
the generalized formation energies over the fitting Bgt
=D1g. The number of terms used in the expansion of ex
change and correlation component&y,,,Ncyo Ncash)
are the same(ii) evaluate the error of the optimized func-
tional over the testing seEDZr/n:Dls. (iii) Repeat procedure
for different basis setg:, and different numbers of basis
functions(3 to 48.

A. The exchange-correlation functional

We now carry out a set of fitting experiments for the
exchange-correlation functional. Sections VA 1-V A3 deal
with one-dimensional fits, where all enhancement factors ar
functions ofx? only. Other density variables and multidi-

mensional enhancement factors are treated in Secs. VA4—

V A5. Exact exchange is treated in Sec. VAGBG.

1. General convergence: Functional basis sets
a. EXperiment 1 )too‘(xi)fooa(Xi)rfCaﬂ(Xz;Xezlv)
Convergence with number of parameters
Opt({c},d,dl,naAf[(,u,n,zm),z;n],
for z,=z,=18,u={B97,F1,F2d],M[d1,d2},

{nXO'lT’nCUU’ncaﬁ}:{lylil}i PR ,{16,16,16

Plotted in Fig. 3 is the erroA¢y againstn, for the dif-
ferent basis sets. For=3, F, is a reoptimized local density
approximation (LDA) with an error of 20.9 mH(13.10
kcal/mo). The addition of the first gradient terms in ex-

functional form: comparison of representations, e.g.

large number of fits performed &
(~100000), we give only a representative sample of fitting £ o014
experiments and results. Our fitting experiments are de-

G. K.-L. Chan and N. C. Handy

- L 2 B
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Numbelr5 of pa:anllgters: n 2

FIG. 3. rms erroiA¢q in E,. with different functional basis sets, as a func-
tion of the number of parametens (i) B97 (experiment 1, (ii) F1 (experi-
ment 1), (i) F2[2] (experiment 1, (iv) M [optimized d1,d2 (experiment
1), (v) B97 (optimized{Ny,, ,NceeNcagt) (EXperiment 2h (vi) B97 +
exact exchangéexperiment 6

change and correlation lead to a rapid decrease in the error.
However, there is a plateau at10 mH (6.27 kcal/mol, for

all four basis sets-an indication that we are reaching the
functional basis-set limit. The polynomial interpolation F2
(line iii) leads to no improvement over the simple F1 basis
(line ii). The mixed basis Mline vi) gives the best results,
and generally improves on B9{ine i) by about 0.5 mH
(0.31 kcal/mo). However, all four basis sets perform simi-
larly, and the error is essentiallgdependent of basis and a
function of the number of parameters n

The last point, that thperformance of the functional is
often independent of the nature of the functional basis expan-
sion usedis one which is often overlooked in the literature.
It is common to correct a deficient functional by mixing in
(with an adjustable paramejex new term which is “physi-
cally justified.” However,one must distinguish between the
success of a term due to its physical construction, or due to
the additional parameter it entaildn other words, would
another ternf{together with another adjustable parameber
just as good? Our results suggest that additional parametri-
éation, rather than physical construction, may lie behind the
success of many functional forms.

Previous studies of the B97 functiofat’ have found
plateaus at roughly 5 mKkB.1 kcal/mo). As our plateau is
insensitive to the choice of nonlinear parameters
Yxoo1Ycoo Ycap 1N the BO7 basis, and the size of the data
set(see Sec. V A 8 we conclude that our relatively high rms
error, must reflect an additional difficulty associated with
working in the MP2—HF model of exchange-correlation.

If we plot the enhancement factofs,,, fcoes fcap
separately for the different functional basis sets, we find that
there is great variation in their form. This does not come as a
surprise, since the spin separati@ is not unique. A more
useful quantity to examine graphically is the total enhance-
ment factorfyc, defined via

Exd pa-ppl= f EXECfxc(pa.pp X5 X5, x2)dr.  (46)
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Iargexf,, and correspond to very modest values for the en-
hancement factor over chemically important valuesf,o,f as
can be seen from the previous plots above.

To summarize:

13

(i) for all basis sets, we reach the same plateau in the
error at roughly 10 mH6.27 kcal/mol, which is near
the functional basis-set limit within the MP2—-HF
model,

(i)  the error is a function of the number of parameters,
and almost independent of the choice of basis,

(i)  our enhancement factor is a well-converged simple
form, and obeys a number of exact conditions for

095 ' ; ' i ‘ 6 ' 8 ' 10 chemically relevant ranges of density variables.

IS

=

Total enhancement factor f, .

FIG. 4. The closed-shell total enhancement fadigs(x) at p=1.06 (ex-
periment 1. (i) B97 (15 parameteps (ii) F1 (12 parameteds (iii) M [1,4] 2. Optimization of number of parameters

(15 parametedsp=1.06, (iv) M [1,4] p=0.15, (v) M [1,4] p=10.0.
The determination of, through Eq.(8) requires a com-

plete data set as a testing set. Here, we make the simplifying
Plotted in Fig. 4 is the total enhancement facfge for  approximation(!) that for suitably small fitting setsuzm,
closed-shell systemspE1.06, x,=Xg=x/2), determined 7 <15) D;; may be regarded as a complete data set with
from experiment 1, with F112 parametejsand B97, M1,4]  regard toz,,.
(15 parametejs As can be seen, over the range of chemi- 5 Experiment 2a: )tmr(x(zr),fCUU(Xi)'fCaﬁ(XZ;ng)
cally relevantp,x, there isgood convergence to the same (i) Fit to fitting set
form, which indicates the stability of our fitting methodol-

ogy. Moreover, the simplicity of the form is encouraging. opt({c}) A (x,n,2),2y] for z,=2,=6,9,...,18,
We now see whether our enhancement factors obey im- _
o . w={B97,F1,
portant exact conditions over the chemically relevant ranges
of p,x. Plotted are the enhancement factors fdrlM] at p {Nxoo Neoo Neag={1,1,1, . .. {16,16,18.

=0.15 andp=10.0. The noncrossing conditithf yc(p,X)

<fu(p’,X):p>p’ is satisfied. All enhancement factors sat-  (ji) Optimize with regard to over testing seD;g

isfy the Lieb—Oxford boundnow tightened, by Chan and

Handy, see Ref. 20fyc=<2.21. Finally, we note that in the opt(n) Aol (1.1,2m), 2],  for z,=6,9,12,15,

limit of zero gradientx (not in the chemically relevant r_

range, the different basis sets yield LDA coefficients which Zn=18, and other parameters as above.

differ from the exact coefficient, by a modest 7%—-10%. The errorA;y as evaluated in experiment 2aii exhibits

Thus, we conclude that to some extent, exact conditions anan early minimum corresponding g as can be seen in Fig.

bounds in the chemically relevant regions of density vari-5, where we plotA;[ (B97n,9),18 againstn. We tabulate

ables are approximately encapsulated within our data set. estimated for the B97 basis, and F1 basis in Table IV. The
As a representative functional, the coefficients and gridvalues for the largest data d@{g are obtained by extrapola-

for the 15-parameter M,4] functional are given in Table lll.  tion.

Note that the large coefficients at the edge of the grid points  The relatively smalhy, even for the largest data deig

are merely an artifact of the last grid point being at such(429 systemg reflects the difficulty of the exchange-

TABLE Ill. Exchange-correlation functional from experiment 1 using1M] basis: enhancement factors and
rms error. The basis sets are described in Sec. IV A.

B97 polynomial ordei — 1 1

fxo coefficient 0.656 25

oo coefficient —0.18264

fcap coefficient —2.012 29

Grid points ) (see[39]) 0.000 000 16.817 23 42.539 36 2.396 v4uy®
fxoo(X2) at grid points 1.054 720 1.044 054 0.8922912 4.152 X172
feoo(X2) at grid points 0.7145858 —0.5935331 2.760651  —1.806 30 107
Grid points &?) 0.000 00 10.777 98 27.248 52 9.834 54007
feap(x?) at grid points 0.6330249 1.946 529 0.635097 1 3.933448°

Ato [(M[1,4],15,18,18)/mH 11.10
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U T T T TABLE IV. Estimated optimum number of parameteng (exchange-
0.024 - N correlation functionglas a function of data s@, , as in experiment 2a.
Znm 6 9 12 15 18
0.021 |- e
3 B97 9 12 12 15 15
£ F1 6 12 12 12 12
:l: 0.018 - —
=}
8
£
S 0015 -
3. Convergence with data sets
o012 - a. Experiment 3a: §,5(x5),fcoo(X2),fcap(X%X5)
| | ‘ | | | | Convergence with fitting set

opt{c}H) A (u,ng,Zm), 2], for z,=2z,,=6,9,12,15,

Number of parameters: n

FIG. 5. Determination of optimum number of parametdtg): rms error of n= {BQ?F]}, Nxoo=Ncoo=Ncag -
functional fitted toDg evaluated oveD,g: A;o[(B97,n,9),18 againstn
(experiment 2 Plotted in Fig. 6 is the resulting errak;y againstz,,

(line i: using B97. As the fitting data set,, is increased, the
error A¢g remains stable. We thus conclude that our large
correlation problem, and is consistent with other results irdata setD;g is well convergedto the data set limit with
the field'>*° Note thatn, seemsnsensitiveto the choice of respect taz,,. However, to infer the same for the other data
basisu. set parametersa(,,g,q,,) will require further investigation,
For the exchange-correlation functional, there remairwith expensive larger data sets.
additional discrete degrees of freedom: the distribution of  b. Experiment 3b:;UU(xi),fCW(xf,),fCaﬁ(lexg\,)

parameters betweeny,,,Ncqs Ncag- We optimize over Convergence with testing setvaluate the error of the
these parameters by generalizing experiment 2a. Thus:  functionals determined in experiment 3a, over larger testing
b. Experiment 2b: £,,(x2), fcoo(X2), fcap(X?%X3) sets

(i) Repeat experiment 2ai with

{NxooNcoo Neagt =111k}, for i=1,...,12,
: Also plotted in Fig. 6 isA¢g with z,,=6, as a function of
j=1,....12, k=1,....12. the testing set parametef,. With both the B97(line ii) and

(i) Repeat experiment 2aii and optimize over F1 basis setfline iii), the functionals fitted to the small data
{Nxo0 Ncoo Neaph Zn=6.9, . ..,18,2,,=18. setDg, using the optimum number of parameters, are

The n,y determined from experiment 2b are found to bevery stable to increasing the test set parameferNote that
essentially the same as those from experiment 2a. Listed ithe B97 basis sets and F1 basis sets perform similarly well.
Table V are the optimum distributions of parametersThus, although different in nature, these basis sets indeed
{Nxoo Ncoo Ncapl With the (B97, F1) basis sets, forz,,  offer a similar description over the range of chemical densi-
=z/,=18. Recall from Fig. 3, that there is a large drop in theties, in agreement with our earlier plots of the enhancement
error betweem=3 andn=6. We see that this is probably factors(Fig. 4).
due to an improvement in the description of exchange. Finally, in Fig. 6, we also plot the error

In Fig. 3 we also plotted the errdy;o[ (B97,n,18),18)],  A[(F1,9,6)z,] (where we have used greater than the op-
with an optimized distribution of parameters, as comparedimum number of parameters=9>n,) against the test set
with the B97 functional with an even distribution of param- z/,. Here, the error of the functional is very unstable to in-
eters(see experiment)1 For a total number of parameters creasing the size of the testing set, which is a clear sign of
n=15, our optimized parameter distribution yields an im-overfitting. Since purely by examining a convergence curve
provement of roughly 0.25 mkD.16 kcal/mol. such as the one in Fig. 3, it would have been hard to decide

To summarize; whether to stop any=6 (optimum or n=9 (as abovg our

(i) A minimum according to Eq(8) may be found to accurate choice aifi, for the data seDg is a success of our
determineng. ng is small,~15 for our largest data set and formal theory for determiningy;.
insensitive to the basia. To summarize:

evalAso (u,Ng,2Zm), 2], for z,=6,9, z,,=6, ...,18.

TABLE V. Optimized distribution of parameters for exchange and correlation for increasing total number of
parameters (fitted to D,g), as in experiment 2b.

3 4 5 6 7 8 9 10 11 12 15

B97 {Nxwo Neoo Neagd L1 21,1 311 213 223 323 243 253 263 273 573
Fl{nXU(r!nC(rU!nCaﬁ} 2.212 3,2,2 2,2,4 3,2,4 2,4,4 2,5’4 4,4'4
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FIG. 7. Second-order density variables and two-dimensional enhancement
factors €. () fxoo(Xe):Tcoo(Xo) feap(X) (experiment 4 (i)
fxoo(7o) feool( 7o) feap(7)  (experiment & (i) fx,0(Yo) feool(s),
feap(7) (experiment 4 (V) fxoo(Xy 1 70) feoo(Xe s 7o) feap(X,7) (experi-

ment 9, (V) fxyo(Xo176) s feoolPo 1X0) feap(p,X) (€Xperiment &

FIG. 6. Data set convergencg,): rms errors(i) Increasing fitting set,,
(experiment 3 (ii) Increasing testing set,,: B97 (experiment 3} (iii)
Increasing testing set, : F1 (experiment 3 (iv) Increasing testing set, :
F1 (nonoptimum number of parametgrs

(i) Our largest data set is well converged to the data-set
limit, with respect to the nuclear charge parametergensity variables®'* For example, the kinetic energy den-

Zm. sity is believed to be important in describing nondynamical
(i) Our choice ofn,y yields functionals that are stable to correlatiorf” in stretched bonds, and also in the description
increasing the size of the testing set. of so-called congested systems such gs Mowever, we
have not found noticeable improvements in the description
4. Density variables of such systems with our set of optimized functionals.

The enhancement factors in this section, due to their

Up F'” now, we have investigated the commonest formdependence on multiple density variables, cannot be simply
of the first-order GGA where the enhancement factors are . :

) 5 . L ) ¢ompared graphically, and we do not include them here.
functions ofx“ only. Before moving on to multidimensional

.However, we have found that in general, the dependence on

fits, we investigate one-dimensional enhancement factors in, ; . . ; .
) . . e density variables is encouragingly smooth and simple.
other density variables. Writing the exchange-enhancement To summarize:

factor asfy,,.(v1,), and the correlation enhancement factors (i) The usual choice oy, (x). fcye(X), feap(X) is near

aS feqo(v2g), feap(v2), and allowinguy v, to range over optimal. Second-order density variables, suchfgas,(y),

{p,x?,y,7}  we have 16 combinations uv(,v,) f f . :
ool T)fca ield a modest improvement at best.
=(p.0).(pXD), - 0,7 (YY), coo(7):Feas(7) ¥ P

a. EXperiment 4 )to‘o‘(vla)ifCO'a'(UZO')foaB(UZ)

For each combinationv( ,v,) repeat experiment 1, for
n=F1. 5. Multidimensional fits

Plotted in Fig. 7 is the erroA;y againstn, for selected

. . L . . . A i AITA, th A h - lati
density variable combinationsx?,x?) (line i), (r,7) (line s stressed in Secs , the GGA exchange-correlation

enhancement factors are multidimensional functions. Thus,

ii), (y,7) (line iii). Although not shown, the density-only for a complete solution to the GGA problem weustper-
(p,p) enhancement factors perform woissy about 10 mH form multidimensional fits. We now consider enhancement

(6.27 kcal/mol] than.the grad|§nt-var|able_ enhance.ment fac'factors that are two-dimensional functions. Writing the en-
tors. The usual choice ofx(x) is near optimal, particularly

. . hancement factors asfy,,(V1s:02¢)fcos(Vae Vag),
nearny~12-15. The use of second-order gradient varlable%aﬁ(vsyw), and allowing vy, ... v, to range over

yields at besta_modest improvement: with the ghoy;e-x, (px2y. 7, we have 18 combinations v{,v,,vs.v4)
we gain approximately 0.25 mkD.16 kcal/mo) improve- = (X2 X) V.7, 7)
ment over the X2,x%) combination near the optimal number a’y’péx ,e.ri.rﬁ(,ant, {_) '{ 010 02) Fowu (Vs as)
of parameterg12). Other choices of density variablfsuch ' P © RooiPlen 20/ i Coot B30T da)s
X R feap(vsva)

as (r,7)] give similar curves that lie slightly above ther For each combinationvl,v,,vs.v4)
curve. m2Es Al

We note that recent studies of popular functionals byopt({c},d1,d2,d3,dfA [ (u,n,zy),z;,]
Cohen and Handy have yielded the similar conclusion that
little benefit is to be gained from the use of second-order
density variablesr,y.3®

Such findings contrast strongly with the physical reasons
that have been put forth to advocate the use of second-order for d;,d,,ds,d,<12d,d,, dsd,<24.

for Zm:Z;n:lS, ,U,=Fl,n><m,=d1d2,

Ncogo™ nCaﬁ: d3d4;
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d,,d,,d3,d, denote the number of grid points along the parameter LDALE)H(F (where cx=0.28), the improvement
v1,U2,U3,04 axes, respectively. The conditions on,d,, from including exact exchange is very small. In agreement
ds;,d, set above ensure th@} no axis has more than 12 grid with this, ¢y in the 13-parameter functional is onty0.0137.
points, and(ii) each enhancement factor has a maximum ofSimilar conclusions are drawn from a study of the total error
24 parameters. The optimization ovey,d,,ds,d, ensures A,.
that for each combination that yields the samé¢he one that Adamsori® and van Voorhis and Scusefiain empirical
minimizes the error is selected. fits to the G2 data set, have also concluded that exact ex-
Plotted in Fig. 7 is the errol;, againstn for some change provides little improvement. However, in recent fits,
representative combinations x,¢,p,x) (line iv) and  work by Becke and othet$®has demonstrated a significant
(x,7,x,7) (line v). Since the smallest two-dimensional grid effect of exact exchange.
contains 4 points, the minimum=12. This may seem a paradox. However, we note thah as
As one can see from comparing Fig. 3 with Fig. 7, thereincreases and the basis sets saturate, the improvement
is little real improvement in going from one-dimensional to yielded by exact exchange becomes negligible, as does the
two-dimensional representations of the enhancement factormagnitude oty , and thus the two basis sets B97, BH,"
At n=12 the error is already in the plateau region; near theconvergeto roughly the same limitThis implies exact ex-
previously determinedy~12—-15, no improvement over the change offers no real improvement to thenctional form
one-dimensional enhancement factor results is seen. It miglaindfunctional basis-set limjtout may yield an improvement
be argued tha, is slightly larger for two-dimensional en- in A (i.e., quicker convergence to the limiwhile the func-
hancement factors, and that the F1 basis is not optimum, btional basis is not saturated. This then calls into question the
be that as it may, we do not expect a drastic reduction inmportance of the adiabatic connection argurfiéfur exact
Asg. exchange. However, we stress that verification of these ideas
From our two-dimensional studies, it seems that the oneis needed for exact exchange-correlation energies op-
dimensional limit is already close to the limit of the second-posed to our MP2—HF modgelperhaps with larger Gaussian
order GGA form. Increasing the dimensionality of the en-basis sets.
hancement factorgby going to higher-order GGAsseems To summarize:
unlikely to yield any improvemenin principle, for a com- (i) Exact exchange does not significantly improve the
plete data set, multidimensional enhancement factors musfinctional basis limit However, for modest parameter val-
yield some improvement, but this is expected to be smallues, convergence to the limit may be accelerated. This may
and appears to be nonexistent for our finite data sets. be the case when representactexchange-correlation en-
From Sec. V A4, and the current section, we summarizeergies.
our findings as:

(i) Little improvement is gained from increasing the di- B. The kinetic energy functional
mensionality(and ordey of the enhancement factors,

(i)  The functional basis-set limit of the second-order
GGA form can give only a very modest improvement
over the first-order GGA form.

We now turn our attention to the kinetic energy func-
tional. Our treatment in this section will be simpler, as many
aspects of our methodology have been discussed in the pre-
ceding sections.

We thus conclude that since no benefit is gained from . . )
going to higher-order density variables, or higher dimen-1- Functional basis convergence and density
sions, and that convergence with respect to the functiona‘f"’mab/‘c)s
basis has been achievéB8ec. VA, we have achieved a a. Experiment 7: fs(vg) for v ={x,y}
near-optimum representation of the GGA for the MP2—-HF  (a) General fit

model. ' /
opt{c},d)A{(u,n,zy),z,,] for z,=z,=18,

6. Exact exchange pw=F1, (B97,Md] for v=x), n=1,...,24.

We assess the extension of the GGA form to include  Repeat forA; .
exact exchange.
a. Experiment 6: £,,(x5). fcoa(X2), feap(X5 X5, EX-

Opt({C},Cx)Af[(/.L,n,Zm),Z{.n],

(b) Determineng
Repeat experiment 2ai, 2aii, with=1,...,24.

For a first investigation of the kinetic energy, the error in

’ HF
for z,=7,=18u=B97+E}", the total kinetic energyA, is of the most interest. Plotted in
_ Fig. 8 isA,g againstn, with basis sets Fldensity variables
Nyoo Neoo Neagt={1,1,1}, . .. {16,16,16, © 15840 agall DS ; ;
(MM capt =1 ¥ { 6 x?: line i, y: line iv), B97 (line ii), and M (density variable
N=Ny,s+Ncoet Neapt 1. x2: line iii). There is a rapid convergence of the error to a

plateau~ 100 mH(62.70 kcal/mo). Again, as in Sec. VA1,

the convergence to the same plateau with the B97, F1, and M
Plotted in Fig. 3 is the erral;y againstn for the B9 basis sets indicates that we are near the basis-set limit. There

EQF basis, and the B97 basis. Aside from the initial four-is also little to choose between tié andy representations.

Repeat, using;.
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FIG. 8. rms errorA, in the total kinetic energyT, as a function of the ~ F!G- 9. Kinetic enhancement factéf (x,). (i) Second-ordefvon Weiz-
number of parameters) F1 (experiment 7p (ii) B97 (experiment 75 (iii) sacken gradient expansion(ii) B97 (12 parametes (iii) F1 (14 param-
M [optimized d1,d2 (experiment 7g (iv) F1 (y) (experiment 7a eters, (iv) M [9,3] (12 parametejs (v) Conjoint exchangéy,, M [1,4].

Although not plotted, as expected the plateau in the errofent 5, but as in the case of the exchange-correlation en-

A¢q occurs at a slightly lower levek-50 mH (31.35 kcal/ hancement fgctors, have _found no |mpr0vement. -
mol). The relatively lowA,q is a cause for cautious optimism

The determination of, in experiment 7b is somewhat for orbital-free density functional theory. However, it must

more difficult than with the exchange-correlation case, as thQe r(almernbereg that the' real .te?t ofla T'nftlg energy func-
minimum with respect ta is not easy to locate. The, for tlongrhls Its pf?r prmancedln "‘.‘g”a;"’ff‘? ca (r:]u aBt/llgn Kineti
the B97 and F1density variablex), and M1 representations e coefficients and grids defining the[8/9] kinetic

for D5 are estimated to be 12, 14, and 12, respectively. ThENergy function_al referred to above_a_re listed in Table VI.
corresponding errors id, with n, parameters for B97 and We remark again that the large coefficients at the edge of the

F1 (density variablex) basis sets oveD,s are 102.1 mH grids are an artifact of those grid points at “infinity.” The
(64.01 kcal/mol and 88.2 mH(55.30 kcal/mo), respec- large values of the B97 coefficients are normalized by the

tively. With the 12-parameter mixed badi§ 3,9], the error correspondingly small values Q&fl in the B97 basid28§).
is even lower at 84.6 mH53.04 kcal/mo), which is small Finally, we need not worry about the oscillating values of the

given the large magnitude of the total kinetic energy Sucr{:oefﬁcients, as the resulting form of the enhancement factor

errors are a real improvement over the gradient expansior Well converged and stable, as can be seen in the plots of

for comparison, the erraA; of the gradient expansio24) the next section.
over Dyg are 28141 mH to zeroth orddiThomas—Fermi (i)  The kinetic energy can be fitted well, with rms errors

kinetic energy, and 1788 mH to second ordéFhomas— in the total kinetic energy of only-80 mH (50 kcal/
Fermi+ von Weizsaker. Refitting the first two terms in the mol).

gradient expansion, we obtain 1568 mH to zero order, andii)  The functional must be tested in a variational calcula-
228.3 mH to second order. tion before further conclusions can be drawn.

An accuracy of~80 mH (50 kcal/mo) in chemical sys-
tem_s is similar to the accuracy qf the local-density approxi—zl Kinetic energy enhancement factors
mation for exchange. The individual errors for molecules, ]
available in supplementary Table B, are again good, the T1here have been few studies on the foff(w,). In
maximum error being only-300 mH (188 kcal/mo). Fig. 9, we plotfy (x,) for F1 (14 parameters: line)ii B97

It is natural to consider the second-order GGA (12 parameters: line jij and M 3,9] (12 parameters: line jv
fr.(X;.Y,). We have carried out fits analogous to experi-The stability of our fitting approach is exhibited by the beau-

TABLE VI. Kinetic energy functional from experiment 7a usind %3] basis: enhancement factor and rms error. The basis sets are described in Sec. IV A.

B97 polynomial order i—1 1 2 3 4 5 6 7 8 9
coefficient 72.48942 —1837.165 15132.22 —82593.86 310818.1 —778775.3 1189505—-981182.0 331102.8
Grid points &) 0.000000 26.97723 2.396 7TA4A(?°

(see Ref. 39
fr (X,) at grid points 2.002066 7.002935 3.922 33BF*

Ay [(M[9,3],12,18,18)/mH 84.56
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tiful convergence ofall basis setsto a general form: the rately, to within ~80 mH (50.16 kcal/mol. Moreover, a
enhancement factar (x,) initially grows with X, has a  beautifully simple form was found for the enhancement fac-
characteristic kink, and then gradually levels out. tor f1 (x,). We recognize that the construction of a viable
Also plotted in Fig. 9(line i) is the well-known second kinetic energy functional fovariational orbital-free calcula-
order gradient expansion of the kinetic enefgyhich yields tions still remains a difficult problem. However, our results
an enhancement fact@g+ Cy/(x,)2. We see that the larg- indicate that an empirical approach may be the way forward.
est corrections from our empirical enhancement factor occur  Our investigations have pushed the limits of the GGA
at smallx, but in general, they oscillate around the second{form, thelocal integrals(10)—(12). We have also shown that
order gradient expansion. little further gain is expected from going to higher-order or
Not plotted iszS(y,,). This function is approximately higher-dimension enhancement factors. The next level ap-
linear iny, but less well characterized thdq (x,). None- ~ proximation would be to considedouble integrals of the
theless, it is extremely encouraging that the kinetic energfo™ (3)- In the exchange-correlation case, the incorporation
enhancement factor is well approximated by such simpl@f €xact exchange may be regarded as a step in this direction,
functions. but as we have shown, it is questionable how successful this
Lee, Lee, and Parr have conjectured that the exchangéi- The functional space is enormous, and the convergence

only enhancement factdr(x,) resembles thd (x,) due with respect to the dimensionality of the integral to the exact
. s .

to the so-called conjointness of the kinetic and exchangt];:unCt'ona1I may not be rapid.

energies. While we cannot strictly extradty(x,,) from our We finish with some general remarks on our fitting

. Lo methodology and philosophy. Our aim has been to be sys-
work, we may us€y,, as a first-order approximation. We . . .
tematic and exhaustive, and we have not developed function-

have plottedC¢fy,, for the M1,4] basis of Sec. VA1. As " .
. als based on any specific physical model. We have also fa-
can be seen, there is a broad resemblance between the ap- » e .
ored a ‘“brute force” fitting technique over the

proximate exchange and kinetic energy enhancement factors, . : . .
which is consistent with the conjointness conjecture incorporation of exact constraints. With respect to physical
To summarize: ' models, our examinations have in fact shown that physical

. . . . . : terms may often owe their improved performance solely to
(i) f1 (x,) rises withx and tails off. It is a simple func- . o .
s increased parametrization. We have questioned, for example,

tion anq behaves like an atteljuated second-order gradieme importance of “physically important” terms such as the
expansion. Furthermore, there is some resemblance betweﬁfﬁetic energy density and exact exchange. Of course, we
the kinetic energy and exchange energy enhancement factof$ynotunderestimate the importance of physical reasoning!

Nonetheless, we feel from our investigation that extensive
VI. CONCLUSIONS and systemati@mpirical studies form a viable alternative

In this work we have demonstrated the power of a sys&nd in many ways complementary way forward, and are of-
tematic and general method to construct functionalsten the only way to distinguish theelative importancein
Amongst other things, our experiments have included examiPractical situations, of different physical arguments and con-
nations of functional basis sets, convergence of data Setg;raints. If a physical constraint is sufficiently important, it

optimization of numbers of parameters, and multidimen-Will be recovered in an empirical approach.
sional fits. Finally, we stress that our functional basis sets are gen-

In the exchange-correlation case, we have found th&ral, and we have a well-balanced data set, which is in many
functional basis-set limit within the GGA representation. ToWays complementary to the more commonly used data sets.
the extent to which the MP2—HF model, and our data set ofur method for determining the optimum number of param-
atoms and diatomics, reflects the true exchange-correlatiopters is also superior to less rigorous methods. Thus, we be-
problem, we believe we have obtained a solution of the GGAieve that our fitting methodology will advance the system-
problem consistent with our original ain®—(iii). It may atic development of future functionals.
seem disappointing that we could not reduce the rms error
below a relatively high plateau, which for the MP2-HF
model~10 mH (6.27 kcal/mo). However, let us remember VII. SUPPLEMENTARY MATERIAL
that the GGA approximation proposes a model of exchange- . _ )
correlation by simple universal functiorithe enhancement Additional supplementary data, including supplementary
factorg of a few variables! While the utility of this immense 'ables A and B, may be obtained from the auth@sK-L.
simplification reflects the power of density functional theory, Chan, gamet@theor.ch.cam.ag.ok on the web at:
we should not overestimate its abilities. http://ket.ch.cam.ac.uk/people/garnet/supplementary.html

Of course, we have chosen to study a well-defimexdiel
of exchange-correlation only, and going to more exact
.exchange—corr.elat_ion energies and polyatomiq systems Wil ckNOWLEDGMENTS
influence our findings. We are currently pursuing these ex-
tensions. However, we feel that the broad conclusions will  P. H. Cake, J. H. Y. Wei, F. A. Pahl, A. J. Cohen, and R.
remain similar. D. Daniel are acknowledged for interesting discussions.

In the case of the kinetic energy functional, we foundG.K.-L.C. Chan acknowledges Christ’'s College and EPSRC
that kinetic energies could be reproduced relatively accufor financial support.
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