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Abstract

We consider accretion-caused deceleration of a gravitationally-powerful compact stellar object
traveling within a cold Fermi-gas medium. We provide analytical and numerical estimates of the
effect manifestation.

Subject headings: collision, Fermi gas, accretion, deceleration

1. Introduction

Numerous fast-moving solitary stellar objects,
called the ”wandering stars”, have been astro-
nomically detected inside and outside our Galaxy.
The speeds of these objects sometimes reach as
high as 1200 kms−1 (Geier et al. 2015), greater
than even the galactic escape velocity (ve ≃
500 − 600 kms−1). The exact nature of these
stellar bodies is uncertain, and a variety of hy-
potheses and formation scenarios have been pro-
posed. Hills (1988), Rees (1990), Khokhlov et al.
(1993a), Khokhlov et al. (1993b) Most of these
scenarios involve dramatic acceleration of the ob-
ject – whether a star, a neutron star, or possibly
a piece of the torn apart debris – by the super-
massive black hole located at the galactic core.
Indeed, the gravitational might of the black hole
is such that many objects, even those that are
deemed essentially indestructible in other circum-
stances, can be torn apart by tidal forces into
pieces and flung out with enormous speeds.

While a collision of such a fast-moving object
with another stellar object is, generally speaking,
a low probability event, it is not impossible, espe-
cially when considering densely populated areas
of the Galaxy and when taking a long historical
perspective.

Moreover, a collision of a neutron star with
a star – a red giant, a supergiant, or a white
dwarf – is proposed as one of the leading sce-
narios for the formation of a Thorne-Zytkow ob-
ject, theoretically hypothesized in 1977 and po-
tentially discovered in 2014. (Thorne & Zytkow
(1977), Levesque et al. (2014))

While over the years much focus has been given
in such scenario to various critical aspects of the
phenomenon, to our knowledge the mechanism of
accretion-caused deceleration of the neutron star
has never been considered. Furthermore, this
mechanism has never been considered in any sce-
narios of compact and expansive objects collisions.

In this paper, we specifically focus on the mech-
anism of deceleration resulting from the accretion
of the dense surrounding medium onto a rapidly
moving gravitationally-powerful compact object.
We consider a generalized and intentionally simpli-
fied scenario, involving not specifically a formation
of a Thorne-Zytkow object, but rather a head-on
collision of a neutron star-like, but non-rotating
and non-magnetized, compact object with a dense
white dwarf-like medium.

Generally speaking, in such a deceleration sce-
nario different mechanisms can be responsible for
the kinetic energy decrease of the moving ob-
ject: classical hydrodynamical drag (Dokuchaev
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1964), gravitational drag in collisionless sys-
tems (Chandrasekhar 1943) which is called dy-
namical friction in astrophysics (Ostriker 1999),
Cherenkov’s radiation of various waves (related to
collective hydrodynamical motions) which are gen-
erated inside the medium (Pavlov & Sukhorukov
1985), (Pavlov & Kharin 1990), (Pavlov & Tito
2009), interaction of proper magnetic field for
strongly magnetized object with surrounding
plasma (see Toropina et al. (2012) and Refs
therein), as well as other more complex possi-
bilities.

Analytically, the relative importance of these
various mechanisms contributing simultaneously
to the aggregate deceleration, can be assessed us-
ing the dimension-analysis approach.

The classical hydrodynamical drag (passive
resistance of the surrounding medium) for a
blunt object moving fast enough (large Reynolds
number) to produce a turbulent wake, is pro-
portional to its cross–section, i.e. kdρR

2V 2.
(Landau & Lifshitz 1987) Here ρ is the medium
density, R is the characteristic (transversal) size of
the object, V is the velocity of the object relative
to the surrounding medium. The dimensionless
drag coefficient, kd, takes into account both skin
friction and form factor. The characteristic time
of deceleration due to hydrodynamical drag, τd,
is then τ−1

d ∼ ρR2V/M , where M is the object’s
mass.

Dynamic friction, called gravitational drag in
astrophysics, also contributes to the loss of mo-
mentum and kinetic energy when a moving ob-
ject gravitationally interacts with the surround-
ing matter (rarefied cloud). (Chandrasekhar 1943)
The essence of the effect is that small cloud parti-
cles are pulled by gravity toward the object, thus
increasing the cloud density. But if the object al-
ready moved forward, the density increase actually
occurs in its wake. Therefore, it is the gravita-
tional attraction of the wake that pulls the object
backward and slows it down.

A simplified equation for the force from dy-
namical friction has the form MdV/dt = FCh =
−CρG2M2/V 2. The dimensionless numerical fac-
tor C depends on the so–called Coulomb logarithm
and on how velocity of the object V compares
to the velocity dispersion ∼

√

〈v2〉 of the cloud

particles, i.e. on the argument ξ = V/
√

〈v2〉.

The characteristic time of the process obtained
from the Chandrasekhar equation written above,
is τ−1

Ch ∼ ρG2M(
√

〈v2〉)−3.

For gravitationally-powerful moving objects
that are capable of capturing the surrounding
medium particles onto its surface (not just pulling
them into its wake), when the increase of the ob-
ject’s mass due to the accretion is non-negligible,
the constant-mass-body equations of motion com-
monly used in celestial dynamics, no longer apply.
To our knowledge, at present there are no qual-
itative or numerical considerations of this effect.
The aim of this article is to fill this void.

The characteristic time τa for the accretion de-
celeration is such that τ−1

a ∼ M : the more massive
the body is, the faster the accretion onto it occurs.
In this consideration, we focus on the accretion
onto an object with small size but significant mass,
and the one that moves with trans- or super-sonic
speed through an non-perturbed, uniform at infin-
ity medium that is free of self-gravity. Then the
remaining apparent characteristics of the process
are the gravity constantG, and density ρ and pres-
sure P of the accreting medium. The combination
of these parameters that matches the dimension
of (the inverse of) τa is τ−1

a ∼ ρG2M(ρ/P )3/2,
or τ−1

a ∼ ρG2Ms−3 where s2 characterizes the
square of speed of propagation of small density
perturbations within the medium. (The exact an-
alytical derivation follows in the subsequent sec-
tion.) Despite the fact that τ−1

a ∼ G2, the pres-
ence of other parameters makes τa range widely,
thus indicating that the accretion effect may be
negligible or dominant depending on the specific
parameters at the moment.

The mathematical treatment of the decelera-
tion process becomes significantly more complex
if proper rotation, and/or magnetic fields of mag-
netized stars, and/or interaction with surrounding
plasma are included. If the velocity, magnetic mo-
ment and angular velocity vectors point in differ-
ent directions, the results are strongly dependent
on the model configuration. Magnetosphere acts
as an obstacle for the incoming accreting flow, thus
reducing the accretion rate onto magnetized ob-
jects. When the magnetic impact parameter Rm

is greater than the accretion radius Rac calculated
from the classical model to define the region of the
surrounding medium involved in the accretion pro-
cess, accretion is not important. If Rm < Rac, the
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accreted mass accumulates near magnetic poles
the most. (See Toropina et al. (2012) and refer-
ences therein.)

At the dimension-analysis level, comparison of
the characteristic time scales of all the mechanisms
involved, performed for the specific circumstances
of the problem at hand, reveals whether any of the
mechanisms may be considered negligible and thus
omitted. Obviously, the more dominant process is
the one with the smaller τ .

In the following analysis, we focus exclusively
on the accretion mechanism, and will ignore all
other types of drag, magnetic and rotational ef-
fects.

2. Accretion model

As a physical phenomenon, accretion has been
studied for a variety of settings. The rate of
accretion for moving stars is estimated from
the expression Ṁ = ρV × πR2

ac. Here Rac is
the characteristic capture radius - the principal
quantity. The early works (Hoyle & Lyttleton
(1939) and Bondi (1952)) considered the accre-
tion onto a stellar body moving at a constant
velocity through an infinite gas nebula. Sub-
sequently, a variety of media has been consid-
ered: interstellar medium, a stellar wind, or a
common envelope (where two stellar cores be-
come embedded in a large gas envelope formed
when one member of the binary system swells).
See, among others, Petterson (1978), Ruffert
(1994), Ruffert & Arnett (1994), Ruffert (1996),
Bisnovatyi-Kogan & Pogorelov (1997), Pogorelov
(2000), Taam & Sandquist (2000), Bonnel et al.
(2001), Edgar & Clarke (2004), Toropina et al.
(2012). Accretion onto a neutron star from the
supernova ejecta has also been extensively re-
searched – for a radially-outflowing ejecta (Colgate
1971), (Zeldovich et al. 1972), for an in-falling
ejecta (Chevalier 1989), (Colpi et al. 1996) and
when the object is moving at a high speed across
the supernova ejecta (Zhang et al. 2007).

These prior studies have considered media with
low or moderate density. In this article, we provide
an analysis for high density medium, such as the
degenerate dense Fermi gas, examples of which are
white or black dwarfs. These dwarfs are the final
stages in the evolution of stars not massive enough
(M < 9M⊙) to collapse into a neutron star or un-

dergo a Type II supernova. They are composed of
electron-degenerate matter with densities exceed-
ing 107 kg/m3. A black dwarf is a white dwarf
that has sufficiently cooled to no longer emit visi-
ble light.

Equation of motion for body of variable

mass. The equation of motion for a body of vari-
able mass follows from the law of conservation of
linear momentum of the entire system composed
of the object and the surrounding mass captured
by the object. Thus, when an object enters a
dense gaseous ”cloud”, and surrounding nebula
particles accrete onto the gravitationally power-
ful object, the motion of the object will be de-
scribed by ∆(M∗V) − v∆M∗ = ∆I (Meshcherski
1897). Here M∗(t) and V(t) denote, respectively,
the mass and velocity of the moving object in an
inertial frame at instance t, v(t) is the velocity (in
the same frame) of the accreting nebula particles
which compose mass ∆M∗), and ∆(...) denotes
change of quantities over the small finite interval of
time ∆t. Qualitatively, this is the simplest model
when particles of environment ”stick” to the ”at-
tractor”. Quantity ∆I = M∗w∆t is the impulse
of an external force F = M∗ w. Here, w(t) is ac-
celeration of the object in an inertial frame. Then
it follows (in form of increments):

∆V + (V − v)∆M∗/M∗ = w∆t. (1)

If the increment ∆M∗ → 0, we obtain the classical
Newtonian equation of motion for bodies of fixed
mass. When the object mass changes, ∆M∗ 6= 0,
the concept of a ”steady-moving” body in ab-
sence of external actions (w = 0) is not a precise
one. Eq. 1 is the basis of equations describing the
rocket motion. The elementary work of the ”ac-
cretion” force which is proportional to ∆M∗, is
∆A = −(1/2)v2 ∆M . This work is negative when
∆M > 0 and therefore, the reduction of kinetic
energy takes place (deceleration occurs). Obvi-
ously, this expression must be statistically aver-
aged with respect to all possible values of velocities
v of the accreting particles for the given ∆M (see
the main text of the paper). The part of this work
is transformed into heat received by the object.
This quantity (per unit time) can be estimated as
Q̇ ≃ Ṁ〈v〉2 (to within a factor of the unit order).

Eq. (1) must be statistically averaged with re-
spect to all possible values of velocities v of the ac-
creting particles for the given ∆M∗. After the av-

3



eraging, the velocity v of accreting fragment ∆M∗

in Eq. (1) which contains a large number of ac-
creting particles is replaced by averaged 〈v〉, and
transition ∆t → dt is performed to write Eq. (1)
in terms of derivatives.

Calculation of averaged velocity of ac-

creting particles. The following step is to find
the expression for 〈v〉 which obviously is not zero
for the moving body in accordance with the simple
philosophy that the body will collide with parti-
cles flying in face more often than with particles
that are catching up him.

We assume the spherical symmetry of the ve-
locity distribution of the gas particles and their
spatial homogeneity, so that distribution function
f(v) = f(v) is a function of velocity module. The
probability that any gas particle occupies element
dw = dvxdvydvz in the space of velocities is pro-
portional to dw f(v). The probability of the object
to capture the gas particle with velocity v is pro-
portional to the cross–section of interaction, i.e.
to the product of the module of relative velocity
of the particle with respect to the object (|v−V|)
and dw f(v). Thus, the average velocity is

〈v〉 =
∫

dw v |v −V| f(v)
/

∫

dw |v −V| f(v) (2)

Due to the axial symmetry of the problem, 〈v〉
is co-linear with V. In the spherical coordinate
system with dw = 2πdθ sin θ dv v2 where θ is the
angle between v and V,

〈v〉 =
2π

∫∞

0

∫ π

0
dv v2 dθ sin θ f(v)v cos θ

√
v2 + V 2 − 2vV cos θ

2π
∫∞

0

∫ π

0
dv v2 dθ sin θ f(v)

√
v2 + V 2 − 2vV cos θ

,

which, after integrating with respect to angle θ,
produces the following expression:

〈v〉 =
∫ V

0 dv v3f(v)[ 23v − 2
15

v3

V 2 ] +
∫∞

V dv v3f(v)[ 23V − 2
15

V 3

v2 ]
∫ V

0 dv v2f(v)[2V + 2
3
v2

V ] +
∫∞

V dv v2f(v)[2v + 2
3
V 3

v2 ]
.

The obtained expression permits the use of
any distribution function, both the Maxwell-
Boltzmann f(v) ∼ exp(−v2m/2kT ) for high tem-
peratures and the Fermi one for low temperatures.
Technically, both distributions give similar results
(Fig. 1).

We assume that the surrounding gas is com-
posed purely of ionized hydrogen–degenerate
electron–proton plasma. Since mp ≫ me, only
the proton component is significant for the object
mass change.

We consider in more detail the distribution
for the full degenerate Fermi gas of proton
component which is valid when the tempera-
ture of medium T ≪ TFp. For the distribu-
tion with respect to velocities of fully degener-
ate non–relativistic Fermi gas of protons/nuclei
(Fermi 1946), (Fermi 1929), f(v) ∼ H(vFp − v),
where vFp is the local Fermi boundary velocity
of the nebula heavy particles and H(ξ) is the
Heaviside step function. Parameter vFp is de-
fined as vFp = (6π2/2)1/3(~/mp)(ρ/mp)

1/3 =
(me/mp)vFe ≪ vFe. Numerically this gives
vFp = 1.643× 102ρ1/3 ms−1 where ρ is measured
in kgm−3. Even for rather large densities of ac-
creting medium (for example, for a white dwarf
near the boundary of stability ρ = 109 kg m−3)
when vFe becomes relativistic, for proton compo-
nent vFp ≪ c = 2.99× 108ms−1. When tempera-
tures of p− and e–components of the medium are
of the same order, parameter vFp is of the same
order as the speed of sound in the medium. To
simplify the subsequent analysis, we introduce di-
mensionless velocity, V/vFp → V , and express 〈v〉
as 〈v〉 ≡ vFΦ(V ) with function

Φ(V ) =
−4 + 28V 2 + α1(V )H(1− V )

7V (−4(1 + 5V 2) + α2(V )H(1− V ))
< 0. (3)

Here, α1(V ) = (−1 + V )4(4 + 16V + 12V 2 +
3V 3), α2(V ) = (−1 + V )4(4 + V ) and H(s)
is the Heaviside function. Behavior of Φ(V ) is
given in Fig. 1. A good polynomial approxima-
tion of Φ(V ) is Φ(V ) ≃ (−0.333V + 0.318V 3 −
0.135V 5)H(0.795− V ) +
(−0.2V −1 + 0.067V −3 − 0.009V −5)H(V − 0.785).

Mass accumulation. Then Eq. (1) takes
form suitable for our analysis: dV /(V − Φ(V )) =
−dM∗/M∗. The mass and the time-derivative of
the mass of the object are expressed in terms of V
as

M∗(t) = M0 exp

∫ V (0)

V (t)

dξ

ξ − Φ(ξ)
≡ M0 exp J(t). (4)

Further, we transition to dimensionless variables
and express the object mass M∗(t) in terms of
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-0.10

-0.05

FHV L

Fig. 1.— Velocity correction Φ(V ) ∼ −〈v〉 cal-
culated as a functional of different functions of
distribution: the Fermi distribution (where func-
tion f(v) is proportional to the Heaviside function,
f(v) ∼ H(vF − v)) (base line), and the Maxwell
distribution (where f(v) ∼ exp(−v2/βv2Fp))
shown for β = 1, 2, 2.5, 3 (lower to upper
lines). In the presented example, both Fermi and
Maxwell distributions are similar when β = 2.5.

(constant) M0 (which from this point on will be
called the initial mass of the object) and the nor-
malized variable m(t), so that M∗(t) = M0m(t).
We assume for simplicity the density of the accret-
ing medium to be constant ρF . The dimensionless
mass of the object evolves as

ṁ = −(V − Φ(V )−1 exp J(t)V̇ . (5)

showing that when V̇ < 0, deceleration, massm(t)
is increasing, ṁ > 0.

Regimes of motion and results of calcu-

lation. To close the system of the equations, we
have to propose an evolution equation for the mass
of the object, i.e. Ṁ∗ = Ṁ∗(M∗, V, ...).

The simplest model is to assume that the ob-
ject mass increases due to the simple ”adhesion”
of the surrounding particles and that its mass in-
creases proportionally to the effective surface area,
i.e. Ṁ∗ ∼ 4πR2(t) (Appendix A).

A more complex model includes the traditional
interpolation for Ṁ∗ (proposed in Bondi (1952)
for accretion onto both a resting and a mov-
ing object) (see also, Shapiro & Teukolsky (1983),
p. 420). Bondi–Hoyle–Lyttleton (BHL) accretion,
in its simplest form, considers a point mass mov-
ing through a gas cloud that is presumed to be
non-self-gravitating and uniform at infinity. Grav-
ity focuses the gas cloud particles behind the point

mass. Gas particles then accrete to the mass. (See
Edgar & Clarke (2004) and Refs therein.) This
expression can be presented (with a small refor-
mulation) in form

Ṁ∗

M∗

= 4πκG2M∗

ρ5/2

(ρV 2 + P )3/2
(6)

Here, the left part of equation represents the rate
of mass change of the object, the right one is de-
fined by factors which governs the accretion pro-
cess, ρ is a characteristic medium density, V is the
velocity of the object with respect to medium, s
is the (isothermical) sound speed in the medium
(at large distance from the object), P = ρs2, nu-
merical coefficient κ is of the order of unity. (See
Appendix B.)

The BHL formula written in the form of Eq. (6)
shows that it can be obtained from simple argu-
ments based on the dimensional analysis. In fact,
the rate of accretion Ṁ∗/M∗ has to be faster when
the object is massive, i.e. Ṁ∗/M∗ ∼ M∗. The
process is governed by the gravity, G, and by the
principal properties of the medium: density, ρ, and
pressure P (ρ, ...) which determines the equation of
state. The only dimensional combination of G, ρ
and P which produces the necessary dimension, is
M∗×G2ρ5/2P−3/2. In a moving medium, the pres-
sure must be replaced by the dynamical pressure
P + ρV 2. From here, Eq. (6) is obtained.

In such case (and with M∗ → M0m(t) , P =
ρs2 and V → vFpV ) the dimensionless form of
the equation takes a simple form. By combining
Eq. (6) with Eqs. (1), (4) and (5), we obtain

dV

dt
= −

(

4πκ
ρG2M0

s3

)

V − Φ(V )

(ǫV 2 + 1)3/2
exp(−J(t)). (7)

Here ǫ = me/mp ≪ 1. Coefficient β (expression
in parentheses) can be written as β ≡ τ−1 =
(4πκ)ρG2M0/s

3 = 1.995 × 103(4πκ)(M0/M⊙),
where M⊙ = 1.989 × 1030 kg is the Sun mass,
τ is the characteristic time scale. Function J(t)
is defined by Eq. (4). Eqs. (3)–(7) complete the
system of necessary equations. Eq. (7) establishes
the time scale τ−1 = (4πκ)(ρG2M0/s

3), which de-
pends on the initial mass of the object and the
properties of the target medium. By expressing
the physical parameters of the problem in units
τ (for time) and vFp (for velocity), we obtain the
universal solution for the basic set of equations.
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0.5 1.0 1.5 2.0
t

0.5

1.0

1.5

2.0

2.5

3.0
V HtL

Fig. 2.— Evolution of the colliding object’s ve-
locity, for initial velocities V0 = 0.3 (lower line),
V0 = 1 and V0 = 3 (upper line).

0.5 1.0 1.5 2.0
t

-5

-4

-3

-2

-1

V ¢HtL

Fig. 3.— Evolution of the colliding object’s
(dimensionless) deceleration, for initial velocities
V0 = 3 (lower line), V0 = 1 and V0 = 0.3 (upper
line).

The greater is the density of the surrounding
medium, the stronger is the deceleration effect.

Figs 2–5 illustrate the model results for several
initial conditions. The figures show the evolution
of each scenario (characterized by the initial di-
mensionless velocities V0 = 0.3, 1, 3) until the
object decelerates to a stop. Note that the state
of full stop is an asymptotic state. Neither the
Bondi formula, nor the modified version of it pre-
sented in this analysis, properly describe the pro-
cess in the vicinity of such state. It implies that
the entire (infinite) mass of the accreted medium
is captured by the object within the finite period
of time. In reality, of course, the target has a finite
mass, and once it is captured no further accretion
(and therefore deceleration) occurs.

0.5 1.0 1.5
t

2

4

6

8

M HtL

M0

Fig. 4.— Normalized (by M0) total mass of the
colliding object as function of time for different
initial velocities: V0 = 3, 1, 0.3 (from lower line
to upper line). When the object stops, V → 0,
the accreted mass M → ∞. In such situation, the
used approximations are no longer valid, and the
general relativity approximation has to be taken
into consideration.

0.5 1.0 1.5 2.0
t

0.5

1.0

1.5

2.0

sHtL

Fig. 5.— The dimensionless path of the object
as function of time for different initial velocities:
V0 = 0.3, 1, 3 (from lower line to upper line).

However, in the domain of parameters where
the model is reasonably accurate and valid, it ap-
pears that in all three scenarios the object signif-
icantly decelerates (approaches its full stop) once
it accretes the amount of mass equal to several
times its initial mass. Which means that if the
relative sizes of the object and the target are such
that the entire accreted mass is ”small” (not suf-
ficient to decelerate the object to a full stop), the
deceleration would vanish once the entire target
mass is accreted or once the object exits the zone
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of influence.

Fig. 3 also reveals that the magnitude of de-
celeration is the greatest at the beginning of the
process and can be quite non-negligible.

Specific evolution scenarios depend on the re-
lationship between several characteristic times:
time-of-flight τp ≃ R/V0, or≃ (ρobject/ρtarget)

1/3R/V0,
time of hydrodynamical unloading τh ≃ R/s in-
side of target, and characteristic time of accretion
τa. Here, R is the characteristic size of the target.
Depending on the combination of these parame-
ters, different outcomes occur affecting the states
of the involved bodies. However, the comprehen-
sive analysis of such scenarios is beyond the scope
of this publication.

3. Conclusion

Accretion-caused deceleration occurs when a
gravitationally-powerful object moves through
a medium, captures the surrounding particles,
and decreases its kinetic energy and momentum
as its mass increases. In this article, we pre-
sented an analysis of such scenario for a compact
(small in size), non-rotating and non-magnetized,
gravitationally-powerful object colliding head-
on (simple model geometry) with a high-density
medium (a white or black dwarf, for example). By
describing the motion of the variable-mass body,
we demonstrated that the magnitude of the de-
celeration (caused only by accretion and no other
mechanisms) may indeed be substantial depend-
ing on the initial conditions. There are several
implications stemming from this result.

First, as mentioned earlier, one of the hypoth-
esized scenarios for the formation of a Thorne-
Zytkow object (a red giant or supergiant contain-
ing a neutron star at its core) is a collision of the
two objects, the giant and the neutron star. In
our demonstration, despite its intentional simplic-
ity, the results at the qualitative level appear to be
consistent with such scenario. As shown in Fig. 5,
the neutron star may be completely captured by
the target (the full-stop case), or the neutron star
may accrete mass from the target without stop-
ping. In both cases, the resulting object may be
described as a neutron star surrounded by a gigan-
tic envelope. The exact outcome would depend on
the initial characteristics of the involved objects,
producing a TZO with a larger-sized giant in the

first case and a TZO with a smaller-sized giant
in the second. Therefore, accretion may play an
important role in the formation of the Thorne-
Zytkow objects, even if taken as a stand-alone
mechanism, and thus its contribution should not
be neglected in complex and more realistic multi-
mechanism models.

In this article, we derived the proper mathe-
matical description for the highly dense medium
(degenerate Fermi-gas) that is better suited for
targets like white or black dwarfs, whose densi-
ties exceed 107 kg/m3. Prior studies of accretion
considered only low or medium density media.

Second, while the accretion-caused decelera-
tion effect is interesting on its own, when it is
applied to the stellar objects composed of nu-
clear matter with particular equations of state
(EOS), the situation deserves a special atten-
tion. As well known, just like traditional mat-
ter, nuclear matter has its critical state with
its critical temperature and density. (See, for
example, Jaqaman at al. (1983), Jaqaman et al.
(1984), Akmal et al. (1998), Karnaukhov (2006)
and Karnaukhov et al. (2011) and references
therein.) This means that if the matter of the
elastic stellar object is in the state close to the
boundary of liquid/gas phase transition (near the
spinodal zone where the matter can transition
into the state of ”nuclear fog”), then speed of
density perturbation propagation is close to zero.
Then even relatively small deceleration may lead
to strong stratification of the interior matter of the
compact object. The space scale of this stratifica-
tion is defined by the ratio of sound speed square
and deceleration magnitude. Zones of compres-
sion and decompression appear throughout the
compact object interior. Within the decompres-
sion zones, in the environment of the nuclear fog,
explosive nuclear reactions (fusion and fission of
fragments) may start. (Tito & Pavlov (2013) ex-
amine this in more detail.)

To conclude, while accretion onto neutron stars
(and other compact gravitationally-powerful stel-
lar objects such as fragments of a neutron star,
quark star, strange stars, etc.) would rarely oc-
cur as a stand-alone process, in some cases it may
meaningfully contribute to the aggregate decel-
eration experienced by the stellar objects. For
non/low-magnetized objects, accretion may actu-
ally play the dominant role in the deceleration of
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the objects when they collide with other stellar
bodies or traverse an encountered medium. In this
article, we provided a new model for the treatment
of dense accreting medium.
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A. Deceleration due to adhesion

Consider a body moving in a dense medium. We suppose that the interaction of the surrounding particles
with the body is governed by short-range forces. Such interaction is modeled by the adhesion mechanism
where particles of the environment simply adhere to the body. Consequently, the mass and the volume of
the moving body increase. We suppose that the rate of mass increase is proportional to the surface of the
body and density of environment., i.e. Ṁ(t) ∼ ρe 4πr

2(t). Here, r(t) is the radius of the body, ρe is the
density of the medium (a classical example is of the drop which is moving in a saturated vapor of water).

We suppose that the density of the body stays constant during the process at least in leading approx-
imation. The mass is M = ρb(4π/3)r

3. From d/dt[ρb(4π/3)r
3] = v∗ρe 4πr

2, we can find that the rate of
radius increase is constant ṙ = v∗(ρe/ρb). Parameter v∗ has the dimension of velocity. The meaning of this
parameter is the characteristic velocity of adhesion of particles of the environment to the surface of the body.
This parameter is determined by the regime of plasma-dynamical flow in the surrounding medium which is
not a trivial problem because the process of adhesion depends strongly on the model of the environment, for
example on the equation of state of the surrounding matter.

The classical equation of motion of the body of variable mass in presence of the traditional hydrodynamical
drag is M v̇ = −Cρer

2v2nv + cṀ , where c = V−v. Here, V is the velocity of the medium particle adhered
to the body in an inertial frame, v is the body velocity in the same frame, the drag is proportional to square
of the body velocity, dimensionless parameter C is of order unity.

We suppose for simplicity that all particles of the environment are immobile in the initial non–perturbed
state, V = 0. This is assumed to simplify the consideration and to obtain an analytical solution. The
equation of motion becomes

M
dv

dt
= −Cρer

2v2 − v
dM

dt
, → d

dt
(
4π

3
r3v) = −C

ρe
ρb

r2v2. (A1)

Since (d/dt)... = (dr/dt)(d/dr)... = v∗(ρe/ρb)(d/dr)... and ξ = r3v, we obtain the simple equation

dξ

ξ2
= −(

3C

4πv∗
)
dr

r4
(A2)

which can be resolved analytically :

v(t) =
v0

s3 + αv0(s3 − 1)
. (A3)

Here, argument s = (r0 + v∗(ρe/ρb)t)/r0, α = C/4πv∗ and r = r0 and v = v0 at t = 0. It follows from
here that the characteristic time of the process of deceleration is τ ∼ r0/v∗(ρb/ρe). For t ≫ τ and v ≫ v∗,
the regime of deceleration becomes the universal one and independent on an initial velocity of the body.
Obviously, Eq. (A3) should be regarded only as the zero–approximation in the averaged on all possible
values of parameter 〈V〉, which is obviously not zero for the moving body in accordance with the simple
observation that the body will collide with the particles flying in its face more often than with the particles
that are catching up to it.

The deceleration can be written now as

a = −3C

4π

ρe
ρb

v2

r
− 3

ρe
ρb

v∗v

r
, (A4)

or

a = −3C

4π
(
ρe
ρb

)
v20
r0

1

s(s3 + αv0(s3 − 1))2
− 3(

ρe
ρb

)
v∗v0
r0

1

s(s3 + αv0(s3 − 1))
, (A5)

If parameter v∗ ∼ v0, the mechanism of deceleration due to adhesion may be comparable in magnitude
with the mechanism of deceleration due to drag.
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B. Interpolating expression for pressure in medium.

To assess the form of the EoS of the target medium, we consider here the simplest plasma composed from
protons and electrons.

The form of equation of state depends on how the temperature of the medium T compares to char-
acteristic temperatures. One can introduce the following characteristic temperature parameters: temper-
ature of ionization Ti ∼ 10 ev, Fermi temperature for proton component TFp(ρ), Fermi temperature for
electron component TFe(ρ) ∼ (mp/me)TFp ∼ 103TFp for non-relativistic electrically neutral plasma, and
temperature Tr ∼ mec

2 ≃ 0.5Mev when relativistic effects must be taken into consideration. Obviously,
Ti ≪ TFp ≪ TFe ≪ Tr. We consider the case when T > Ti.

We assume for simplicity that temperatures of the two components of plasma are of the same order:
Te ≃ Tp = T . Electrical neutrality of plasma signifies np = ne = n. Here, ne,p is the number of free
electrons/protons per unit volume. Masses of protons and electrons satisfy mp ≫ me. The density of plasma
is ρ = mpnp + mene ≃ mpn. The form of pressure depends on the level of temperature T relative to the
Fermi temperatures TFp and TFe.

For high temperatures, T > TFe = EFe where EFe is the Fermi energy for electron component, both
components of the plasma can be considered as classical gas, i.e. the equation of state is P = T (np + ne) ≃
(2T/mp)ρ. For low temperatures, T < TFp, the pressure is essentially determined by the degenerate electron
component, because of mp ≫ me, for which the electron degeneracy pressure in a medium can be computed
as

P =
2

3

Etot

V
=

(3π2)2/3~2

5me
n5/3
e ≡ 2

5
nEF =

(3π2)2/3~2

5mem
5/3
p

ρ5/3.

Here, ~ is the reduced Planck constant.

When electron energies reach relativistic levels (white dwarf with mass 0.3M⊙ < M < MCh; the Chan-
drasekhar limit MCh ∼ 1.4M⊙), a modified formula is required, P ∼ ρ4/3: for the relativistic degenerated
matter, the equation of state is ”softer” and EFe = ~c(3π2ne)

1/3 for the ultra–relativistic case. In fact,
pressure scales with density as n5/3 provided that the electrons remain non–relativistic (speeds v ≪ c). This
approximation breaks down when the white dwarf mass is close to the boundary of stability to become a
neutron star. The relativistic and non–relativistic expressions for electron degeneracy pressure are approxi-
mately equal at about ne = 1036m−3, about that of the core of a 0.3M⊙ white dwarf. As long as the star
is not too massive, the Fermi pressure prevents it from collapsing under gravity and becoming a black hole.

So, we can use the simple interpolation expression for qualitative estimation of EoS in domain TFp < T <
TFe when one can neglect the relativistic effects:

P ≃ 2T

mp
ρ+

(3π2)2/3~2

5mem
5/3
p

ρ5/3 (B1)

Quantity P/ρ has the dimension of the square of velocity and determines the order of square of speed of
propagation of small density perturbations in a medium.

In domain T < TFp, both components of plasma are degenerated, and we obtain

P ≃ (3π2)2/3~2

5m
5/3
p

(
1

mp
+

1

me
)ρ5/3 ≃ (3π2)2/3~2

5mem
5/3
p

ρ5/3 (B2)
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