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We formalize the procedure of functional development, in a general theoretical framework.
Expansion in a functional basis set, and fitting via an error functional to a data set, casts functional
development as a variational problem to obtain the functional basis-set and data-set limits.
Overfitting is avoided by defining the optimum number of parameters. We implement our theory for
an investigation of first- and second-order generalized gradient approximations~GGA! to the
exchange-correlation and kinetic energy functionals, within anab initio model. A variety of
functional basis sets, including a general finite-element representation, is constructed to represent
both one-dimensional and multidimensional GGA enhancement factors. An extensible data set
consisting of 429 atomic and diatomic, neutral and cationic species, at stretched and equilibrium
geometries, is constructed from Moller–Plesset level exchange-correlation energies, and Hartree–
Fock kinetic energies. The range of chemically relevant density and gradient variables is examined.
Exhaustive fitting investigations are carried out, to determine the accuracy of the GGA
representation of theab initio models. In the exchange-correlation case we demonstrate that we can
reach the functional basis-set and data-set limit, which correspond to a root-mean-square~rms! error
of ;10 mH~6.3 kcal/mol!. Changing the functional basis set, higher-order density variables such as
the kinetic energy density, multidimensional enhancement factors, and exact exchange yieldno
significant improvement, and our fits represent an effective solution of the GGA problem for
exchange-correlation, at the Møller–Plesset level. In the kinetic energy case, accurate functionals
with rms errors of;80 mH ~50 kcal/mol! are developed. These exhibit a beautifully simple kinetic
energy enhancement factor, and are a step towards orbital-free calculations. ©2000 American
Institute of Physics.@S0021-9606~00!30110-6#

I. INTRODUCTION

Density functional theory is now a mature field. Many
applications are routinely found in the literature.1,2

Kohn–Sham density functional theory,3,4 partitions the
total energyE@r# as

E@r#5Ts@r#1Exc@r#1J@r#1E r~r !v~r !dr , ~1!

where Ts@r#52 1
2 minC→r^Cu(i¹i

2uC&, J@r#5 1
2**r(r1)

3r(r2)r 12
21 dr1 dr2 , andv(r ) is the external potential.

As an approximate theory, the accuracy is limited by the
exchange-correlation functionalExc@r#. Another open ques-
tion remains an approximation to the Kohn–Sham kinetic
energy functionalTs@r#, which will facilitate orbital-free
calculations.

Recent years have seen an increase primarily in the num-
ber of exchange-correlation functionals~with notable devel-
opments in kinetic energy functionals5–7!. These have been
of the generalized gradient approximation~GGA! form,5,8,9

which are integrals of local functions of density variablesr,
u¹ru, ¹2r, ( i u¹f i u2 ~wheref i is an orbital!, or of higher
order. Different philosophies in functional development are
summarized in the reviews by Perdew and co-workers10–12

and Becke and others.13–17 Although the trend has been to-

wards more systematic approaches to functional develop-
ment ~see, for example, Refs. 13 and 17!, no general theory
of functional development has yet appeared.

In this work, we tackle the problem of functional devel-
opment afresh. We move away from functionals based on a
specific physical model. Instead, in common with recent ap-
proaches of Becke and others,13,17 we rely on extensive fit-
ting. A general theory of functional development, whichsys-
tematizesthe procedure of fitting, is developed. In Sec. II, we
define the functional basis, data set, and error functional.
Within such a language, functional development is reduced
to the attainment of the functional basis and data set limits.
This is facilitated, in practice, by a rigorous solution of the
problem of overfitting.

Our methodology will be applied to the determination of
Exc@r# andTs@r#. However, we need to limit theform of the
functional. We choose the GGA as our framework to study
the question: what is the limiting accuracy of our represen-
tation of the exchange-correlation and kinetic energies? In
Sec. III we review the density variables, and enhancement
factors, which define the GGA functionals. In the case of
Exc@r#, we also review exact exchange.

In Sec. IV, we proceed, within anab initio philosophy,
to a practical implementation of our fitting theory. Since ex-
act data sets are generally hard to obtain, we aim instead to
choose awell-defined ab initiomodel, and proceed therein to
exhaustively examine how exact is a density functional rep-a!Electronic mail: gkc1000@hermes.cam.ac.uk
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resentation possible within the GGA framework. We aim to
~i! reproduce the exchange-correlation energy of a second-
order Møller–Plesset~MP2!–Hartree–Fock~HF! model, and
~ii ! reproduce the HF kinetic energy. Multiple functional ba-
sis sets inr, u¹ru, ¹2r, ( i u¹f i u2 are defined. A new fea-
ture of this work is the introduction offinite-elementfunc-
tional basis sets, which are general and easily extensible to
new density variables and multiple dimensions. A simple,
extensible data set is constructed fromab initio Møller–
Plesset and Hartree–Fock calculations, containing 429 atoms
and diatomic molecules, charged and neutral species, at equi-
librium and stretched geometries.

Our extensive fits are presented in Sec. V. We perform a
set of fitting experiments, which tests the ideas developed
above, for the exchange-correlation and kinetic energy func-
tionals. By exhaustive optimization, we reach the functional
basis-set limit ofExc@r# and Ts@r# within the GGA form.
The exchange-correlation GGA problem is nearly solved
within our MP2–HF model. In the case of the kinetic energy,
accurate kinetic energy functionals of;80 mH ~50 kcal/
mol! rms accuracy are developed.

We summarize our work and conclusions in Sec. VI.

II. GENERAL THEORY OF FUNCTIONAL
DEVELOPMENT

Here, we introduce the theoretical concepts in the em-
pirical construction of functionals. In what follows, function-
als A@B# are often written in the abbreviated formA.

A. A formal statement of fitting

The empirical procedure to fit a functionalF to data set
D may be stated as follows: givenD, we wish to find the
closest possible functionalF@r# in a trial functional spaceT.
If we define a metric, or error functionalD@F,D#, then by
minimizing the errorD with respect toF, the optimum func-
tional F0 is given by

min
FPT

D@F,D#⇒F→F0 . ~2!

B. The functional basis and data set

The space of all functionals is very large. Naively, we
expect the space of all functionals ofr to map each point in
rPR3 to FPR; thus, the dimension of the space of all func-
tionals would be, in some rough sense, (R3) uRu. Clearly this
is too large a spaceT within which to perform the minimi-
zation ~2!.

Instead, we restrict ourselves to the subspace spanned by
general nonlocal functionals of the multi-dimensional inte-
gral form

F5E •••E f @v1~r1!, . . . ,v1~rm!,

~3!
v2~r1!, . . . ,v2~rm!, . . . ]dr1 , . . . ,drm ,

where v i is a density variable; that is,v iP$r ,r,
u¹ru2,¹2r, . . . ,%. The kernelf is a functionof an arbitrary
finite number of density variables.

f can be expanded in a functional basis
$m(v1 ,v2 , . . . ,)%,

f 5(
i

cim i~v1 ,v2 , . . . ,!; ~4!

m may be truncated to yield a finite functional basis ofn
functions.

The complete data setD will be the exact functional
Fexact@r#. It is the choice of data for a finite data set which
characterizes different philosophies in functional develop-
ment. A finite data set is often a set ofp data pairs$r,F%,
such as the G2 thermochemical data set18 used by many
workers~see, e.g., Refs. 15,17, and 19!, but may equally well
be constructed from limits and asymptotic conditions, as ad-
vocated by Perdew and co-workers.11,20,21 We shall denote
the finite data set asD(p), with p data pairs or conditions.

C. Fitting and testing sets

Let us consider fitting with a finiten function basism to
a finite data setD(p). Our optimum functionalF0(n,p,m),
is determined through

min
FPT

D@F~n,p,m!,D~p!#⇒F~n,p,m!→F0~n,p,m!. ~5!

The data setD(p) is known as thefitting set, which defines
the functionalF0(n,p,m). For brevity, we shall now write
the errorD@F0(n,p,m),D(p)# asD0@(n,p,m),p#.

To fully utilize the information in our data set, we can
evaluate the error of the functionalF0(n,p,m) over a differ-
ent testing setD(p8). This error is denotedD0@(n,p,m),p8#.

D. Functional basis set and data-set limits

The data set limit of the errorD0 and the optimum func-
tional F0 are easily defined. If we expand the data set to
completion, which we write loosely as the limitp→`, then
the corresponding limits of the errorD0@(n,p,m),p# and
functionalF0@n,p,m# are their data set limits.

We would like the functional basis-set limit to be de-
fined analogously as the limitn→`. However, for finite data
sets, if the number of basis functionsn is greater than the
number of data pointsp, the error vanishes and the coeffi-
cients in the basis expansion~4! are not uniquely defined.
This is the well-known problem ofoverfitting. In general, the
degeneracy inF0 may be felt long beforen.p, resulting in
unstable fits, and functionals that perform poorly outside of
the fitting set.

We digress to emphasize thatoverfitting is not limited to
data sets of the form$r,F%. The exact fitting~or overfitting!
of asymptotic and exact conditionscan also worsen~or not
improve! the performance of a functional; such conditions
are usually termed too restrictive. For example, it is gener-
ally believed that successful GGA exchange functionals do
not reduce to the exact gradient correction in the slowly
varying electron gas limit.12 Similarly, the exact reproduc-
tion of the asymptotic exchange energy density in finite sys-
tems is now not believed to be particularly important for the
success of an exchange energy functional.15 In any case, al-
though the use of exact conditions to construct functionals is
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undoubtedly successful and useful,21 it must still be regarded
as a fitting procedure, and consequently a careful consider-
ation of the general validity of the fit is important.

One way forward is to observe that a useful functional
basis-set limit is obtained when fitting over a complete data
set. Here, we define the functional basis-set limits as

D0@~`,`!,`#5 lim
n→`

lim
p→`

D0@~n,p,m!,p#>0, ~6!

F0~`,`!5 lim
n→`

lim
p→`

F0~n,p,m!, ~7!

where the dependence onm is lost in the functional basis-set
limit. F0(`,`) may be regarded as the best functional that
can be written in the approximate form~3!. Since the trial
space of the approximate form is smaller than the space of all
functionals, we have the inequality~6!. Thus, the error
D0@(`,`),`)] is a measure of the severity of the restriction
of F to an approximate form. Informally, we say that func-
tional F may not be fitted exactly by an approximate form,
although any finite set of data may be fitted arbitrarily well.

E. Convergence to the limit and overfitting

Given a finite data set, how can we approximate the
data-set and basis-set limits?

To evaluate the data-set limit, consider a suitable
sequenceD(p1),D(p2), . . . ,D(p), with D(p1),D(p2),,
. . . ,,D(p), and the data-set limits ofD0 and F0 may in
principle be extrapolated.

However, more care is needed in taking the double limit
that defines the basis-set limit~6!. For finite p, taking the
limit n→` results in overfitting. Thus, we now introduce the
notion of anoptimum number of parameters n0 , for a finite
data setD(p). The corresponding errorD0@(n0 ,p,m),p# and
functional F0(n0 ,p,m) may loosely be regarded as the
‘‘functional basis-set limits’’ for the finite data setD(p), if
the dependence on the type of basism is sufficiently weak.

Let us first assume that we do have a complete data set
D(`), but we only fit to the finite subsetD(p). Then, let the
complete data set be the testing set, and evaluate the error
D0@(n,p,m),`#. The optimum number of parametersn0 is
then seen to be that which minimizes the error,

D0@~n0 ,p,m!,`#5 min
n→n0

D0@~n,p,m!,`#. ~8!

Equation ~8! is the definition ofn0 and does not rely on
statistical assumptions common to the usual goodness-of-fit
approach.

Now, the above procedure may easily be modified to
accommodate the reality of finite data sets. The quantity
D0@(n0 ,p,m),`# is a data-set limit and may be obtained by
a suitable extrapolation from a sequence of data sets, as de-
scribed above. Thus, we may obtain an estimate ofn0 , even
for the largestof our finite data setsD(p).

So far we have assumed the existence of some error
functionalD. For finite data sets, the choice ofD may lead to
different functionalsF0 . We return to this point in Sec. IV C.

Thus, to summarize: for givenD, once the optimum
number of parameters has been determined, the problem of
functional determination is a variational minimization~5!

with two basis sets: a functional basis, and a data set. This
concludes our discussion of the formal theory of fitting. We
now apply our formal machinery, to the determination of
Exc@r# andTs@r#. First, however, we consider the general-
ized gradient approximation form.

III. THE GENERALIZED GRADIENT APPROXIMATION
FORM

As noted in Sec. II B, if we wish to determine a func-
tional in practice, the minimization procedure must be car-
ried out within some approximate form. The workhorse of
density functional theory is the generalized gradient approxi-
mation ~GGA!, a subset of the form~3!. We shall use the
GGA as the framework for our study ofTs@r# andExc@r#.

A. The exchange-correlation functional

Let us now consider the spin-density functional
Exc@ra ,rb#, which admits a separation into like-spin (ss)
exchange, correlation and opposite-spin (ab) correlation
components15,22

Exc@ra ,rb#5ECab@ra ,rb#

1 (
sP$a,b%

~EXss@rs#1ECss@rs#!. ~9!

Although the above separation~9! admits a particularly
simple treatment of spin effects, it must be remembered that
as one equationit does not uniquely define three unknowns
ECab ,EXss ,ECss . For example, we may trivially redefine
ECab→ECab1lECss .

The GGA form, first introduced by Perdew8 and Becke,9

attempts an extrapolation from the uniform electron gas
~UEG! energy densities,viz.

Exss5E eXss
UEGf Xss~v1s ,v2s , . . . ,!dr , ~10!

ECss5E eCss
UEGf Css~v1s ,v2s , . . . ,!dr , ~11!

ECab5E eCab
UEGf Cab~v1 ,v2 , . . . ,!dr , ~12!

wherev i is a density variable. The exchange energy density
eXss

UEG can be written in closed form eXss
UEG

52 3
2(3/4p)1/3rs

1/3, while accurate parametrizations exist for
the correlation energy densitieseCss andeCab . In this work
we choose the widely implemented Vosko–Wilk–Nusair
~Version V! functional~VWN!,23 with thess andab com-
ponents extracted following Stollet al.24

The choice of density variablesv i specifies theorder of
the GGA. Up to second order, it is conventional to use the
density variablesv iP$r,x2,y,t%, wherex,y,t are defined to
be dimensionless gradients

x5u¹ru/r4/3, ~13!

y5¹2r/r5/3, ~14!

t5(
i

N

u¹f i u2/r5/3, ~15!

and the generalization to spin requires addings subscripts to
all density variables. The inclusion oft, defined via the

5641J. Chem. Phys., Vol. 112, No. 13, 1 April 2000 Energy functionals

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  131.215.248.137 On: Fri, 29 Jul 2016

22:19:00



Kohn–Sham orbitals of the systemand here chosen to be
dimensionless, stems from a consideration of the series ex-
pansion of the off-diagonal elements of the Kohn–Sham
density matrix.19,25 Higher-order gradients may also be con-
sidered~see Neumann and Handy26! but lead to numerical
difficulties in quadrature.

From the above, we define a class offirst-order GGA
functionals, where the enhancement factors have the form

f Xss5 f Xss~xs
2 !, ~16!

f Css5 f Css~rs ,xs
2 !, ~17!

f Cab5 f Cab~r,x2!. ~18!

Second-order GGAs, also sometimes called
meta-GGAs,10 have enhancement factors of the form

f Xss5 f Xss~xs
2 ,ys ,ts!, ~19!

f Css5 f Css~rs ,xs
2 ,ys ,ts!, ~20!

f Cab5 f Cab~r,x2,y,t!. ~21!

It is often neglected that even in the first-order GGA, the
correlation components aremultidimensionalfunctions ~the
exchange component has nor dependence from homogene-
ity under coordinate scaling27!. Most commonly, however,
first-order GGAs are constructed as functions ofx2 only.15

At the second-order level, all enhancement factors are mul-
tidimensional.

In recent years, the GGA form has been extended to
include a fraction of exact exchange.15,28,29 Denoting the
GGA component byExc

GGA@r# and the exact exchange com-
ponent byEX

exact@r#, such hybrid functionals are of the form

Exc@ra ,rb#5Exc
GGA@ra ,rb#1cX (

sP$a,b%
~EX

exact@rs#!.

~22!

B. The kinetic energy functional

We first consider spin,

Ts@r#5 (
sP$a,b%

Ts@rs#. ~23!

Although empirical studies of kinetic energy functionals are
scarce, there is a well-known gradient expansion4 which to
second order is

Ts@rs#5E rs
5/3~CF1CWxs

21•••!dr , ~24!

where CF5 3
10(6p2)2/3, CW5 1

72. The first term is usually
referred to as the Thomas–Fermi term, and the second as the
von Weizsa¨cker term. The expansion~24! immediately sug-
gests the GGA form, first investigated by Lee, Lee, and Parr5

Ts@rs#5E eTs
f Ts

~v1s ,v2s , . . . ,!dr , ~25!

whereeTs
5rs

5/3. From the coordinate scaling ofTs@r#, the
enhancement factor has no explicitr dependence; thus, the
first-order GGA enhancement factor has the form

f Ts
5 f Ts

~xs
2 !. ~26!

A second-order orbital-free GGA approximation will have
enhancement factors of the form

f Ts
5 f Ts

~xs
2 ,ys!. ~27!

IV. DEVELOPMENT OF A FITTING METHODOLOGY

In the previous sections, we developed a general theory
of fitting, and introduced the GGA framework. We now pro-
ceed to a practical implementation, with a development of
functional basis setsm, data setsD, and an error functional
D.

A. The functional basis

The enhancement factors defined in Secs. III A and III B
are one- or multidimensional functions of density variables.
We now construct basis sets to expand these functions, in-
cluding a general purpose finite-element representation. Our
approach will be numerical in fashion, i.e.,we do not con-
cern ourselves with a specific physical model to generate our
basis sets.

1. The B97 basis

A widely used basis for the first-order exchange-
correlation GGA form was introduced by Becke,15 where

f Xss5 (
i 51

nXss

ci@gXssxs
2/~11gXssxs

2 !# i 21, ~28!

f Css5 (
i 51

nCss

ci@gCssxs
2/~11gCssxs

2 !# i 21, ~29!

f Cab5 (
i 51

nCab

ci@gCabxav
2 /~11gCabxav

2 !# i 21, ~30!

with xav
2 5xa

21xb
2 ~twice sav

2 in Becke’s work15!, and gXss

50.004,gCss50.2, gCab50.006~preoptimized by Becke!.
The coefficients in the basis expansion@Eq. ~4!# are clearly
the coefficients$ci%, of which there arenXss1nCss1nCab

in total. We shall refer to this basis as the B97 basis.
The B97 basis has obvious shortcomings, as it does not

span the complete space of first-order GGAs, since the cor-
relation enhancement factors have no explicitr dependence,
and depend onxav

2 as opposed tox2. However, it is acknowl-
edged as a successful basis, and thus we shall often use it as
a standard basisagainst which to compare our other basis
sets. Replacingf Xss by f Ts

in Eq. ~28!, we also use the B97
basis to expand the kinetic energy enhancement factor.

2. Finite-element basis F1,F2

Little is known about the general form of the enhance-
ment factor, particularly in the case of the kinetic energy
enhancement factor. For this reason, we now introduce
finite-element representations.

A simple way to generate a grid in alocal density vari-
able is to choose grid points that divide the density variable
into intervals, which each carry an equal probability of find-
ing an electron within. For example, let us consider a grid in
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the density variablevP$r,x2,y,t%, with i 21 intervals of
the form @v i ,v i 11#. Choosing some data set~we shall use
our largest data set in this work!, at each point in spacer ,
there is a densityr(r ) associated with the corresponding
v(r ); thus, the probability of an electron withv in the inter-
val @v i ,v i 11#, Pi(v) is given by

Pi~v !5E r~r !dr :v i<v,v i 11 . ~31!

We then choose the grid points$v i% such thatPi(v) is the
same for alli. Such an ‘‘equiprobability’’ partitioning is ap-
plicable to all density variablesr,x2,y,t and spin counter-
parts.

Multidimensional enhancement factors are represented
on multidimensional grids that are product grids of one-
dimensional grids generated in the above fashion; for ex-
ample, the enhancement factorf Css(rs ,xs

2) would be rep-
resented on a grid formed from the pairs of grid points
$rs i ,xs j

2 %, where$rs i%,$xs j
2 % are generated from Eq.~31!.

The second feature of a finite-element basis is the choice
of interpolating function between the grid points. We inves-
tigate two different types of functions:

a. Basis F1/F1[d1,d2]- Linear interpolation. Let us de-
note our generic enhancement factor byf. Then, we represent
our enhancement factor simply by the values off at the grid
points, denotedf i . These form the linear coefficients to op-
timize in the basis expansion, i.e.,$ci%5$ f i%. In between
grid points, we interpolate, e.g., in 1-D, for density variable
vP$r,x2,y,t% such thatv i<v<v i 11 , our basis representa-
tion of f (v) is

f ~v !5 f ~v i !1~v2v i !~ f ~v i 11!2 f ~v i !!/~v i 112v i !.
~32!

This representation is illustrated in Fig. 1.
Extensions to higher dimensions are simple. In 2-D, with

density variablesv,w, with v i<v,v i 11 , wi<w,wi 11 ,

f ~v,w!5~12t !~12u! f ~v i ,wj !1t~12u! f ~v i 11 ,wj ! ~33!

1tu f~v i 11 ,wj 11!1~12t !u f~v,wj 11!, ~34!

t5~v2v i !/~v i 112v i !, ~35!

u5~w2wi !/~wi 112wi !. ~36!

For eachenhancement factor represented in this fashion,
thenumberof linear coefficients in our basis expansionn, is
clearly the number of grid points used to represent the factor.
For example, in two dimensions, withd1 ,d2 grid points
along each of the two directions,n5d1d2 .

This conceptually simple basis, denoted by F1 in 1-D,
and F1@d1 ,d2# in 2-D, may be considered as the workhorse
of the finite-element representation.

b. Basis F2[d] - Polynomial interpolation. Restricting
ourselves to a one-dimensionalm point grid $v i%, we define
a transformed variablez(v)5gv(v2v i)/(11gv(v2v i)):v i

<v<v i 11 , giving

f ~v !5(
j 50

d

ci , j z~v ! j , ~37!

whered is the maximum degree of the interpolating polyno-
mial, and gv51/v̄, where v̄ is the median ofv over the
largest data set~listed in Table I!. Continuity of the enhance-
ment factor at each of the grid pointsv i fixes one coefficient,
chosen to beci ,d5ci 11,02( j 50

d21ci , j z(v i 11) j 2d.
The number of linear coefficientsn associated with this

representation isd(m21)11. For fixedn, by increasingd,
we are balancing an increase in the order of the interpolation
against a decrease in the number of points at which we
sample. Extensions to higher dimensions are possible, but
have not been pursued.

The advantages of the finite-element representation are
clear. Enhancement factors in any density variable may be
represented, and multidimensional basis sets that span the
entire space of GGA functions are easily constructed. A
drawback is that the grid points, by their construction~31!,
formally depend on the choice of data setD, but evidence
suggests~see Sec. IV B 2! that such a construction is stable
over the range ofchemically relevantdensities.Finally, we
note that our finite-element basis set does not have the
usual physical motivations characteristic of other
representations.14,19

3. Mixed basis M
The B97 basis provides a global representation of the

enhancement factor, while the finite-element basis sets are
piecewise in nature. We might thus imagine a mixed basis as
being the most flexible representation. For an enhancement
factor f, with total linear parametersn, we may choosed1

terms of the B97 form, andd2 terms of the F1 form, giving
the mixed basis M@d1,d2#, wheren5d11d2 .

FIG. 1. F1 basis: schematic representation of enhancement factor repre-
sented by function valuesf (v i) on grid in v i .

TABLE I. Median values of density variables overD18 .

ra rb r xa
2 xb

2 x ta tb t ya yb y

0.515 0.709 1.064 26.977 28.619 17.608 11.847 12.061 7.635 8.932 9.250 5.811
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We finish by mentioning that any basis set may be aug-
mented by exact exchangeEX

exact through theansatz~22!.
This introduces the parameter,cX .

B. The data set

Choosing a data set must remain a somewhat arbitrary
procedure. We have been guided by the followingab initio
aims ~i!–~iii !:

~i! it must be systematically extensible;
~ii ! it must coverchemically relevantdensities;
~iii ! it should be well-balanced across the periodic table

~i.e., nonbiased, like anab initio method!.

1. The MP2–HF model system

To systematically extend a data set@aim ~i!#, we must be
able to generate pairs (r,F) at will. This will not be possible
with an experimental data set, such as the G2 data set. In
principle, ab initio methods may be used to generate such
data, i.e., to provide a mapping ofr to the exchange-
correlation and kinetic energies.

In this study, we choose the simplestab initio model of
correlation, namely MP2 theory.30 We choose the unre-
stricted form to handle open-shell systems. The densityr
~and orbitals! and corresponding density variablesx,y,t are
generated from unrestricted HF theory, while the exchange-
correlation energy corresponding to such an HF density is
defined as the sum of the MP2 correlation and HF exchange
energies

Exc@r#5EC
MP21EX

HF. ~38!

We shall refer to this as the MP2–HF model of exchange-
correlation. Similarly, the kinetic energy corresponding to
the HF density is defined as

Ts@r#5Ts
HF. ~39!

2. Specification of the data set

The set ofchemically relevant densities@aim ~ii !# is the
set of densities of molecular species, with arbitrary numbers
of atoms, nuclear charges, electron number, and geometry.
Thus, a chemically relevant density may conveniently be in-
dexed by four parameters$a,z,g,q%, these being

a: the number of atoms;
z: a vector denoting the nuclear charges;
g: a vector bundle denoting the geometry of the system;
q: the total charge of the system.
To develop a functional withab initio predictive charac-

teristics @aim ~iii !#, our data set must be evenly balanced
across the periodic table~unlike existing data sets such as the
G2 data set!. Also, since chemistry can be described prima-
rily on a local level~e.g., in terms of atoms and functional
groups!, we construct our data set ‘‘from the bottom up’’ in
terms of system size. This suggests the following algorithm
for constructing a class of data sets:

~i! Choose the maximuma, am . If am52, for example,
we consider atoms and diatomics.

~ii ! Choose a maximumz, zm . If zm518, for example,
we consider all species containing elements up to Ar.

~iii ! Choose geometries~e.g., r e , stretched, etc.! and
charges~neutral, cations, etc.! for the systems.

For this work, we choseam52, zm518, diatomics at
bondlengthsr e,1.5r e , and neutral and11 cationic species.
In principle these parameters generate a total of 719 systems,
these being

a51 : H He He1Li Li 1 ••• Ar Ar1

a52~r e,1.5r e! : H2 H2
1 HHe HHe1 ••• HAr HAr1

HeHe HeHe1 ••• HeAr HeAr1

A

ArAr ArAr 1 .

Note that by changing the parameters, the data set may be
systematically enlarged, in a well-balanced fashion.

We would have liked to increaseam , as our data set
contains only systems of low atomicity. In particular, there
are effects which are believed to be more important in larger
systems~for example, exact exchange.31! However, since the
number of systems increases exponentially witham , and
since we have also included stretched systems, we believe
our data set to be a reasonable compromise between univer-
sality and practicality. Extensions to triatomics and larger
molecules are possible if we limit the type of atoms in-
volved; i.e., choosing some smalleram for such systems.

For our analysis in Sec. II E, we will require a partition-
ing of our data set into a sequence of data sets. Fixing all
other parameters, a simple sequence of data setsDzm

is ob-
tained by varyingzm ; thus, our largest data set is written as
D18, while the data setD10, for example, would contain all
atoms, diatomics, at bondlengthsr e,1.5r e , neutral and cat-
ions, for elements up to Ne. The sizes~the number of data
pairsp! of Dzm

for different zm are listed in Table II.

3. Technical construction

Geometries of the 719 systems in the data set were op-
timized at the UHF/TZ2P level. The exchange-correlation
energy was then computed using Eq.~38! at the UMP2/TZ2P
level, and the kinetic energy at the UHF/TZ2P level. The
specific Gaussian TZ2P basis sets40–42 are available as
supplementary Table A~see Sec. VII!.

Spin multiplicities were assigned using a simple algo-
rithm based on the aufbau principle. Note that data were not
collected for systems which

~i! dissociated, or did not converge in the geometry
optimization,

~ii ! did not converge in the HF-self-consistent field~SCF!
procedure.

TABLE II. Number of systemsp in data setsDzm
.

zm 6 9 12 15 18

p 68 144 216 303 429
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Of these,~ii ! was the greatest difficulty, since the SCF
procedure converges poorly for many systems, and does not
always converge to a minimum.

After removing systems according to criteria~i! and~ii !,
our largest data setD18 contains 429 systems. The specific
429 systems are available as supplementary Table B~see
Sec. VII!.

The density variablesr,x2,y,t ~and spin components!
were computed at the UHF/TZ2P level on a large
Euler–Maclaurin32 1 Lebedev33 quadrature grid using the
CADPAC program package.34 The grid error is estimated to be
better than 1 in 105 for all quantities. Our use of Hartree–
Fock orbitals, rather than Kohn–Sham orbitals, will lead to a
slightly differentt, but for approximatingExc@r# ~where the
contribution of the gradient correction is expected to be
small! this is unimportant.

The finite-element basis sets~F1,F2,M! require the par-
titioning of the density variables into regions of equal prob-
ability. These equiprobability grids for each density variable
are constructed over the largest data setD18. The finite-
element grids yield insight into the ‘‘chemically relevant’’
ranges of the density variablesr,x,y,t and spin counter-
parts. Figure 2 plots the variablesv5$r,x2,y,t% against the
probability of finding a particle withv8,v, $P(v8):v8
,v%. The exponential nature of the density and its gradients
can be clearly seen from the plots. The Laplaciany takes on
predominantly positive values in the important regions of the
data set. Further analysis shows that these plots exhibit simi-
lar characteristics if we construct the probabilityP(v8) over
some smaller data setDzm

:zm,18 ~although the range ofr
would be smaller!. This demonstrates the dimensionless na-
ture of the density variables (x2, y, t), which implies that
over chemically relevant densities, the median values of
these density variables are approximately invariant to the
choice of system. For our data setD18, the median values of
v are listed in Table I.

C. The error functional

We return to our choice of error functionalD. In the
following discussion, we will useenergy componentto de-
note thekinetic or exchange-correlation components.

A widely used error functional is given by the rms error
of the total energy components. Thistotal error functional,
denotedDt , is defined as

D t@F,D#5F (
i PD

~F@r i #2Fi !
2/pG1/2

, ~40!

where F@r i # is the trial ~kinetic or exchange-correlation!
functional, andFi is the corresponding ‘‘exact’’ input energy
component for systemi, in the data setD with p data pairs.

However, it is most convenient to choose someD which
allows relative errors over the sequence of data setsDzm

:zm

51, . . . ,18 to bedirectly compared. Such aD should remain
relatively invariant in magnitude over the sequence of data
sets, characterized byzm , which is not true ofDt .

Define thegeneralizedformation energyF f , for the dif-
ferent classes of system~diatomics AB and atoms A! in our
data set as

F f@AB#5F@AB#2F@A#2F@B#. ~41!

F f@AB1#5F@AB1#2F@A#2F@B#, ~42!

F f@A~Z!#5F@A~Z!#2F@A~Z21!#. ~43!

F f@A1#5F@A1#2F@A#. ~44!

Note that the name ‘‘generalized formation energy’’ encap-
sulates several familiar quantities: the first quantity above is
the usual atomization energy; the third represents the energy
released~‘‘fusion energy’’! when a hydrogen atom is fused
with a neutral atom of chargeZ21, and the last is simply the
ionization energy.

Then, we define an approximately invariant error func-
tional Df

35 as

D f@F,D#5F (
i PD

~F f@r i #2F f i !
2/pG1/2

. ~45!

For most of the studies in this work, we shall useDf as our
error functional.

It remains to mention the least-squares equations. For
the functional basis expansion~4! of F f@r i #, minimizing the
coefficients$ci% of the error functionalsDt or Df leads to a
set of linear least-squares equations, which may be inverted
to find the optimum$ci% ~which then may be used to con-
struct the enhancement factors, e.g., in the F1 basis, the
$ci%5$ f i%).

V. THE FITTING EXPERIMENTS

Recall from Sec. II, the three important concepts in func-
tional construction are the attainment of thefunctional basis
setanddata-set limits, and the choice offunctional form.

The above concepts are now examined by the following
general investigations:

~i! functional basis-set limit: examination of conver-
gence, determination of the optimum number of pa-
rameters, and optimization for each of the basis sets.

~ii ! data-set limit: information on the limit is provided by
the convergence to our largest data setD18.

FIG. 2. Chemically relevant regions of density variables.~i! v5r, ~ii ! v
5x, ~iii ! v5t, ~iv! v5y.
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~iii ! functional form: comparison of representations, e.g.,
first-order and second-order GGAs and multidimen-
sional forms.

Subsection A is concerned with the exchange-correlation
functional, while Subsection B deals with the kinetic energy
functional.

Because of the large number of fits performed
(;100 000), we give only a representative sample of fitting
experiments and results. Our fitting experiments are de-
scribed in the following format:

opt/eval~description! D@~m,n,zm!,zm8 #.

The notation for the error functional was introduced in
Sec. II C. Note that, since our sequence of data sets is con-
veniently indexed byzm ~see Sec. IV B!, we have changed
variables to consider the errorD as a function ofzm , rather
thanp ~the number of data points inDzm

). In addition, opt/
eval: opt is a minimization ofD over the parameters in~de-
scription!. eval is an evaluation ofD0 , for the functionalF
determined in the preceding opt.

For example,

opt~$c%,d,d1,n2!D f@~m,n,zm!,zm8 #,

for zm5zm8 518,m5$B97,F1,F2@d#,M@d1,d2#%

$nXss ,nCss ,nCab%5$1,1,1%, . . . ,$16,16,16%

indicates:~i! optimize a functional over all expansion coef-
ficients c ~and basis parameters d, d1, n2) for some basism
5$B97, F1, F2@d#,M@d1,d2#%, by minimizing the errorD f in
the generalized formation energies over the fitting setDzm

5D18. The number of terms used in the expansion of ex-
change and correlation components ($nXss ,nCss ,nCab%)
are the same.~ii ! evaluate the error of the optimized func-
tional over the testing setDz

m8
5D18. ~iii ! Repeat procedure

for different basis setsm, and different numbers of basis
functions~3 to 48!.

A. The exchange-correlation functional

We now carry out a set of fitting experiments for the
exchange-correlation functional. Sections V A 1–V A 3 deal
with one-dimensional fits, where all enhancement factors are
functions of x2 only. Other density variables and multidi-
mensional enhancement factors are treated in Secs. V A 4–
V A 5. Exact exchange is treated in Sec. V A 6.

1. General convergence: Functional basis sets

a. Experiment 1: fXss(xs
2), f Css(xs

2), f Cab(x2;xav
2 )

Convergence with number of parameters

opt~$c%,d,d1,n2!D f@~m,n,zm!,zm8 #,

for zm5zm8 518,m5$B97,F1,F2@d#,M@d1,d2#%,

$nXss ,nCss ,nCab%5$1,1,1%, . . . ,$16,16,16%.

Plotted in Fig. 3 is the errorDf 0 againstn, for the dif-
ferent basis sets. Forn53, F0 is a reoptimized local density
approximation ~LDA ! with an error of 20.9 mH~13.10
kcal/mol!. The addition of the first gradient terms in ex-

change and correlation lead to a rapid decrease in the error.
However, there is a plateau at;10 mH ~6.27 kcal/mol!, for
all four basis sets—an indication that we are reaching the
functional basis-set limit. The polynomial interpolation F2
~line iii ! leads to no improvement over the simple F1 basis
~line ii!. The mixed basis M~line vi! gives the best results,
and generally improves on B97~line i! by about 0.5 mH
~0.31 kcal/mol!. However, all four basis sets perform simi-
larly, and the error is essentiallyindependent of basis and a
function of the number of parameters n.

The last point, that theperformance of the functional is
often independent of the nature of the functional basis expan-
sion used, is one which is often overlooked in the literature.
It is common to correct a deficient functional by mixing in
~with an adjustable parameter! a new term which is ‘‘physi-
cally justified.’’ However,one must distinguish between the
success of a term due to its physical construction, or due to
the additional parameter it entails. In other words, would
another term~together with another adjustable parameter! be
just as good? Our results suggest that additional parametri-
zation, rather than physical construction, may lie behind the
success of many functional forms.

Previous studies of the B97 functional15,17 have found
plateaus at roughly 5 mH~3.1 kcal/mol!. As our plateau is
insensitive to the choice of nonlinear parameters
gXss ,gCss ,gCab in the B97 basis, and the size of the data
set~see Sec. V A 3!, we conclude that our relatively high rms
error, must reflect an additional difficulty associated with
working in the MP2–HF model of exchange-correlation.

If we plot the enhancement factorsf Xss , f Css , f Cab

separately for the different functional basis sets, we find that
there is great variation in their form. This does not come as a
surprise, since the spin separation~9! is not unique. A more
useful quantity to examine graphically is the total enhance-
ment factorf XC , defined via

Exc@ra ,rb#5E EX
UEGf XC~ra ,rb ,xa

2 ,xb
2 ,x2!dr . ~46!

FIG. 3. rms errorDf 0 in Exc with different functional basis sets, as a func-
tion of the number of parametersn. ~i! B97 ~experiment 1!, ~ii ! F1 ~experi-
ment 1!, ~iii ! F2 @2# ~experiment 1!, ~iv! M @optimized d1,d2# ~experiment
1!, ~v! B97 ~optimized $nXss ,nCss ,nCab%) ~experiment 2b!, ~vi! B97 1
exact exchange~experiment 6!.
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Plotted in Fig. 4 is the total enhancement factorf XC for
closed-shell systems (r51.06, xa5xb5x/2), determined
from experiment 1, with F1~12 parameters! and B97, M@1,4#
~15 parameters!. As can be seen, over the range of chemi-
cally relevantr,x, there isgood convergence to the same
form, which indicates the stability of our fitting methodol-
ogy. Moreover, the simplicity of the form is encouraging.

We now see whether our enhancement factors obey im-
portant exact conditions over the chemically relevant ranges
of r,x. Plotted are the enhancement factors for M@1,4# at r
50.15 andr510.0. The noncrossing condition12 f XC(r,x)
< f xc(r8,x):r.r8 is satisfied. All enhancement factors sat-
isfy the Lieb–Oxford bound~now tightened, by Chan and
Handy, see Ref. 20! f XC<2.21. Finally, we note that in the
limit of zero gradientx ~not in the chemically relevant
range!, the different basis sets yield LDA coefficients which
differ from the exact coefficient, by a modest 7%–10%.
Thus, we conclude that to some extent, exact conditions and
bounds in the chemically relevant regions of density vari-
ables are approximately encapsulated within our data set.

As a representative functional, the coefficients and grids
for the 15-parameter M@1,4# functional are given in Table III.
Note that the large coefficients at the edge of the grid points
are merely an artifact of the last grid point being at such

largexs
2 , and correspond to very modest values for the en-

hancement factor over chemically important values ofxs
2 , as

can be seen from the previous plots above.
To summarize:

~i! for all basis sets, we reach the same plateau in the
error at roughly 10 mH~6.27 kcal/mol!, which is near
the functional basis-set limit within the MP2–HF
model,

~ii ! the error is a function of the number of parameters,
and almost independent of the choice of basis,

~iii ! our enhancement factor is a well-converged simple
form, and obeys a number of exact conditions for
chemically relevant ranges of density variables.

2. Optimization of number of parameters

The determination ofn0 through Eq.~8! requires a com-
plete data set as a testing set. Here, we make the simplifying
approximation~!! that for suitably small fitting sets (Dzm

,
zm<15), D18 may be regarded as a complete data set with
regard tozm .

a. Experiment 2a: fXss(xs
2), f Css(xs

2), f Cab(x2;xav
2 )

~i! Fit to fitting set

opt~$c%!Df@~m,n,z!,zm8 # for zm5zm8 56,9, . . . ,18,

m5$B97,F1%,

$nXss ,nCss ,nCab%5$1,1,1%, . . . ,$16,16,16%.

~ii ! Optimize with regard ton over testing setD18

opt~n!Df 0@~m,n,zm!,zm8 #, for zm56,9,12,15,

zm8 518, and other parameters as above.

The errorDf 0 as evaluated in experiment 2a ii exhibits
an early minimum corresponding ton0 as can be seen in Fig.
5, where we plotD f 0@(B97,n,9),18# againstn. We tabulate
estimatedn0 for the B97 basis, and F1 basis in Table IV. The
values for the largest data setD18 are obtained by extrapola-
tion.

The relatively smalln0 , even for the largest data setD18

~429 systems!, reflects the difficulty of the exchange-

FIG. 4. The closed-shell total enhancement factorf XC(x) at r51.06 ~ex-
periment 1!. ~i! B97 ~15 parameters!, ~ii ! F1 ~12 parameters!, ~iii ! M @1,4#
~15 parameters! r51.06, ~iv! M @1,4# r50.15, ~v! M @1,4# r510.0.

TABLE III. Exchange-correlation functional from experiment 1 using M@1,4# basis: enhancement factors and
rms error. The basis sets are described in Sec. IV A.

B97 polynomial orderi 21 1
f Xss coefficient 0.656 25
f Css coefficient 20.182 64
f Cab coefficient 22.012 29

Grid points (xs
2) ~see@39#! 0.000 000 16.817 23 42.539 36 2.396 74431025

f Xss(xs
2) at grid points 1.054 720 1.044 054 0.892 291 2 4.152 21231022

f Css(xs
2) at grid points 0.714 585 8 20.593 533 1 2.760 651 21.806 30131023

Grid points (x2) 0.000 00 10.777 98 27.248 52 9.834 54031021

f Cab(x2) at grid points 0.633 024 9 1.946 529 0.635 097 1 3.933 44831019

D f 0 @~M@1,4#,15,18!,18#/mH 11.10
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correlation problem, and is consistent with other results in
the field.15,16 Note thatn0 seemsinsensitiveto the choice of
basism.

For the exchange-correlation functional, there remain
additional discrete degrees of freedom: the distribution of
parameters betweennXss ,nCss ,nCab . We optimize over
these parameters by generalizing experiment 2a. Thus:

b. Experiment 2b: fXss(xs
2), f Css(xs

2), f Cab(x2;xav
2 )

~i! Repeat experiment 2a i with

$nXss ,nCss ,nCab%5$ i , j ,k%, for i 51, . . . ,12,

j 51, . . . ,12, k51, . . . ,12.

~ii ! Repeat experiment 2 a ii and optimize over
$nXss ,nCss ,nCab%, zm56,9, . . . ,18,zm8 518.

The n0 determined from experiment 2b are found to be
essentially the same as those from experiment 2a. Listed in
Table V are the optimum distributions of parameters
$nXss ,nCss ,nCab% with the ~B97, F1! basis sets, forzm

5zm8 518. Recall from Fig. 3, that there is a large drop in the
error betweenn53 andn56. We see that this is probably
due to an improvement in the description of exchange.

In Fig. 3 we also plotted the errorD f 0@(B97,n,18),18)],
with an optimized distribution of parameters, as compared
with the B97 functional with an even distribution of param-
eters~see experiment 1!. For a total number of parameters
n515, our optimized parameter distribution yields an im-
provement of roughly 0.25 mH~0.16 kcal/mol!.

To summarize:
~i! A minimum according to Eq.~8! may be found to

determinen0 . n0 is small,;15 for our largest data set and
insensitive to the basism.

3. Convergence with data sets

a. Experiment 3a: fXss(xs
2), f Css(xs

2), f Cab(x2;xav
2 )

Convergence with fitting set

opt~$c%!D f@~m,n0 ,zm!,zm8 #, for zm5zm8 56, 9, 12, 15,

m5$B97,F1%,nXss5nCss5nCab .

Plotted in Fig. 6 is the resulting errorDf 0 againstzm

~line i: using B97!. As the fitting data setzm is increased, the
error Df 0 remains stable. We thus conclude that our large
data setD18 is well convergedto the data set limit with
respect tozm . However, to infer the same for the other data
set parameters (am ,g,qm) will require further investigation,
with expensive larger data sets.

b. Experiment 3b: fXss(xs
2), f Css(xs

2), f Cab(x2/xav
2 )

Convergence with testing set: evaluate the error of the
functionals determined in experiment 3a, over larger testing
sets

evalDf 0@~m,n0 ,zm!,zm8 #,for zm56,9, zm8 56, . . . ,18.

Also plotted in Fig. 6 isDf 0 with zm56, as a function of
the testing set parameterzm8 . With both the B97~line ii! and
F1 basis sets~line iii !, the functionals fitted to the small data
set D6 , using the optimum number of parametersn0 , are
very stable to increasing the test set parameterzm8 . Note that
the B97 basis sets and F1 basis sets perform similarly well.
Thus, although different in nature, these basis sets indeed
offer a similar description over the range of chemical densi-
ties, in agreement with our earlier plots of the enhancement
factors~Fig. 4!.

Finally, in Fig. 6, we also plot the error
Df 0@(F1,9,6),zm8 # ~where we have used greater than the op-
timum number of parametersn59.n0) against the test set
zm8 . Here, the error of the functional is very unstable to in-
creasing the size of the testing set, which is a clear sign of
overfitting. Since purely by examining a convergence curve
such as the one in Fig. 3, it would have been hard to decide
whether to stop atn056 ~optimum! or n59 ~as above!, our
accurate choice ofn0 for the data setD6 is a success of our
formal theory for determiningnopt.

To summarize:

TABLE IV. Estimated optimum number of parametersn0 ~exchange-
correlation functional! as a function of data setDzm

, as in experiment 2a.

zm 6 9 12 15 18

B97 9 12 12 15 15
F1 6 12 12 12 12

TABLE V. Optimized distribution of parameters for exchange and correlation for increasing total number of
parametersn ~fitted to D18), as in experiment 2b.

3 4 5 6 7 8 9 10 11 12 15

B97 $nXss ,nCss ,nCab% 1,1,1 2,1,1 3,1,1 2,1,3 2,2,3 3,2,3 2,4,3 2,5,3 2,6,3 2,7,3 5,7,3
F1 $nXss ,nCss ,nCab% 2,2,2 3,2,2 2,2,4 3,2,4 2,4,4 2,5,4 4,4,4

FIG. 5. Determination of optimum number of parameters (Exc): rms error of
functional fitted toD9 evaluated overD18 : Df 0@(B97,n,9),18# againstn
~experiment 2!.
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~i! Our largest data set is well converged to the data-set
limit, with respect to the nuclear charge parameter
zm .

~ii ! Our choice ofnopt yields functionals that are stable to
increasing the size of the testing set.

4. Density variables

Up till now, we have investigated the commonest form
of the first-order GGA where the enhancement factors are
functions ofx2 only. Before moving on to multidimensional
fits, we investigate one-dimensional enhancement factors in
other density variables. Writing the exchange-enhancement
factor asf Xss(v1s), and the correlation enhancement factors
as f Css(v2s), f Cab(v2), and allowingv1 ,v2 to range over
$r,x2,y,t% we have 16 combinations (v1 ,v2)
5(r,r),(r,x2), . . . ,(y,t),(y,y).

a. Experiment 4: fXss(v1s), f Css(v2s), f Cab(v2)
For each combination (v1 ,v2) repeat experiment 1, for

m5F1.
Plotted in Fig. 7 is the errorDf 0 againstn, for selected

density variable combinations: (x2,x2) ~line i!, (t,t) ~line
ii !, (y,t) ~line iii !. Although not shown, the density-only
(r,r) enhancement factors perform worse@by about 10 mH
~6.27 kcal/mol!# than the gradient-variable enhancement fac-
tors. The usual choice of (x,x) is near optimal, particularly
nearn0;12– 15. The use of second-order gradient variables
yields at best a modest improvement: with the choice (y,t),
we gain approximately 0.25 mH~0.16 kcal/mol! improve-
ment over the (x2,x2) combination near the optimal number
of parameters~12!. Other choices of density variables@such
as (t,t)] give similar curves that lie slightly above they,t
curve.

We note that recent studies of popular functionals by
Cohen and Handy have yielded the similar conclusion that
little benefit is to be gained from the use of second-order
density variablest,y.36

Such findings contrast strongly with the physical reasons
that have been put forth to advocate the use of second-order

density variables.10,14 For example, the kinetic energy den-
sity is believed to be important in describing nondynamical
correlation37 in stretched bonds, and also in the description
of so-called congested systems such as N2. However, we
havenot found noticeable improvements in the description
of such systems with our set of optimized functionals.

The enhancement factors in this section, due to their
dependence on multiple density variables, cannot be simply
compared graphically, and we do not include them here.
However, we have found that in general, the dependence on
the density variables is encouragingly smooth and simple.

To summarize:
~i! The usual choice off Xss(x), f Css(x), f Cab(x) is near

optimal. Second-order density variables, such asf Xss(y),
f Css(t), f Cab(t) yield a modest improvement at best.

5. Multidimensional fits

As stressed in Secs. III A, the GGA exchange-correlation
enhancement factors are multidimensional functions. Thus,
for a complete solution to the GGA problem wemustper-
form multidimensional fits. We now consider enhancement
factors that are two-dimensional functions. Writing the en-
hancement factors as f Xss(v1s ,v2s), f Css(v3s ,v4s),
f Cab(v3 ,v4), and allowing v1 , . . . ,v4 to range over
$r,x2,y,t%, we have 18 combinations (v1 ,v2 ,v3 ,v4)
5(x2,y,r,x), . . . ,(y,t,y,t).

a. Experiment 5: fXss(v1s ,v2s), f Css(v3s ,v4s),
f Cab(v3 ,v4)

For each combination (v1 ,v2 ,v3 ,v4),

opt~$c%,d1,d2,d3,d4!D f@~m,n,zm!,zm8 #

for zm5zm8 518, m5F1,nXss5d1d2 ,

nCss5nCab5d3d4 ,

for d1 ,d2 ,d3 ,d4<12,d1d2 , d3d4<24.

FIG. 6. Data set convergence (Exc): rms errors.~i! Increasing fitting setzm

~experiment 3a!, ~ii ! Increasing testing setzm : B97 ~experiment 3b!, ~iii !
Increasing testing setzm : F1 ~experiment 3b!, ~iv! Increasing testing setzm :
F1 ~nonoptimum number of parameters!.

FIG. 7. Second-order density variables and two-dimensional enhancement
factors (Exc). ~i! f Xss(xs), f Css(xs), f Cab(x) ~experiment 4!, ~ii !
f Xss(ts), f Css(ts), f Cab(t) ~experiment 4!, ~iii ! f Xss(ys), f Css(ts),
f Cab(t) ~experiment 4!, ~iv! f Xss(xs ,ts), f Css(xs ,ts), f Cab(x,t) ~experi-
ment 5!, ~v! f Xss(xs ,ts), f Css(rs ,xs), f Cab(r,x) ~experiment 5!.
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d1 ,d2 ,d3 ,d4 denote the number of grid points along the
v1 ,v2 ,v3 ,v4 axes, respectively. The conditions ond1 ,d2 ,
d3 ,d4 set above ensure that~i! no axis has more than 12 grid
points, and~ii ! each enhancement factor has a maximum of
24 parameters. The optimization overd1 ,d2 ,d3 ,d4 ensures
that for each combination that yields the samen, the one that
minimizes the error is selected.

Plotted in Fig. 7 is the errorDf 0 againstn for some
representative combinations (x,t,r,x) ~line iv! and
(x,t,x,t) ~line v!. Since the smallest two-dimensional grid
contains 4 points, the minimumn512.

As one can see from comparing Fig. 3 with Fig. 7, there
is little real improvement in going from one-dimensional to
two-dimensional representations of the enhancement factors.
At n512 the error is already in the plateau region; near the
previously determinedn0;12– 15, no improvement over the
one-dimensional enhancement factor results is seen. It might
be argued thatn0 is slightly larger for two-dimensional en-
hancement factors, and that the F1 basis is not optimum, but
be that as it may, we do not expect a drastic reduction in
Df 0 .

From our two-dimensional studies, it seems that the one-
dimensional limit is already close to the limit of the second-
order GGA form. Increasing the dimensionality of the en-
hancement factors~by going to higher-order GGAs! seems
unlikely to yield any improvement. In principle, for a com-
plete data set, multidimensional enhancement factors must
yield some improvement, but this is expected to be small,
and appears to be nonexistent for our finite data sets.

From Sec. V A 4, and the current section, we summarize
our findings as:

~i! Little improvement is gained from increasing the di-
mensionality~and order! of the enhancement factors,

~ii ! The functional basis-set limit of the second-order
GGA form can give only a very modest improvement
over the first-order GGA form.

We thus conclude that since no benefit is gained from
going to higher-order density variables, or higher dimen-
sions, and that convergence with respect to the functional
basis has been achieved~Sec. V A 1!, we have achieved a
near-optimum representation of the GGA for the MP2–HF
model.

6. Exact exchange

We assess the extension of the GGA form to include
exact exchange.

a. Experiment 6: fXss(xs
2), f Css(xs

2), f Cab(xs
2 ;xav

2 ), EX
HF

opt~$c%,cX!Df@~m,n,zm!,zm8 #,

for zm5zm8 518,m5B971EX
HF,

$nXss ,nCss ,nCab%5$1,1,1%, . . . ,$16,16,16%,

n5nXss1nCss1nCab11.

Repeat, usingDt .

Plotted in Fig. 3 is the errorDf 0 againstn for the B971
EX

HF basis, and the B97 basis. Aside from the initial four-

parameter LDA1EX
HF ~where cX50.28), the improvement

from including exact exchange is very small. In agreement
with this,cX in the 13-parameter functional is only20.0137.
Similar conclusions are drawn from a study of the total error
Dt .

Adamson38 and van Voorhis and Scuseria,19 in empirical
fits to the G2 data set, have also concluded that exact ex-
change provides little improvement. However, in recent fits,
work by Becke and others14,15has demonstrated a significant
effect of exact exchange.

This may seem a paradox. However, we note that asn
increases and the basis sets saturate, the improvement
yielded by exact exchange becomes negligible, as does the
magnitude ofcX , and thus the two basis sets B97, B971EX

HF

convergeto roughly the same limit. This implies exact ex-
change offers no real improvement to thefunctional form
andfunctional basis-set limit, but may yield an improvement
in D ~i.e., quicker convergence to the limit! while the func-
tional basis is not saturated. This then calls into question the
importance of the adiabatic connection argument28 for exact
exchange. However, we stress that verification of these ideas
is needed for exact exchange-correlation energies~as op-
posed to our MP2–HF model!, perhaps with larger Gaussian
basis sets.

To summarize:
~i! Exact exchange does not significantly improve the

functional basis limit. However, for modest parameter val-
ues, convergence to the limit may be accelerated. This may
be the case when representingexactexchange-correlation en-
ergies.

B. The kinetic energy functional

We now turn our attention to the kinetic energy func-
tional. Our treatment in this section will be simpler, as many
aspects of our methodology have been discussed in the pre-
ceding sections.

1. Functional basis convergence and density
variables

a. Experiment 7: fTs
(vs) for v5$x,y%

~a! General fit

opt~$c%,d!Dt@~m,n,zm!,zm8 # for zm5zm8 518,

m5F1, ~B97,M@d# for v5x!, n51, . . . ,24.

Repeat forDf .

~b! Determinen0

Repeat experiment 2a i, 2a ii, withn51, . . . ,24.

For a first investigation of the kinetic energy, the error in
the total kinetic energyDt is of the most interest. Plotted in
Fig. 8 is Dt0 againstn, with basis sets F1~density variables
x2: line i, y: line iv!, B97 ~line ii!, and M ~density variable
x2: line iii !. There is a rapid convergence of the error to a
plateau;100 mH~62.70 kcal/mol!. Again, as in Sec. V A 1,
the convergence to the same plateau with the B97, F1, and M
basis sets indicates that we are near the basis-set limit. There
is also little to choose between thex2 andy representations.
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Although not plotted, as expected the plateau in the error
Df 0 occurs at a slightly lower level,;50 mH ~31.35 kcal/
mol!.

The determination ofn0 in experiment 7b is somewhat
more difficult than with the exchange-correlation case, as the
minimum with respect ton is not easy to locate. Then0 for
the B97 and F1~density variablex), and M1 representations
for D18 are estimated to be 12, 14, and 12, respectively. The
corresponding errors inDt0 with n0 parameters for B97 and
F1 ~density variablex) basis sets overD18 are 102.1 mH
~64.01 kcal/mol! and 88.2 mH~55.30 kcal/mol!, respec-
tively. With the 12-parameter mixed basisM @3,9#, the error
is even lower at 84.6 mH~53.04 kcal/mol!, which is small
given the large magnitude of the total kinetic energy. Such
errors are a real improvement over the gradient expansion:
for comparison, the errorDt of the gradient expansion~24!
over D18 are 28 141 mH to zeroth order~Thomas–Fermi
kinetic energy!, and 1788 mH to second order~Thomas–
Fermi1 von Weizsa¨cker!. Refitting the first two terms in the
gradient expansion, we obtain 1568 mH to zero order, and
228.3 mH to second order.

An accuracy of;80 mH ~50 kcal/mol! in chemical sys-
tems is similar to the accuracy of the local-density approxi-
mation for exchange. The individual errors for molecules,
available in supplementary Table B, are again good, the
maximum error being only;300 mH ~188 kcal/mol!.

It is natural to consider the second-order GGA
f Ts

(xs ,ys). We have carried out fits analogous to experi-

ment 5, but as in the case of the exchange-correlation en-
hancement factors, have found no improvement.

The relatively lowDt0 is a cause for cautious optimism
for orbital-free density functional theory. However, it must
be remembered that the real test of a kinetic energy func-
tional is its performance in avariational calculation.

The coefficients and grids defining the M@3,9# kinetic
energy functional referred to above are listed in Table VI.
We remark again that the large coefficients at the edge of the
grids are an artifact of those grid points at ‘‘infinity.’’ The
large values of the B97 coefficients are normalized by the
correspondingly small values ofgXs

i 21 in the B97 basis~28!.
Finally, we need not worry about the oscillating values of the
coefficients, as the resulting form of the enhancement factor
is well converged and stable, as can be seen in the plots of
the next section.

~i! The kinetic energy can be fitted well, with rms errors
in the total kinetic energy of only;80 mH ~50 kcal/
mol!.

~ii ! The functional must be tested in a variational calcula-
tion before further conclusions can be drawn.

2. Kinetic energy enhancement factors

There have been few studies on the formf Ts
(vs). In

Fig. 9, we plot f Ts
(xs) for F1 ~14 parameters: line ii!, B97

~12 parameters: line iii!, and M@3,9# ~12 parameters: line iv!.
The stability of our fitting approach is exhibited by the beau-

FIG. 8. rms errorDt0 in the total kinetic energyTs as a function of the
number of parameters.~i! F1 ~experiment 7a!, ~ii ! B97 ~experiment 7a!, ~iii !
M @optimized d1,d2# ~experiment 7a!, ~iv! F1 ~y! ~experiment 7a!.

TABLE VI. Kinetic energy functional from experiment 7a using M@9,3# basis: enhancement factor and rms error. The basis sets are described in Sec. IV A.

B97 polynomial order i 21 1 2 3 4 5 6 7 8 9
coefficient 72.489 42 21837.165 15 132.22 282 593.86 310 818.1 2778 775.3 1 189 505 2981 182.0 331 102.8

Grid points (xs
2)

~see Ref. 39!
0.000 000 26.977 23 2.396 74431025

f Ts
(xs) at grid points 2.002 066 7.002 935 3.922 33331024

D t0 @~M@9,3#,12,18!,18#/mH 84.56

FIG. 9. Kinetic enhancement factorf Ts
(xs). ~i! Second-order~von Weiz-

säcker! gradient expansion,~ii ! B97 ~12 parameters!, ~iii ! F1 ~14 param-
eters!, ~iv! M @9,3# ~12 parameters!, ~v! Conjoint exchangef Xss M @1,4#.
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tiful convergence ofall basis setsto a general form: the
enhancement factorf Ts

(xs) initially grows with xs , has a
characteristic kink, and then gradually levels out.

Also plotted in Fig. 9~line i! is the well-known second
order gradient expansion of the kinetic energy,4 which yields
an enhancement factorCF1CW(xs)2. We see that the larg-
est corrections from our empirical enhancement factor occur
at smallx, but in general, they oscillate around the second-
order gradient expansion.

Not plotted is f Ts
(ys). This function is approximately

linear in y, but less well characterized thanf Ts
(xs). None-

theless, it is extremely encouraging that the kinetic energy
enhancement factor is well approximated by such simple
functions.

Lee, Lee, and Parr have conjectured that the exchange-
only enhancement factorf X(xs) resembles thef Ts

(xs) due
to the so-called conjointness of the kinetic and exchange
energies.5 While we cannot strictly extractf X(xs) from our
work, we may usef Xss as a first-order approximation. We
have plottedCFf Xss for the M@1,4# basis of Sec. V A 1. As
can be seen, there is a broad resemblance between the ap-
proximate exchange and kinetic energy enhancement factors,
which is consistent with the conjointness conjecture.

To summarize:
~i! f Ts

(xs) rises withx and tails off. It is a simple func-
tion and behaves like an attenuated second-order gradient
expansion. Furthermore, there is some resemblance between
the kinetic energy and exchange energy enhancement factors.

VI. CONCLUSIONS

In this work we have demonstrated the power of a sys-
tematic and general method to construct functionals.
Amongst other things, our experiments have included exami-
nations of functional basis sets, convergence of data sets,
optimization of numbers of parameters, and multidimen-
sional fits.

In the exchange-correlation case, we have found the
functional basis-set limit within the GGA representation. To
the extent to which the MP2–HF model, and our data set of
atoms and diatomics, reflects the true exchange-correlation
problem, we believe we have obtained a solution of the GGA
problem consistent with our original aims~i!–~iii !. It may
seem disappointing that we could not reduce the rms error
below a relatively high plateau, which for the MP2–HF
model;10 mH ~6.27 kcal/mol!. However, let us remember
that the GGA approximation proposes a model of exchange-
correlation by simple universal functions~the enhancement
factors! of a few variables! While the utility of this immense
simplification reflects the power of density functional theory,
we should not overestimate its abilities.

Of course, we have chosen to study a well-definedmodel
of exchange-correlation only, and going to more exact
exchange-correlation energies and polyatomic systems will
influence our findings. We are currently pursuing these ex-
tensions. However, we feel that the broad conclusions will
remain similar.

In the case of the kinetic energy functional, we found
that kinetic energies could be reproduced relatively accu-

rately, to within ;80 mH ~50.16 kcal/mol!. Moreover, a
beautifully simple form was found for the enhancement fac-
tor f Ts

(xs). We recognize that the construction of a viable
kinetic energy functional forvariational orbital-free calcula-
tions still remains a difficult problem. However, our results
indicate that an empirical approach may be the way forward.

Our investigations have pushed the limits of the GGA
form, thelocal integrals~10!–~12!. We have also shown that
little further gain is expected from going to higher-order or
higher-dimension enhancement factors. The next level ap-
proximation would be to considerdouble integrals of the
form ~3!. In the exchange-correlation case, the incorporation
of exact exchange may be regarded as a step in this direction,
but as we have shown, it is questionable how successful this
is. The functional space is enormous, and the convergence
with respect to the dimensionality of the integral to the exact
functional may not be rapid.

We finish with some general remarks on our fitting
methodology and philosophy. Our aim has been to be sys-
tematic and exhaustive, and we have not developed function-
als based on any specific physical model. We have also fa-
vored a ‘‘brute force’’ fitting technique over the
incorporation of exact constraints. With respect to physical
models, our examinations have in fact shown that physical
terms may often owe their improved performance solely to
increased parametrization. We have questioned, for example,
the importance of ‘‘physically important’’ terms such as the
kinetic energy density and exact exchange. Of course, we
cannotunderestimate the importance of physical reasoning!
Nonetheless, we feel from our investigation that extensive
and systematicempirical studies form a viable alternative
and in many ways complementary way forward, and are of-
ten the only way to distinguish therelative importance, in
practical situations, of different physical arguments and con-
straints. If a physical constraint is sufficiently important, it
will be recovered in an empirical approach.

Finally, we stress that our functional basis sets are gen-
eral, and we have a well-balanced data set, which is in many
ways complementary to the more commonly used data sets.
Our method for determining the optimum number of param-
eters is also superior to less rigorous methods. Thus, we be-
lieve that our fitting methodology will advance the system-
atic development of future functionals.

VII. SUPPLEMENTARY MATERIAL

Additional supplementary data, including supplementary
Tables A and B, may be obtained from the authors~G. K-L.
Chan, garnet@theor.ch.cam.ac.uk! or on the web at:

http://ket.ch.cam.ac.uk/people/garnet/supplementary.html
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