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Abstract We consider the isotropic XY quantum spin chain in a random external field
in the z direction, with single site distributions given by i.i.d. random variables times the
critical decaying envelope j−1/2. Our motivation is the study of many-body localization. We
investigate transport properties in terms of polynomial Lieb–Robinson (PLR) bounds. We
prove a zero-velocity PLRbound for large disorder strengthλ and for smallλwe showapartial
converse, which suggests the existence of a transition to non-trivial transport in the model.

1 Introduction

It is well known that a single quantum particle in one dimension which is subjected to an
arbitrarily weak random potential exhibits exponential Anderson localization [3,22]. In the
presence of interactions, one enters the subject of many-body localization (MBL) which has
been a hot topic of condensed-matter physics in recent years, see e.g. [4,5,11,13,17,25]
and references therein. On a heuristic level, MBL is described as absence of thermalization.
Proposed criteria for this include the validity of an area law for the entanglement entropy
and absence of information propagation (e.g. a zero-velocity Lieb–Robinson bound and
logarithmic in time growth of the entanglement entropy). For an extensive list of possible
criteria, see the review [14]. The very special MBL phase is expected to break down for
sufficiently weak randomness, in what is called the MBL transition [28,32].
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A possible starting point for understanding MBL is the XY quantum spin chain in an i.i.d.
random field. This is an integrable toy model which can be mapped to non-interacting fermi-
ons in a random environment. Since the fermions are then localized in the usual Anderson
sense, it can be shown rigorously that this model enjoys an area law for the entanglement
entropy for large classes of states [1,2,29] and a zero-velocity Lieb–Robinson bound [6,16].
A continuum analogue of this toy model, the disordered Tonks–Girardeau gas, was recently
shown to display features of MBL for bosons, such as the absence of BEC and superfluidity
[30], even at zero temperature.

However, a shortcoming of the toy model (apart from integrability) is that it will never
display a transition to a non-MBL phase because the fermions are localized at arbitrarily
small disorder strength (which is equivalent to arbitrarily large interaction strength).

In this paper, we propose a variation of the XY chain with disorder which rigorously
displays features suggesting that such a phase transition might occur as the disorder strength
is varied. The model is the isotropic XY chain on the half line with a random and decaying
external field in the z direction. The Hamiltonian reads

H XY
n (ω) := −

n−1∑

j=1

(
σ x

j σ x
j+1 + σ

y
j σ

y
j+1

)
+ λ

n∑

j=1

Vj (ω)

j1/2
σ z

j

where the Vj are i.i.d. random variables satisfying E[Vj ] = 0 and E[V 2
j ] = 1. Moreover,

λ > 0 is a parameter describing the disorder strength. Note the decaying envelope j−1/2 for
the random field. It is “critical” in the sense that the potential is just barely not in �2(N). For
other decay rates, the random field is either too weak or too strong to observe a qualitative
transition from MBL to non-MBL features (such as transport) when λ is varied.

We now explain in which sense our system exhibits features suggesting a phase transition
from transport to localization as the disorder strength λ > 0 is increased. While our results
will be more general and include bounds on the particle number transport as well, the key
notion for quantifying many-body transport for this model are new anomalous polynomial
Lieb–Robinson (PLR) bounds. The traditional Lieb–Robinson (LR) bounds [23,27] apply to
general local Hamiltonians defined on a lattice and establish the existence of a certain “light
cone” in spacetime outside of which correlations are exponentially small.

We say PLR(a, b) holds for parameters 0 ≤ a ≤ 1 and b > 0, if there exists a universal
constant C > 0 such that for any observables A supported at site 1 and B supported at site
k > 1, we have the bound

‖[τ n
t (A), B]‖ ≤ C‖A‖‖B‖

(
ta

k

)b

. (1)

Here τ N
t is the Heisenberg time evolution generated by the Hamiltonian H XY

n , see (3), and
‖ · ‖ is the standard operator norm. Intuitively, PLR(a, b) says that in time t , information
(as measured by the commutator of the initially localized observables) propagates at most a
distance of order ta , up to errors decaying like x−b away from the bent “light cone” ta = k
in spacetime. The case a = 1 corresponds to ballistic transport.

We now discuss our results in words; the precise statements are given later. For simplicity,
in this discussion A is supported at site 1 and B is supported at site k > 1.

• When λ is large enough, the system is “polynomially localized” in the sense that

E
[
sup
t∈R

‖[τ n
t (A), B]‖] ≤ C‖A‖‖B‖

(
1

k

)κλ2−5/4

(2)
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On Polynomial Lieb–Robinson Bounds for the XY Chain... 669

for a coefficient 0 < κ ≤ 5
16 (Theorem 3.2). This is a disorder-averaged version of

PLR(0, κλ2 − 5/4) and may be understood as a zero-velocity PLR bound. It is of course
only effective when κλ2 − 5/4 > 0.

• Whenλ is small enough, PLR(a, b) cannot hold ifa is too small orb is too large (Corollary
3.9). In other words, there exist observables A, B for which the bound (1) fails and in
this sense transport is at least of order ta . Concretely, in Corollary 3.9 we show that for
λ < 2, (1) fails with probability one if 0 ≤ a ≤ 1 and b > 1/2 satisfy

a

(
1 + 1

2b − 1

)
< 1.

In particular, for any 0 ≤ a < 1, there exists b > 1/2 large enough such that (1) fails
with probability one.

Remark 1.1 (i) It follows from [8, Thm. 2.6] and Proposition 3.8 that if only exponentially
small errors are tolerated in an LR bound, then our model will exhibit ballistic transport
for all λ > 0. This fits with the localization being only polynomial in type, even for
large λ.

(ii) We emphasize that our results do not exclude that for small λ, an analogue of (2) holds
with the exponent κλ2 − 5/4 replaced by a number b ≤ 1/2. If this were true, it would
be misleading to speak of a true transition from non-trivial transport to localization and
it is for this reason that we do not claim to prove such a transition.

(iii) For the PLR(a, b) bounds defined by (1) and (2), we only consider observables A
supported at site 1. If A is supported at a site j > 1, the decaying factor is not replaced
by the distance of the supports | j − k| (as would be the case in a direct polynomial
generalization of the LR bound, compare [7,8]), but instead by min{ j, k}/max{ j, k}.
The precise statement is in Theorem 3.2. The reason why one cannot expect the distance
| j − k| is that the system is far from being translation-invariant.

To prove the results, we use the standard method of expressing the XY chain in terms of
free fermions via the Jordan–Wigner transformation [24]. The basic idea is to take bounds for
the corresponding one-body system [10,15,19,20] and to pull them through the (non-local)
Jordan–Wigner transformation by using ideas of Hamza, Sims and Stolz [16].

[16] considered a non-decaying random external field which yields an exponentially local-
ized system, see also [21,31]. Here we apply the method of [16] to a situation in which errors
decay only polynomially. Related papers which study the dependence of parameters in gen-
eralized LR bounds on the external field are [7–9,18]. The idea of studying polynomial LR
bounds was conceived in [7,8], but there it was only shown that the idea does not apply to
the random dimer model (a model with anomalous one-body transport).

For large λ, we use the fact that the Kunz–Souillard method utilized in [10] actually yields
a polynomial bound on the eigenfunction correlator (16). We are grateful to David Damanik
for pointing this out to us.

As mentioned before, we also show similar results for particle number transport. For this
we adapt the techniques from [1], where such bounds were studied for non-decaying i.i.d.
randomness, to our situation with polynomial decay. Similar bounds on particle number
transport were also proved in the recent paper [30] on the disordered Tonks-Girardeau gas,
a continuum analogue of the disordered XY chain.

Overall, our results follow rather directly by combining the above mentioned methods.
Nonetheless, we believe that this alternative toy model provides an opportunity to study a
phase transition, in terms of transport properties, fromamathematical and physics perspective
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670 M. Gebert and M. Lemm

and can stimulate further research. In particular, we have also attempted without success to
prove analogous results for the entanglement entropy of eigenstates in the spirit of the recent
works [1,2,12,29]. However we ran into difficulty bounding the entanglement entropy of
eigenstates in the “localization regime” of large λ because of the growth in j of the bound
(16). We believe that this question constitutes an interesting open problem.

2 The Model

2.1 The XY Chain in a Random Decaying External Field

For every n ∈ N = {1, 2, 3, . . .}, we consider the Hilbert space

Hn =
n⊗

j=1

C
2.

On Hn , the Hamiltonian of the isotropic XY chain with a random decaying external field is
given by

H XY
n (ω) := −

n−1∑

j=1

(
σ x

j σ x
j+1 + σ

y
j σ

y
j+1

)
+ λ

n∑

j=1

Vj (ω)

j1/2
σ z

j ,

where λ > 0 is a coupling constant. The sequence
(
Vj (ω)

)
j∈N is a family of iid random

variables on a probability space (�,	,P). We assume that its single-site distribution has
zero mean and is absolutely continuous with a bounded density of compact support and
E[V 2

j ] = 1. In the above,

σ x =
(
0 1
1 0

)
, σ y =

(
0 −i
i 0

)
, σ z =

(
1 0
0 −1

)

are the Pauli matrices and σ
x,y,z
j is short-handed for

11 ⊗ . . .1 j−1 ⊗ σ x,y,z ⊗ 1 j+1 . . . ⊗ 1n

for 1 ≤ j ≤ n. In the following we omit the ω-dependence for brevity. For a finite set J ⊂ N,
we define the algebra of observables supported on J by

AJ =
⊗

j∈J

B(C2),

where B(C2) is the set of all complex 2× 2 matrices. We will often make use of the fact that
for J ⊂ J ′, there is a natural embedding of AJ into AJ ′ by tensoring with the identity on
J ′ \ J . Also, we set A j ≡ A{ j}.

Finally, the Heisenberg dynamics of an observable A ∈ AJ under the Hamiltonian H XY
n

is defined by

τ n
t (A) := eit H XY

n Ae−i t H XY
n . (3)

2.2 The Jordan–Wigner Transformation

We use the standard procedure, going back to [24], of mapping the XY chain to free fermions
via the Jordan–Wigner transformation.
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For the details of the diagonalization procedure, we refer to Section 3.1 in [16]. Here we
only recall what we need to establish notation. The first step is to introduce the lowering
operator

a j = 1

2

(
σ x

j − iσ y
j

)
=

(
0 0
1 0

)

j
(4)

and its adjoint the raising operator a∗
j for all 1 ≤ j ≤ n. The Jordan–Wigner transformation

maps these to the fermion operators

c1 = a1, c j = σ z
1 . . . σ z

j−1a j for 2 ≤ j ≤ n. (5)

The {c j } then satisfy the canonical anticommutation relations (CAR). We have the identity

a∗
j a j = c∗

j c j . (6)

In terms of the fermion operators, the Hamiltonian reads,

H XY
n = 2C∗ HnC −

n∑

j=1

Ṽ j (7)

where C := (c1, ..., cn)T and Ṽ j := λ
j1/2

Vj . The n × n matrix Hn is given by

Hn =

⎛

⎜⎜⎜⎜⎝

Ṽ1 1

1
. . .

. . .

. . .
. . . 1
1 Ṽn

⎞

⎟⎟⎟⎟⎠
, (8)

Note that Hn can be identified with a discrete Schrödinger operator on the half line, i.e. on
�2(N), with the random decaying potential {Ṽ j } and zero boundary conditions at site n + 1.
The constant

∑n
j=1 Ṽ j in (7) does not change the Heisenberg dynamics (3) and can thus be

ignored in the following.
Wewill often use that theHeisenberg dynamics of the c j operators is given in the following

simple fashion.

Proposition 2.1 ([16, Sec. 3]) For all 1 ≤ j, k ≤ n, the identity

τ n
t (c j ) =

n∑

m=1

〈δ j , e−2i t Hn δm〉cm (9)

holds and consequently

‖[τ n
t (a j ), B]‖ ≤ 2

j∑

l=1

n∑

m=1

|〈δl , e−2i t Hn δm〉| (‖[cm, B]‖ + ‖[c∗
m, B]‖) . (10)

Proof The first equality follows from diagonalizing the one-particle operator Hn . For details
see [16, Eq. (3.15)]. Taking adjoints, the same is also true for c∗

k . Using the Leibniz rule for
commutators, i.e.

[AB, C] = A[B, C] + [A, C]B (11)
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672 M. Gebert and M. Lemm

we obtain the estimate

‖[τ n
t (c∗

j c j ), B]‖ ≤
n∑

m=1

〈δ j , e−2i t Hn δm〉 (‖[cm, B]‖ + ‖[c∗
m, B]‖) . (12)

The latter inequality also holds for the adjoint c j c∗
j .

To see inequality (10), we note that (σ z
j )

−1 = σ z
j for all 1 ≤ j ≤ n gives

a j = σ z
j−1...σ

z
1 c j . (13)

Thus, an iteration of the Leibniz rule (11) implies

‖[τ n
t (a j ), B]‖ = ‖[τ n

t (σ z
j−1...σ

z
1 c j ), B]‖

≤ ‖[τ n
t (c j ), B]| +

j−1∑
l=1

‖[τ n
t (σ z

l ), B]‖. (14)

Since σ z
l = 2c∗

l cl − idC2 , the identity (9) and the bound (12) imply

(14) ≤
n∑

m=1

|〈δ j , e−2i t Hn δm〉|‖[cm, B]‖

+2
j−1∑

l=1

n∑

m=1

|〈δl , e−2i t Hn δm〉 (‖[cm, B]‖ + ‖[c∗
m, B]‖) .

(15)

�

3 Polynomial Lieb–Robinson Bounds

3.1 Localization for Large Enough λ

We start with recalling an old result by [10] which provides bounds on the eigenfunction
correlator of the Anderson model with a random decaying potential.

Lemma 3.1 Let Hn be the operator given in (8). Then there exist constants C, κ > 0 such
that for all n ∈ N and all 1 ≤ j ≤ k ≤ n, we have

E
[
sup
|g|≤1

|〈δ j , g(Hn)δk〉|
] ≤ C

λ
( jk)1/4

(
j

k

)κλ2

. (16)

In particular, one can choose g(x) = e−i t x in the above. The exponent κ will feature in
all of the following bounds and we show later that it satisfies κ ≤ 5

16 , see Corollary 3.11.

Proof We estimate

E
[
sup
|g|≤1

|〈δ j , g(Hn)δk〉|
] ≤ E

[ ∑

E∈σ(Hn)

|ψn
E ( j)||ψn

E (k)|
]

=: ρn( j, k,R) (17)

where the sequence
(
ψn

E

)
E∈σ(Hn)

denotes the normalized eigenvectors of Hn counted with
multiplicity. An adaption of [10, Prop. III.1] implies

ρn( j, k,R) ≤ C

λ2
( jk)1/4

(
j

k

)κλ2

. (18)
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The latter follows from inequality [10, Eq. III.16] using the bounds [10, Eq. III.14 and Eq.
III.15] and we remark that in the result [10, Eq. III.4] the 1/2-exponent should be replaced
by a 1/4-exponent. �

As a consequence, we obtain a disorder-averaged polynomial Lieb–Robinson bound with
a = 0 for the spin chain H XY

n .

Theorem 3.2 Let κ be as in Lemma 3.1 above. Suppose that κλ2 > 5
4 . Then there exists a

constant C > 0 such that for all choices of 1 ≤ j ≤ k ≤ n,

E
[
sup
t∈R

‖[τ n
t (A), B]‖] ≤ C‖A‖‖B‖( jk)5/4

(
j

k

)κλ2

(19)

holds for all observables A ∈ A j and B ∈ Ak,...,n.

We emphasize that the constant C is uniform in n.

Proof Note thatA j is spannedby thematrices {a j , a∗
j , a j a∗

j , a∗
j a j }.According toProposition

2.1, we can estimate

‖[τ n
t (a j ), B]‖ ≤ 2

j∑

l=1

n∑

m=1

|〈δl , e−2i t Hn δm〉| (‖[cm, B]‖ + |‖[c∗
m, B]‖) (20)

We note that [cm, B] = 0 for all m < k. Hence, Lemma 3.1 implies

E[‖[τ n
t (a j )B]‖] ≤ 4C

λ2
‖B‖

j∑
l=1

n∑
m=k

(lm)1/4
( l

m

)κλ2

≤ 4C
λ2

‖B‖
j∑

l=1

∞∑
m=k

(lm)1/4
( l

m

)κλ2

≤ C
λ2

‖B‖( jk)5/4
(

j
k

)κλ2

(21)

for some constant C > 0 which is finite for λ >

√
5
4κ . Taking adjoints the same estimate is

true for a∗
j . For the products a∗

j a j and a j a∗
j , we use the Leibniz rule (11). �

Remark 3.3 Instead of the distance | j − k| of the supports of the observables, which would
appear in a straightforward polynomial generalization of the traditional LR bound as was
proposed in [7,8], the right hand side depends on the quotient j/k. Note that the distance
| j − k| is not so natural for our model, because it is far from being translation-invariant.

However, if we consider observables A supported at a fixed site, say the site 1, the bound
(19) reduces to a polynomial Lieb–Robinson bound involving the distance of the supports.
Let A ∈ A1. Then the bound

E
[
sup
t∈R

‖[τ n
t (A), B]‖] ≤ C‖A‖‖B‖

(
1

k

)κλ2−5/4

(22)

holds uniformly in n ∈ N and B ∈ Ak,...,n for any 1 < k ≤ n.

For small t the above is not satisfactory. One can improve the result:

Proposition 3.4 Let κ be as in Lemma 3.1. There exists a constant C such that for all choices
of 1 ≤ j ≤ k ≤ n,

E
[‖[τ n

t (A), B]‖] ≤ C‖A‖‖B‖|t |
(1

k

)κλ2−5/4
(23)
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674 M. Gebert and M. Lemm

holds for all observables A ∈ A1, B ∈ Ak,...,n.

Proof We follow the proof of [16, Cor. 3.4]. Define

f (t) := [τt (A), B]. (24)

Then, f (t) solves the ODE

f ′(t) = i[ f (t), τ n
t (H1)] − i[[B, τ n

t (H1)], τ n
t (A)]. (25)

where H1 := σ x
1 σ x

2 + σ
y
1 σ

y
2 + V1σ

z
1 . Following [26, App.A] we obtain

‖ f (t)‖ ≤
∫ |t |

0
ds ‖[τ n

s (H1), B]‖. (26)

Since H1 is supported on A1 ⊗ A2 we use Theorem 3.2 to obtain a time independent bound
on the integrand which yields the theorem. �
3.2 Lower Bounds on Transport for Small Enough λ

In this section we restrict ourselves to pairs of observables for which one of the observables
is supported at the site 1.

Definition 3.5 Let 0 ≤ a ≤ 1 and b ≥ 0. We say that H XY
n exhibits the polynomial Lieb–

Robinson bound PLR(a, b), if there exists a constant C > 0 such that for all n ∈ N

‖[τ n
t (A), B]‖ ≤ C‖A‖‖B‖

(
ta

k

)b

(27)

holds for all A ∈ A1, B ∈ Ak,...,n .

Let H be the discrete Schrödinger operator on �2(N) which arises as the inductive limit
of the family (Hn)n∈N.

Definition 3.6 We define the p-th moment of the position operator

|X |p(t) :=
∑

k∈N
k p

∣∣∣
〈
e−i t H δ j , δk

〉∣∣∣
2

(28)

and its time-average

〈|X |p〉(T ) := 2

T

∫ ∞

0
dt e−2t/T |X |p(t) (29)

for all T > 0. The upper and lower transport exponents are defined by

β−(p) := lim inf
t→∞

ln |X |p(t)

p ln t
and β+(p) := lim sup

t→∞
ln |X |p(t)

p ln t
(30)

and their time averaged versions are defined by

〈β−(p)〉 := lim inf
T →∞

ln〈|X |p〉(T )

p ln T
and 〈β+(p)〉 := lim sup

T →∞
ln〈|X |p〉(T )

p ln T
. (31)

Theorem 3.7 Assume PLR(a, b) holds for some 0 ≤ a ≤ 1 and b > 1/2. Then,

lim sup
ε→0

β+(2b − 1 − ε) ≤ a

(
1 + 1

2b − 1

)
. (32)

123
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Proof The strong resolvent-convergence of Hn to H (this follows e.g. from the geometric
resolvent identity) implies the convergence

lim
n→∞〈eit Hn δ1, δk〉 = 〈eit H δ1, δk〉, (33)

for any 1 ≤ k ≤ n. Hence, Fatou’s lemma implies the inequality
∑

k∈N
k2b−1−ε |〈e−i t H δ1, δk〉|2 ≤ lim inf

n→∞
∑

k∈N
k2b−1−ε |〈e−i t Hn δ1, δk〉|2, (34)

where ε > 0 is arbitary.
Now, we bound the one-body propagation in terms of the many-body propagation using

[8, Lm. 4.1]. It implies that for any 1 ≤ k ≤ n

|〈e−i t Hn δ1, δk〉| ≤ ‖[τ n
t (c1), a∗

k ]‖. (35)

Using this and the assumption that PLR(a, b) holds, we bound

(34) ≤ t2ab
∑

k∈N
k−1−ε . (36)

Since the latter is summable for any ε > 0, this implies

β+(2b − 1 − ε) ≤ 2ab

2b − 1 − ε
(37)

and therefore (32) follows. �
Proposition 3.8 Let p > 0. If λ < 4p, the lower bound

β+(p) ≥ 1 − λ

4p
(38)

holds P-almost surely. If λ < 2 one even has

β+(p) = 1 (39)

P-almost surely.

Before we give the proof, which is based on results in [15,19,20], we discuss the conse-
quences of combining Theorem 3.7 and Proposition 3.8. What we obtain can be interpreted
as lower bounds on transport, as we explained in the introduction, however see also the caveat
in Remark 1.1(iii).

Corollary 3.9 Let (a, b) be a pair of 0 ≤ a ≤ 1 and b > 1/2. If either of the following two
conditions applies, then, with probability one, PLR(a, b) cannot hold.

• λ < 2 and a
(
1 + 1

2b−1

)
< 1

• λ < 4(2b − 1) and a
(
1 + 1

2b−1

)
< 1 − λ

4(2b−1) .

In particular, if λ < 2, then for any fixed 0 ≤ a < 1 there exists b > 1/2 large enough such
that PLR(a, b) cannot hold.

Remark 3.10 A shortcoming of our results is that we need to assume b > 1/2, see Remark
1.1(iii). This is ultimately a consequence of summing up one-body transport bounds when
inverting the Jordan–Wigner transformation (compare Proposition 2.1) and is therefore inti-
mately connected to the core of the method.
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676 M. Gebert and M. Lemm

We also get a bound on the maximal power of the polynomial decay coefficient κ which
was introduced in the previous section.

Corollary 3.11 The constant κ from Proposition 3.1 satisfies κ ≤ 5
16 .

Proof Note that κ is independent of λ. Fix λ < 2 and p > 0. By Proposition 3.8,
supt>0 |X |p(t) = ∞. Recalling the definition (28) of |X |p(t) and using the estimate in
Lemma 3.1 then gives p + 1/4 − κλ2 ≥ −1. Sending λ → 2 and p → 0 yields κ ≤ 5

16 . �
It remains to give the

Proof of Prop. 3.8 For equation (38), we apply the lower bound [15, Thm. 5.1, Eq. (5.3)] to
the function f ∈ C∞

c (R) with f ≡ 1 on σ(H). This provides for any ε > 0 the bound

〈|X |〉p
j (T ) ≥ Cω(p, ε)T p−2γ−ε, (40)

P-almost surely, where γ := infE∈(−2,2)
λ

8−2E2 . This implies

〈β−(p)〉 ≥ 1 − λ

4p
. (41)

The chain of inequalities 〈β−(p)〉 ≤ 〈β+(p)〉 ≤ β+(p) gives the result. To see the last
inequality, note that β := β+(p) > 0 implies for any ε > 0, |X |p

1 (t) ≤ Ct pβ+ε . This readily
gives

〈|X |p
1 〉(T ) = 2

T

∫ ∞

0
dt e−2t/T |X |p

1 (t) ≤ CT pβ+ε (42)

and the inequality 〈β+(p)〉 ≤ β.
For equation (39), we use [19, Thm. 5.1] with m = p, where we have to prove its

assumption, which is Pcδ1 �= 0. Here, Pc is the orthogonal projection onto continuous part
of the spectrum. Since |λ| < 2, the operator H exhibits singular continuous spectrum [20],
thus Pc �= 0. Now, Pcδ1 �= 0 follows from cyclicity of δ1, which can be proven by induction
because the Hamiltonian acts on the half space �2(N) only. �

4 Propagation Bounds for the Number Operator

In this section, we derive bounds on the propagation of the number operator by combining
ideas from [1] with the bounds on the one-body dynamics discussed before.We recall that [1]
derived such bounds for the case of non-decaying randomness (see also [30] for a continuum
analogue).

We define the number operator and the local number operator by

N :=
n∑

j=1

a∗
j a j and NS :=

∑

j∈S

a∗
j a j , (43)

where a j is given in (4) and S ⊂ {1, ..., n}. This measures the number of up-spins in S. Let

ρ =
n⊗

j=1

ρ j , ρ j :=
(

η j 0
0 1 − η j

)
(44)

and 0 ≤ η j ≤ 1. We denote by ρt := e−i t Hn ρeit Hn the time evolution of the state ρ and by
〈A〉ρ := tr [Aρ] the expectation of an observable A with respect to the state ρ.
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Theorem 4.1 Let κ > 0 be as in Lemma 3.1. There exists a constant C > 0 such that for
every n ≥ 1 and S ⊂ {1, . . . , n},

E

[
sup
t≥0

〈NS〉ρt

]
≤ C

λ

∑

j∈S

n∑

k=1

ηk( jk)1/4
(
min{ j, k}
max{ j, k}

)κλ2

. (45)

This follows directly by combining results of [1] with Lemma 3.1.

Remark 4.2 To illustrate the above we split {1, ..., n} = I ∪ J with I := {1, ..., m} and
J := {m + 1, ..., n} for n > m ∈ N. We set η j = 0 on I and η j = 1 on the complement J .
In other words ρ = |ϕ〉〈ϕ| with the vector

|ϕ〉 = | ↓〉⊗m ⊗ | ↑〉⊗(n−m+1) (46)

in standard notation. Let m > l ∈ N and S = {1, ..., l}. For κλ2 > 5/4, the above theorem
implies the bound

E

[
sup
t≥0

〈NS〉ρt

]
≤ C

(
l

m

)κλ2

(lm)5/4 (47)

for a constant C > 0 uniform in l, m, n. This is a time-independent bound on the number of
up-spins which propagate from J into S and it decays as the distance m → ∞ (when λ is
large enough to guarantee κλ2 > 5/4).

Proof The same computation that gives [1, Eq. (41)] shows

〈NS〉ρt =
∑

j∈S

n∑

k=1

|〈δ j , e2i t Hn δk〉|2ηk . (48)

Using this, Lemma 3.1 implies

E

[
sup
t≥0

〈NS〉ρt

]
≤

∑

j∈S

n∑

k=1

ηkE

[
sup
t≥0

|〈δ j , e2i t Hn δk〉|2
]

(49)

The assertion now follow from |〈δ j , e2i t Hn δk〉|2 ≤ |〈δ j , e2i t Hn δk〉| and Lemma 3.1. �

Theorem 4.3 If for some 0 ≤ a ≤ 1 < b and all k, n ∈ N with k ≤ n

〈N1〉ρt ≤
(

ta

k

)b

(50)

holds for all ρ of the form (44) and η j = 0 for j < k. Then, the upper transport exponent
satisfies the bound

lim sup
ε→0

β+(b − 1 − ε) ≤ ab

b − 1
. (51)

Again, Proposition 3.8 then gives restrictions on the possible values of 0 ≤ a ≤ 1 < b
for which (50) can hold. Therefore Theorem 4.3 may be interpreted as a lower bound on the
transport of particles (from sites k and larger to the site 1) if at most error of order x−b with
b > 1 can ignored, compare Remark 1.1(iii).
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Proof Let ρk be given as in (44) with η j = δ j,k . By (48)

〈N1〉ρk
t

= |〈δ1, e−i t Hn δk〉|2. (52)

Hence, the computation in (34) and assumption (50) imply that for any p > 0

|X |p(t) ≤ lim inf
n→∞

∑

k∈N

k p|〈e−i t Hn δ1, δk〉|2

≤
∑

k∈N
k p

(
ta

k

)b

= tab
∑

k∈N
k p−b.

(53)

Taking p = b − 1 − ε for an ε > 0, the last sum is finite and this gives the assertion. �
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