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Abstract. The Bayesian approach to inverse problems, in which the posterior

probability distribution on an unknown field is sampled for the purposes of computing

posterior expectations of quantities of interest, is starting to become computationally

feasible for partial differential equation (PDE) inverse problems. Balancing the sources

of error arising from finite dimensional approximation of the unknown field, the PDE

forward solution map and the sampling of the probability space under the posterior

distribution is essential for the design of efficient computational Bayesian methods for

PDE inverse problems.

We study Bayesian inversion for a model elliptic PDE with unknown diffusion

coefficient. We provide complexity analyses of several Markov Chain-Monte Carlo

(MCMC) methods for the efficient numerical evaluation of expectations under the

Bayesian posterior distribution, given data δ. Particular attention is given to bounds

on the overall work required to achieve a prescribed error level ε. Specifically, we

first bound the computational complexity of “plain” MCMC, based on combining

MCMC sampling with linear complexity multilevel solvers for elliptic PDE. Our

(new) work versus accuracy bounds show that the complexity of this approach can

be quite prohibitive. Two strategies for reducing the computational complexity are

then proposed and analyzed: first, a sparse, parametric and deterministic generalized

polynomial chaos (gpc) “surrogate” representation of the forward response map of

the PDE over the entire parameter space, and, second, a novel Multi-Level Markov

Chain Monte Carlo (MLMCMC) strategy which utilizes sampling from a multilevel

discretization of the posterior and of the forward PDE.

For both of these strategies we derive asymptotic bounds on work versus accuracy,

and hence asymptotic bounds on the computational complexity of the algorithms. In

particular we provide sufficient conditions on the regularity of the unknown coefficients

of the PDE, and on the approximation methods used, in order for the accelerations of

MCMC resulting from these strategies to lead to complexity reductions over “plain”

MCMC algorithms for Bayesian inversion of PDEs.
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1. Introduction

Many inverse problems arising in PDEs require determination of uncertain parameters

u from finite dimensional observation data δ. We assume u and δ to be related by

δ = G(u) + ϑ . (1)

Here u, which we assume to belong to an (infinite-dimensional) function space, is an

unknown or uncertain input (e.g. an uncertain coefficient) to a differential equation

and G is the “forward” mapping taking one instance (one realization) of input u into

a finite and noisy set of observations. We model these observations mathematically

as continuous linear functionals on the solution of the governing partial differential

equation. In (1), the parameter ϑ represents noise arising when observing. For problems

such as these the Bayesian formulation [17, 29] is an attractive and natural one, because

it allows for explicit incorporation of the statistical properties of the observational noise,

because it admits the possibility of quantifying uncertainty in the solution and because it

allows for clear mathematical modelling of the prior information required to account for

the under-determined nature of the inversion. However the Bayesian approach to such

inverse problems requires the probing of probability measures in infinite dimensional

spaces and is hence a substantial computational task in which the space of the unknown

parameter, the forward map and the probability space must all be approximated finite-

dimensionally. Choosing appropriate approximation techniques, and balancing the

resulting errors so as to optimize the overall computational cost per unit error, is thus

a significant problem with potential ramifications for the resolution of many inverse

problems arising in applications. The purpose of this paper is to provide a detailed and

comprehensive theoretical study of this problem in computational complexity.

A key point to appreciate concerning our work herein is to understand it in

the context of the existing statistics literature concerning the complexity of MCMC

methods. This statistics literature is focussed on the error stemming from the central

limit theorem estimate of the convergence of sample path averages, and additionally

on issues such as the “burn-in” time for the Markov chain to reach stationarity. Such

analyses remain central in analyzing the computational complexity of MCMC methods

for inverse problems, but must be understood, additionally, in the context of errors

stemming from the finite dimensional approximation of the unknown function and the

the forward model. The purpose of this paper is to provide what we believe is the first

complete, rigorous analysis of computational complexity of MCMC methods for inverse

problems which balances the errors resulting from both the central limit theorem and

finite dimensional approximation.

The analysis is necessarily quite complex as it involves balancing errors from many

different sources. Thus we address a specific inverse problem, namely determination of

the diffusion coefficient in an elliptic PDE from measurements of the solution. We

approximate the probability space by means of an MCMC independence sampler,

and we approximate the parameter space by means of Karhunen-Loeve expansion

and generalized polynomial chaos, and we approximate the forward problem by finite
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element type methods. However the ideas are generic and, with substantial work,

will be transferable to other inverse problems, MCMC samplers and approximation

methodologies. In our analysis, we place uniform prior measures on the unknown

function u. This simplifies certain steps in the present analysis; however, our results

will also apply to priors whose densities have bounded supports. Log-normal priors as

used, for example, in [18] and the references therein, require modifications in various

parts of our analysis; this shall be dealt with elsewhere. Finally, we concentrate on the

independence sampler as it is, currently, the only function-space MCMC method for

which an analysis of convergence rates which accounts for sampling and discretization

errors is available; extensions to other MCMC algorithms are conceivable, for example

by continuing the analyses intiated in [14, 31].

1.1. Overview of Paper

The methods we study incur two principal sources of error. First, the sampling error

arising from estimating expectations conditional on given data δ by sample averages of

M realizations of the unknown u, drawn from the posterior measure ρδ. The error in

doing so will decay as M− 1
2 as the number M of draws of u tends to ∞. Second, the

discretization error arising from approximation of the system response for each draw of

u, i.e. the error of approximating G(u). For expository purposes, and to cover a wide

range of discretization techniques, we let Ndof denote the total number of degrees of

freedom that are to be computed for evaluation of the Bayesian estimate. We assume

that the discretization error decays as N−a
dof , with rate a > 0 ‡. We also assume that

the work per step of MCMC scales as N b
dof , with b > 0; thus the total work necessary

for numerical realization of M draws in the MCMC with discretized forward model

scales as MN b
dof . If (as we show in the present paper for the independence sampler) the

constant in the root mean square MCMC error bound of order O(M− 1
2 ) is independent

of Ndof → ∞ then a straightforward calculation shows that the work to obtain root

mean square error ε will grow asymptotically as ε→ 0, as ε−2−b/a. The ratio b/a is thus

crucial to the overall computational complexity of the algorithm.

In this paper, we develop three ideas to speed up MCMC-based Bayesian inversion

in systems governed by PDEs. The first idea, which underlies the preceding expository

calculation concerning complexity, is that MCMC methods can be constructed whose

convergence rate is indeed independent of the number of degrees of freedom Ndof used

in the approximation of the forward map; the key idea here is to use MCMC algorithms

which are defined on (infinite dimensional) function spaces, as overviewed in [7], and

to use Galerkin projections of the forward map into finite-dimensional subspaces which

employ Riesz bases in these function spaces. We term this the Plain MCMC Method.

The second idea is that sparse, deterministic parametric representations of the forward

map u 7→ G(u), as analyzed in [3, 27, 4], can significantly reduce b by reducing

computational complexity per step of the Markov chain, as the sparse approximation

‡ logarithmic corrections also occur, and will be made explicit in later sections
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of G can be precomputed, prior to running the Markov chain, and simply needs to be

evaluated at each step of the chain; this idea has been succesfully used in practice in

[21, 19, 20]. We term the resulting algorithm the gpc-MCMC Finite Element Method.

The third idea is that the representation of the forward map can be truncated adaptively

at different discretization levels of the physical system of interest. Then, we propose

a multilevel Monte Carlo acceleration of the MCMC method, in the spirit of the work

of Giles for Monte Carlo [9], and prove that this allows further improvement of the

computational complexity. The idea of extending Giles’ work to Monte Carlo Markov

Chain, to obtain what we term MLMCMC Methods, is actively being considered by

several other research groups at present and we point in particular to [13], where the

ideas are developed in the context of conditioned diffusions, and [18] where uncertainty

quantification in subsurface flow is studied.

To give the reader some ideas of what will come ahead, the following table

summarizes the complexity required to obtain the approximation error ε in mean square

with respect to the probability space generated by the Markov chains for the three

methods studied §

Plain MCMC gpc-MCMC MLMCMC

Assume: Assumptions 1(i),(ii), 7 Assumption 9 Assumptions 1(i),(ii), 7
Number of

degrees of freedom O(ε−d−2) O(ε−1/τ) O(ε−d)

Number of floating
point operations O(ε−d−2−1/q) O(ε−max(α/τ,2+1/σ)) O(ε−d−1/q)

Here, d ≥ 2 denotes the dimension of the spatial variable in the elliptic inverse problem

and q determines the rate of decay in the sequence of coefficients of the Karhúnen-Loève

expansion of the unknown coefficient in Assumption 1(ii). The parameters τ , α and σ

concern the approximation properties of the gpc solver and are detailed in Assumption

9; τ quantifies the rate of convergence and α the polynomial scaling of the floating point

complexity with respect to the total number of degrees of freedom that we assume for the

gpc solver, whilst σ relates the number of degrees of freedom to the number of terms

in the gpc approximation. The existence of methods which realize the assumptions

made is discussed in detail in Appendices D and E; in particular gpc-based adaptive

forward solvers of infinite-dimensional, parametric PDEs whose overall complexity scales

polynomially in the number of degrees of freedom in the discretization of PDE of interest

have recently become available; we refer to [27, 12, 3] and the references there. The three

main results of the paper, substantiating the displayed table, are then Theorems 13, 18

and 21. Our results show that the MLMCMC FEM can achieve a given accuracy

in work equal asymptotically, as the accuracy ε → 0, to that of performing a single

step of “plain” MCMC FEM; they also show that the gpc-accelerated MCMC FEM

is superior to the “plain” MCMC FEM when the compression afforded by sparse gpc

FE approximations of the parametric forward solution operator is large, ie. when the

§ ignoring multiplicative logarithmic factors for clarity of exposition
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parameter τ is close to 1/d and when α is close to 1 – parameter regimes which do hold in

many cases (see, e.g, [27] and the references there for stochastic Galerkin discretizations

of the parametric forward problem).

The paper is organized as follows. Section 2 is devoted to the specific elliptic inverse

problem which we study for illustrative purposes, and includes Bayesian formulation, a

discussion of approximation techniques for the unknown field and the forward map, and

properties of the independence MCMC sampler that we study. In section 3 we analyze

the Plain MCMC Method, in Section 4 the gpc-MCMC Finite Element Method and in

Section 5 we study the MLMCMC Method; these sections contain Theorems 13, 18 and

21 respectively. Section 6 contains our concluding remarks. The paper also includes

five appendices which are devoted to mathematical developments which are necessary

for the theoretical advances made in this paper, but which employ ideas already in

the literature. In particular Appendix A concerns Lipschitz dependence of the forward

problem on the unknown function u, whilst Appendix B is devoted to the formulation

of Bayesian inverse problems on measure spaces and Appendix C to the properties of

independence samplers in this setting. Appendices D and E concern the finite element

and polynomial chaos approximation properties, and demonstrate how the assumptions

made concerning them may be verified.

1.2. Overview of Notation

Because of the many different approximations used in this paper, together with the

mixture of probability and PDE, the notation can be quite complicated. For this reason

we devote this subsection to an overview of the notation, in order to help the reader.

To be concrete we assume that the observational noise appearing in (1) is a single

realization of a centred Gaussian N(0,Σ). If a prior measure ρ is placed on the unknown

u then a Bayesian formulation of the inverse problem leads to the problem of probing

the posterior probability measure ρδ given by

dρδ

dρ
(u) ∝ exp(−Φ(u; δ)) , (2)

where

Φ(u; δ) =
1

2
|δ − G(u)|2Σ . (3)

Here | · |Σ = |Σ− 1
2 · | with | · | the Euclidean norm. In Section 2 and Appendix B we verify

that the formulae (2) and (3), which represent Bayes’ formula in the infinite dimensional

setting, hold for the model elliptic inverse problem which is under consideration here.

Our approximation of the unknown field u will be performed through truncation of

the coefficients and Finite Element Galerkin discretizations will be used to approximate

the forward solution map G.
On the probability side we use the following notation: Bk denotes the sigma algebra

of Borel subsets of R
k. For a probability space (Ω,A, ρ) consisting of the set Ω of

elementary events, a sigma algebra A and a probability measure ρ, and a separable
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Hilbert space H with norm ‖ · ‖H and for a summability exponent 0 < p ≤ ∞ we denote

by Lp(Ω, ρ;H) the Bochner space of strongly measurable mappings from Ω to H which

are p-summable.

We denote by E
µ the expectation with respect to a probability measure µ on

the space U containing the unknown function u. In the following we will finite-

dimensionalize both the space U , in which the unknown function u lies, and the

space containing the response of the forward model. The parameter J denotes the

truncation level of the coefficient expansion (5) used for the unknown function, and the

parameter l denotes the spatial finite element discretization level introduced in section

3. The parameters N and L denote the cardinality of the set of the chosen active

gpc coefficients and the set of finite element discretization levels for these coefficients

which is introduced in section 4. We employ multilevel FE discretizations on mesh

levels l = 0, 1, ..., L of the forward problem together with multilevel approximations

of the Bayesian posterior which are indexed by l′ = 0, 1, . . . , L, and combine these

judiciously with a discretization level dependent sample size Mll′ within the MCMC

method. The measure µ will variously be chosen as the prior ρ, the posterior ρδ, and

various approximations of the posterior such as ρJ,l,δ.

We denote by Pu(0) , PJ,l

u(0) and PN,L

u(0) probability measures on the probability space

generated by the MCMC processes detailed in the following, when conditioned on the

initial point u(0) with the acceptance probability for the Metropolis-Hastings Markov

chain being α defined in (9), αJ,l defined in (26), and αN,L defined in (31) respectively for

the problems on the full, infinite dimensional space and its truncations. We then denote

by Eu(0) , EJ,l

u(0) and EN,L

u(0) expectation with respect to Pu(0) , PJ,l

u(0) and PN,L

u(0) respectively.

If the initial point u(0) of these Markov chains is distributed with respect to an

initial probability measure µ on U , then we denote the probability measure on the

probability space that describes these Markov chains by Pµ, Pµ,J,l and Pµ,N,L, and the

corresponding expectation accordingly by Eµ, Eµ,J,l and Eµ,N,L. As these notations are

somewhat involved, for the convenience of the reader we collect them in the following

table.

Acceptance probability α in (9) αJ,l in (26) αN,L in (31)

starting with u(0)
Probability of the
Markov chain Pu(0) PJ,l

u(0) PN,L

u(0)

Expectation Eu(0) EJ,l

u(0) EN,L

u(0)

starting with
distribution µ

Probability of the
Markov chain Pµ Pµ,J,l Pµ,N,L

Expectation Eµ Eµ,J,l Eµ,N,L

Finally, in Section 5, we will work with the probability measure PL, on the

probability space corresponding to a sequence of independent Markov chains created

by the multilevel-MCMC procedure, and with EL, the expectation with respect to this

probability measure. The definition of these measures will be given at the beginning of
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Section 5.

2. Elliptic Inverse Problem and Approximations

In this section, we formulate the elliptic problem of interest in Section 2.1, formulate the

resulting Bayesian inverse problem in Section 2.2, describe the independence sampler

used to probe the posterior distribution in Section 2.3 and convergence rate estimates of

the finite element and gpc methods in Sections 2.4 and 2.5, respectively. The results in

this section all follow from direct application of well-known theories of inverse problems,

MCMC and discretization techniques for PDEs; however, to render the exposition self-

contained, proofs and references are provided in Appendices A–E.

2.1. Forward Problem

Let D be a bounded Lipschitz domain in R
d. For f ∈ L2(D), we consider the elliptic

problem

−∇ · (K(x)∇P (x)) = f(x) in D, P = 0 on ∂D . (4)

Throughout we assume that the domain D is a convex polyhedron with plane sides.

The coefficient K ∈ L∞(D) in (4) is parametrized by the series expansion

K(x) = K̄(x) +
∑

j≥1

ujψj(x), x ∈ D (5)

where the uj are normalized to satisfy supj |uj| ≤ 1 and where the summation may be

either infinite or finite. In the next subsection we formulate the problem of determining

the (uncertain) function K, or equivalently the sequence {uj}j≥1, from a finite noisy set

of observations comprised of linear functionals of the solution P.Where it is notationally

helpful to do so, we will write K(x, u) and P (x, u) for the coefficient and solution of (4)

respectively.

The following sparsity assumptions on K in (5), which we will use in various

combinations throughout the paper, imply the bounded invertibility of the parametric

forward map U ∋ u 7→ P (·, u) ∈ V . They also imply sparsity of gpc representations of

this map and allow for controlling various approximation errors that arise in the sequel.

Assumption 1 The functions K̄ and ψj in (5) are in L∞(D) and:

(i) there exists a positive constant κ such that
∑

j≥1

‖ψj‖L∞(D) ≤
κ

1 + κ
K̄min,

where K̄min = essinfxK̄(x) > 0;

(ii) the functions K̄ and ψj in (5) are in W 1,∞(D) and there exist positive constants C

and q such that for all J ∈ N, the sequence {ψj} in the parametric representation
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(5) of the uncertain coefficient in (4) satisfies

∑

j≥1

‖ψj‖W 1,∞(D) <∞,
∑

j>J

‖ψj‖L∞(D) < CJ−q;

(iii) the coefficients ψj are arranged in decreasing order of magnitude of ‖ψj‖L∞(D) and

there are constants s > 1 and C > 0 such that

∀j ∈ N : ‖ψj‖L∞(D) ≤ Cj−s;

(iv) for all j ∈ N, ψj ∈ W 1,∞(D) and there exists a constant C > 0 such that

∀j ∈ N : ‖∇ψj‖L∞(D) ≤ Cj−s′ for some 1 < s′ ≤ s .

Sparsity of the unknown diffusion coefficient K, which is expressed in terms of the decay

rate for the coefficients ψj of the expansion (5) in Assumption 1 (iii) and (iv) holds

when the covariance of the random coefficient K(x, ω) is sufficiently smooth, as shown

in Bieri et al [3]. With the decay rate in Assumption 1(iii), the constant q in (ii) can be

chosen as q = s− 1.

We denote by U = [−1, 1]N the set of all sequences u = (uj)j≥1 of coordinates

uj taking values in [−1, 1] and note that this is the unit ball in ℓ∞(N). We equip the

parameter domain U with the product sigma algebra Θ =
⊗∞

j=1 B([−1, 1]). Due to

Assumption 1(i), for any u ∈ U the series (5) converges in L∞(D). Furthermore, it also

follows from this assumption that there exist finite positive constants Kmin and Kmax

such that, for all (x, u) ∈ D × U ,

Kmin := K̄min/(1+κ) ≤ K(x) ≤ Kmax := esssupxK̄(x)+κK̄min/(1+κ).(6)

We let V = H1
0 (D), whilst V ∗ denotes its dual space. We equip V with the

norm ‖P‖V = ‖∇P‖L2(D). By (5), K(x) is bounded below uniformly with respect to

(x, u) ∈ D × U and, for every u ∈ U ,

Kmin‖P (·, u)‖2V = Kmin(∇P (·, u),∇P (·, u)) ≤ (K(·, u)∇P (·, u),∇P (·, u))
= (f, P (·, u)) ≤ ‖f‖V ∗‖P (·, u)‖V ,

where (·, ·) denotes the inner product in L2(D) and (L2(D))d. It follows that

sup
u∈U

‖P (·, u)‖V ≤ ‖f‖V ∗

Kmin

. (7)

In fact we have the following, proved in Appendix A.

Proposition 2 Under Assumption 1(i), the solution P : U 7→ V = H1
0 (D) is Lipschitz

when viewed as a mapping from the unit ball in ℓ∞(N) to V . It is in particular

measurable, as a mapping from the measurable space (U,Θ) to (V,B(V )).

✷
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2.2. Bayesian Elliptic Inverse Problem

We now define the Bayesian inverse problem. For Oi ∈ V ∗, i = 1, . . . , k, which denote

k continuous, linear “observation” functionals on V , we define a map G : U → R
k as

U ∋ u 7→ G(u) := (O1(P (·, u)),O2(P (·, u)), . . . ,Ok(P (·, u))) ∈ R
k . (8)

In (1), by ϑ we denote an observational noise which is statistically independent of the

input u and which we assume to be Gaussian, ie. with distribution N(0,Σ) in R
k, with

positive definite covariance matrix Σ. We model the noisy observed data δ for G(u) by
δ = G(u) + ϑ .

For Bayesian inversion, we place a prior measure on u by assuming that uj : Ω → [−1, 1]

comprises a sequence of independent random variables uj : Ω → [−1, 1] in the series

expansion (5). On the measurable space (U,Θ) defined above we define the countable

product probability measure

ρ =
⊗

j≥1

duj
2
,

where duj is the Lebesgue measure on [−1, 1]. As uj are uniformly distributed on [−1, 1],

the measure ρ is the law of the random vector u = (u1, u2, . . .) in U . As the random

variables uj(ω) were assumed independent, the probability measure on realizations of

random vectors u ∈ U is a product measure: for S =
∏

j≥1 Sj,

ρ(S) =
∏

j≥1

P({ω : uj ∈ Sj}) .

Combining the prior and likelihood, the posterior measure on u given δ can be explicitly

determined, using the general theory from Appendix B, and a stability/well-posedness

estimate; the proof of the following result for the model problem is provided there.

Proposition 3 Let Assumption 1(i) hold. The conditional probability measure ρδ(du) =

P(du|δ) on U is absolutely continuous with respect to ρ(du) and satisfies

dρδ

dρ
∝ exp(−Φ(u; δ)) .

Furthermore, for every r > 0 for every δ, δ′ such that |δ|Σ, |δ′|Σ ≤ r, there exists

C = C(r) > 0 such that

dHell(ρ
δ, ρδ

′

) ≤ C(r)|δ − δ′|Σ
where dHell denotes the Hellinger distance of the measures ρδ, ρδ

′

(see, eg., equation (51)

in Appendix B).

Remark 4 The proof of the preceding proposition shows that |G(u)| is uniformly

bounded for u in U . As a consequence there exists Φ⋆(r) > 0 which is a uniform bound

on Φ(u; δ) for all |δ| ≤ r and for all u ∈ U . This bound is also uniform with respect to

truncation of the infinite series (5) for K, since this corresponds to a particular choice

of some of the coefficients of u ∈ U , and with respect to finite element approximation
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of the solution of (4), since the uniform upper bound on |G(u)| will be preserved under

Galerkin projections of the elliptic problem (4) into finite-dimensional subspaces Vh ⊂ V

(or, more generally, under any stable discretization of the forward problem of interest).

2.3. Independence Sampler

To approximate expectations with respect to the posterior measure ρδ constructed in

the previous section we will use MCMC methods and, in particular, the independence

sampler. To this end we define, for any u, v ∈ U ,

α(u, v) = 1 ∧ exp(Φ(u, δ)− Φ(v, δ)) . (9)

The Markov chain {u(k)}∞k=1 ⊂ U is then constructed as follows: given the current state

u(k), we draw a proposal v(k) independently of u(k) from the prior measure ρ appearing in

(2). Let {w(k)}k≥1 denote an i.i.d sequence with w(1) ∼ U [0, 1] and with w(k) independent

of both u(k) and v(k). We then determine the next state u(k+1) via the formula

u(k+1) = 1(α(u(k), v(k)) ≥ w(k))v(k) +
(

1− 1(α(u(k), v(k)) ≥ w(k))
)

u(k) . (10)

Thus we choose to move from u(k) to v(k) with probability α(u(k), v(k)), and to remain

at u(k) with probability 1− α(u(k), v(k)). The following is proved in Appendix C.

Proposition 5 Let Assumption 1(i) hold. Equation (10) defines a Markov chain

{u(k)}∞k=0 which is reversible with respect to ρδ. If p(u,A) denotes the transition kernel

for the Markov chain, and pn(u,A) its nth iterate, then there is R ∈ (0, 1) such that, for

all n ∈ N,

‖pn(u,A)− ρδ‖TV ≤ 2(1− R)n .

For every bounded, continuous function g : U → R, there holds, Pu(0) almost surely,

1

M

M
∑

k=1

g(u(k)) = E
ρδ [g(u)] + cξMM

− 1
2 (11)

where ξM is a sequence of random variables which converges weakly as M → ∞ to

ξ ∼ N(0, 1) and where c is a positive constant which is independent of M (it depends

only on Φ⋆(r) in Remark 4 and on supu∈U |g(u)|). Furthermore, we have the mean

square error bound: there exists C > 0 such that for every bounded g : U 7→ R and every

M ∈ N

(

Eρ
[∣

∣

∣
E
ρδ [g(u)]− 1

M

M
∑

k=1

g(u(k))
∣

∣

∣

2])1/2

≤ Csup
u∈U

|g(u)|M−1/2 .

Remark 6 The proof of this proposition uses fairly standard methods from the theory of

Markov chains. In our context a key observation regarding the proof is that all constants

– in particular the constant R – depend only on the upper bound on the negative log

likelihood Φ, and on the supremum of g. Hence, if we can show for finite element and

Karhúnen-Loève approximations of the forward map G in the physical domain D that
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these approximations are such that the potential Φ is stable under these approximations,

then the conclusions of the preceding theorem will hold with constants that are uniformly

bounded with respect to all approximation parameters.

Note also that our choice of uniform priors and the independence sampler means

that the issue of“burn-in” does not play a significant role in our analysis; in particular

the total variation metric convergence bound is independent of initialization. When

generalizing our work to other priors and other MCMC methods “burn-in” effects may

become more pronounced in the analysis.

2.4. Finite Element Approximation of the Forward Problem

Assumptions 1(i),(ii) are imposed throughout what follows regarding the finite element

method. Thus, from (5), we deduce that K(·, u) ∈ W 1,∞(D) for all u ∈ U . We describe

an approximation of the forward problem based on finite element representation of the

solution P of (4), together with truncation of the series (5). We start by discussing

the finite element approximation. Recalling that the domain D is a bounded Lipschitz

polyhedron with plane sides, we denote by {T l}∞l=1 the nested sequence of simplices

which is defined inductively as follows: first we subdivide D into a regular family

T 0 of simplices T ; for l ≥ 1, the regular simplicial mesh T l in D is obtained by

recursive subdivision, i.e. each simplex in T l−1 is divided into 2d subsimplices. Then,

the meshwidth hl := max{diam(T ) : T ∈ T l} of T l is hl = 2−lh0. Based on these

triangulations, we define a nested multilevel family of spaces of continuous, piecewise

linear functions on T l as

V l = {u ∈ V : u|T ∈ P1(T ) ∀T ∈ T l},
where P1(T ) denotes the set of linear polynomials in the simplex T ∈ T l. Approximating

the solution of the parametric, deterministic problem (4) from the finite element

spaces V l introduces a discretization error which is well-known to be bounded by the

approximation property of the V l: there exists a positive constant C > 0 which is

independent of l such that for all P ∈ H2(D) ∩H1
0 (D) and for every 0 < hl ≤ 1 holds

inf
Q∈V l

‖P −Q‖V ≤ Chl‖P‖H2(D), (12)

where hl = O(2−l) and where the constant C > 0 depends only on T 0.

We now discuss the effect of dimensional truncation, ie. of truncating the infinite

series (5) for the unknown diffusion coefficient K in problem (4) after J terms, as

KJ(x, u) = K̄(x) +
J
∑

j=1

ujψj(x) x ∈ D, u ∈ U . (13)

We thus consider the parametric, deterministic family of approximate elliptic problems

−∇ · (KJ (·, u)∇P J(·, u)) = f, P J = 0 on ∂D . (14)
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Under Assumptions 1(i) and (ii), (49) shows that there exists a constant C > 0 such

that for all J ∈ N and all u ∈ U

‖P (·, u)− P J(·, u)‖V ≤ C‖P (·, u)‖V ‖K(·, u)−KJ(·, u)‖L∞(D)

≤ C‖P (·, u)‖V J−q ≤ C
Kmin

J−q‖f‖V ∗ .
(15)

We consider the finite element approximation of the truncated problem (14): given

J, l ∈ N, find P J,l(·, u) ∈ V l such that for all φ ∈ V l

∫

D

KJ(x, u)∇P J,l(x, u) · ∇φ(x)dx =

∫

D

f(x)φ(x)dx . (16)

We make the following assumption on the complexity of solving this discrete equation

the justification of which is provided in Appendix D.

Assumption 7 For J ∈ N as in (13), the solution P J(·, u) of (14) is uniformly bounded

inW := H2(D)∩H1
0(D) with respect to J ∈ N and to u ∈ U . The matrix of the Galerkin

approximated problem (16) has O(ld−12dl) non-zero entries and has a uniformly bounded

condition number for all J, l and u. There exists C > 0 such that, for all J ∈ N and for

all u ∈ U , the FE error for the approximating problem (16) satisfies

‖P J(·, u)− P J,l(·, u)‖V ≤ C2−l‖P J(·, u)‖W . (17)

From this assumption, we obtain the following error bound.

Proposition 8 Consider the approximation of the elliptic problem (4) via finite element

solution of the truncated problem (14), under Assumptions 1 (i), (ii) and Assumption

7. Then there exists a constant C > 0 such that for every J, l ∈ N and for every u ∈ U

it holds that the Finite Element solutions P J,l(·, u) are uniformly V -stable in the sense

that, for every J, l ∈ N and for every u ∈ U there holds

sup
J,l∈N

sup
u∈U

‖P J,l(·, u)‖V ≤ C

Kmin

‖f‖V ∗ . (18)

Moreover, there exists C > 0 such that for every u ∈ U holds the error bound

‖P (·, u)− P J,l(·, u)‖V ≤ C(2−l‖P J(·, u)‖W + J−q‖P (·, u)‖V ) . (19)

2.5. Sparse Tensor gpc-Finite Element Surrogate of the Parametric Forward Problem

By (7), the solution P (·, u) of problem (4) is uniformly bounded in V by ‖f‖V ∗/Kmin.

Therefore, from Proposition 2, we deduce that P (·, ·) ∈ L2(U, ρ;V ). Thus the parametric

solution admits a polynomial chaos type representation in L2(U, ρ;V ). To define it, we

denote by Ln(un) the Legendre polynomial of degree n, normalized such that

1

2

∫ 1

−1

|Ln(ξ)|2dξ = 1 .

By F we denote the set of all sequences ν = (ν1, ν2, . . .) of nonnegative integers such

that only finitely many νj are nonzero. We define

Lν(u) =
∏

j≥1

Lνj (uj) . (20)
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Since L0 ≡ 1, for each ν ∈ F the product contains only finitely many nontrivial factors.

The set {Lν : ν ∈ F} forms an orthonormal basis for L2(U, ρ). We can therefore expand

P (·, u) into the Legendre expansion

P (·, u) =
∑

ν∈F

Pν(·)Lν(u),

where Pν :=
∫

U
P (·, u)Lν(u)dρ(u) ∈ V . By the L2(U, ρ) orthonormality of the set

{Lν : ν ∈ F}, Parseval’s equation in the Bochner space L2(U, ρ;V ) takes the form

∀P ∈ L2(U, ρ;V ) : ‖P‖2L2(U,ρ;V ) =
∑

ν∈F

‖Pν‖2V .

We now define the sparse tensor surrogate forward maps where we only use a finite

(sparse) subset of the gpc mode index set F . For any integer N , choose an index set

ΛN ⊂ F of gpc coefficients Pν ∈ V which are to be included into the surrogate map,

subject to the constraint #(ΛN) ≤ N , and a second set L(ΛN) := (lν)ν∈ΛN
⊂ N

N of

Finite-Element discretization levels for the FE approximation of the active Pν , ν ∈ ΛN .

Then we consider surrogate forward maps PN,L for the response P which are of the form

PN,L(x, u) =
∑

ν∈ΛN

Pν,L(x)Lν(u), Pν,L ∈ V lν . (21)

We wish to find the sets ΛN and L(ΛN) that give the best (or the quasi-best)

approximations among all finite subsets Λ ⊂ F and of L(Λ) subject to a constraint

on their combined cardinality Ndof =
∑

ν∈ΛN
lν . Convergence rates, in terms of Ndof ,

of such approximations of parametric forward maps have been derived recently, for

example, in [5], [6], [15], [16], [27], [25]. In these references, the following assumption

has been verified for various problem classes.

Assumption 9 There are positive constants σ, τ , α and β such that for each integer

N , with a total budget of Ndof = O(Nσ/τ ) degrees of freedom, a subset ΛN ⊂ F of

cardinality not exceeding an absolute multiple of N and such that, for every ν ∈ ΛN ,

|ν| = O(logN) and a surrogate gpc FE approximation PN,L of the parametric forward

solution P of (14) of the form (21) with rate of convergence

‖P − PN,L‖L2(U,ρ;V ) ≤ CN−τ
dof ,

can be found in O(Nα
dof(logNdof)

β) float point operations.

For the model elliptic inverse problem of determining K given by (5) from linear

functionals defined on solutions of (4), subject to the sparsity conditions in Assumption

1, the preceding assumption is verified in Appendix E; there also bounds for τ , the rate

σ and for the exponents α > 0 and β ≥ 0 in Assumption 9 are derived, in terms of the

sparsity assumptions on the unknown coefficient K in (13).

3. Plain MCMC

We study the computational complexity of the Plain MCMC method (10) to generate

samples from the posterior probability measure ρδ determined in the previous section.
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The main results of this analysis are summarized in Theorem 13. The complexity

analysis of the MCMC algorithm is of independent interest as it utilizes the emerging

idea of MCMC methods with dimension independent mixing properties [7, 14, 31].

Furthermore, the results in the present section will be the foundation for several

accelerations of the Plain MCMC algorithm which will be presented in Sections 4

and 5 ahead. In order to obtain a constructive version of the MCMC algorithm, we

will approximate solutions of the forward problem (4) by applying the Finite Element

Method in the physical domain D to its parametric version (4) and by truncation of the

expansion of the diffusion coefficient K given by (5).

Assumptions 1(i),(ii) are imposed throughout what follows. From Assumption 1(ii)

and from (5), we deduce that K(·, u) ∈ W 1,∞(D) for all u ∈ U .

3.1. FE Approximation of the Posterior Measure

We denote the vector of observables from the Galerkin discretized, gpc-parametrized

approximate forward solution map by

GJ,l(u) = (O1(P
J,l(u)), . . . ,Ok(P

J,l(u))) : U 7→ R
k (22)

and define the corresponding Bayesian potential

ΦJ,l(u; δ) =
1

2
|δ − GJ,l(u)|2Σ . (23)

We define an approximate conditional posterior probability measure ρJ,l,δ on the

measurable space (U,Θ) as

dρJ,l,δ

dρ
∝ exp(−ΦJ,l(u; δ)) .

Then, the measure ρJ,l,δ is an approximation of the Bayesian posterior ρδ which, due

to the discretization and the truncation of the expansion (5) incurs an approximation

error. We now show that this error in the posterior measure is bounded in the Hellinger

metric with respect to J and l in the same way as the forward error in Proposition

8. The proof of the following Proposition is based on a generalization of the method

introduced in [8].

Proposition 10 Let Assumptions 1(i),(ii) and 7 hold. If the domain D is convex and

if f ∈ L2(D) then there exists a positive constant c depending only on the data δ such

that for every J and l there holds

dHell(ρ
δ, ρJ,l,δ) ≤ C(δ)(J−q + 2−l)‖f‖L2(D) .

Proof We denote the normalizing constants as

Z(δ) =

∫

U

exp(−Φ(u; δ))dρ(u), ZJ,l(δ) =

∫

U

exp(−ΦJ,l(u; δ))dρ(u) .
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We then estimate

2dHell(ρ
δ, ρJ,l,δ)2

=

∫

U

(

Z(δ)−1/2 exp
(

− 1

2
Φ(u; δ)

)

− (ZJ,l(δ))−1/2 exp
(

− 1

2
ΦJ,l(u; δ)

))2

dρ(u)

≤ I1 + I2,

where we defined

I1 :=
2

Z(δ)

∫

U

(

exp
(

− 1

2
Φ(u; δ)

)

− exp
(

− 1

2
ΦJ,l(u; δ)

))2

dρ(u),

I2 := 2|Z(δ)−1/2 − ZJ,l(δ)−1/2|2
∫

U

exp(−ΦJ,l(u; δ))dρ(u) .

We estimate I1 and I2. To bound I1, given data δ, for every u ∈ U holds
∣

∣

∣
exp

(

− 1

2
Φ(u; δ)

)

− exp
(

− 1

2
ΦJ,l(u; δ)

)∣

∣

∣
≤ 1

2
|Φ(u; δ)− ΦJ,l(u; δ)|

≤ C(2|δ|+ |G(u)|+ |GJ,l(u)|)|G(u)− GJ,l(u)| . (24)

Moreover, by Proposition 8, there exists a constant C > 0 independent of J and of l

such that, for all u ∈ U , there holds

|G(u)− GJ,l(u)| ≤ Cmax{‖Oi‖V ∗}‖P (·, u)− P J,l(·, u)‖V
≤ C(2−l‖P J(·, u)‖W + J−q‖P (·, u)‖V ) .

By (7) and Proposition 29, ‖P (·, u)‖V and ‖P J(·, u)‖W are uniformly bounded with

respect to u ∈ U . Therefore, there exists a constant C(δ) > 0 depending only on the

data δ such that for all J ∈ N

I1 ≤ C(δ)Eρ(2−l‖P J(·, u)‖W + J−q‖P (·, u)‖V )2
≤ C(δ)(J−2q‖f‖2V ∗ + 2−2l‖f‖2L2(D)) .

To estimate term I2, we observe that there is a positive constant C > 0 such that for

every J, l ∈ N holds

|Z(δ)−1/2 − ZJ,l(δ)−1/2|2 ≤ C(Z(δ)−3 ∨ ZJ,l(δ)−3)|Z(δ)− ZJ,l(δ)|2 .
We note that

|Z(δ)− ZJ,l(δ)| ≤
∫

U

| exp(−Φ(u; δ))− exp(−ΦJ,l(u; δ))|dρ(u)

≤
∫

U

|Φ(u; δ)− ΦJ,l(u; δ)|dρ(u) .

Therefore, as Z(δ) and ZJ,l(δ) are uniformly bounded below for all δ, analysis similar

to that for I1 shows that

I2 ≤ C(δ)(2−2l + J−2q)‖f‖2L2(D).

Thus

dHell(ρ
δ, ρJ,l,δ) ≤ C(δ)(2−l + J−q)‖f‖L2(D) .

✷
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3.2. Computational Complexity of Plain MCMC

Given J, l ∈ N, and data δ, we use the MCMC method (10) to sample the probability

measure ρJ,l,δ. In so doing we create a method for approximating integrals of functions

g : U → R with respect to ρδ. We use the following notation for the empirical measure

generated by the Markov chain designed to sample ρJ,l,δ:

EρJ,l,δ

M [g] :=
1

M

M
∑

k=1

g(u(k)), (25)

where the Markov chain CJ,l = {u(k)}k∈N0 ⊂ R
J is started in the restriction of u(0) to R

J .

It depends on the discretization level l and the truncation level J since it is generated

from the process (10) with the acceptance probability (9) being replaced by

αJ,l(u, v) = 1 ∧ exp(ΦJ,l(u; δ)− ΦJ,l(v; δ)) , (u, v) ∈ U × U . (26)

Given M ∈ N we wish to estimate the MC sampling error

E
ρδ [g]− EρJ,l,δ

M [g] . (27)

We develop in the following two types of error bounds asM → ∞ for (27): a probabilistic

error bound for PJ,l

u(0) almost every realization of the Markov chain and a mean square

bound. We refer to the table in Section 1.2 for the notation in the next result.

Proposition 11 Let Assumptions 1(i),(ii) and 7 hold. Let g : U → R be a bounded

continuous function on U with respect to the supremum norm. Then, for every initial

condition u(0) and for PJ,l

u(0)-almost every realization of the Markov chain holds the error

bound
∣

∣

∣
E
ρδg(u)−EρJ,l,δ

M [g]
∣

∣

∣
≤ c1M

− 1
2 + c2(J

−q + 2−l)

where c1 ≤ c3|ξM |; ξM is a random variable (on the probability space generating the

randomness within the Markov chain) which converges weakly asM → ∞ to ξ ∼ N(0, 1)

and c2, c3 are non-random constants independent of M,J and l.

Moreover, there exists a constant c4 (which is deterministic and depends only on

the data δ, and which is, in particular, independent of M,J and l) such that
(

Eρ,J,l
[ ∣

∣

∣
E
ρδ [g]− EρJ,l,δ

M [g]
∣

∣

∣

2 ])1/2

≤ c4(M
−1/2 + J−q + 2−l). (28)

Proof As g is bounded, we have from Proposition 10 and properties of the Hellinger

metric (specifically, from (2.7) in [8]) for every u ∈ U that

|Eρδg(u)− E
ρJ,l,δg(u)| ≤ c̄(g)dHell(ρ

δ, ρJ,l,δ) ≤ c̄(g)C(δ)(J−q + 2−l) . (29)

Here, C(δ) is as in Proposition 10 and c̄(g) depends on the supremum of g(u) over U ,

but is independent of J, l. By Proposition 5 (and Remarks 6 and 4) we deduce the

existence of a constant C > 0, independent of M,J and l, such that there holds, as

M → ∞, PJ,l

u(0) almost surely,

|EρJ,l,δg − 1

M

M
∑

k=1

g(u(k))| ≤ C|ξM |M−1/2
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where ξM converges weakly as M → ∞ to ξ ∼ N(0, 1). Combining this with (29) gives

the first assertion.

To prove the mean square error bound (28), we define

ḡ(u) := g(u)− E
ρJ,l,δ [g],

as in the proof of Proposition 5. We note that ḡ depends on J, l via dependence on the

approximate posterior measure ρJ,l,δ, but we do not indicate this dependence explicitly.

However we will use uniform boundedness of ḡ with respect to these parameters in an

essential way in what follows.

Due to the invariance of the stationary measures ρJ,l,δ, we may write

1

M
EρJ,l,δ,J,l

[∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

= E
ρJ,l,δ [ḡ(u(0))2] + 2

1

M

M
∑

k=1

M
∑

j=k+1

EρJ,l,δ,J,l[ḡ(u(k))ḡ(uj)]

= E
ρJ,l,δ [ḡ(u(0))2] + 2

1

M

M−1
∑

k=0

M−k
∑

j=1

EρJ,l,δ,J,l[ḡ(u(0))ḡ(u(j))]

= E
ρJ,l,δ [ḡ(u(0))2] + 2

1

M

M−1
∑

k=0

M−k
∑

j=1

E
ρJ,l,δ [ḡ(u(0))EJ,l

u(0)[ḡ(u
(j))]]

≤ E
ρJ,l,δ [ḡ(u(0))2]

+ 2
1

M

M−1
∑

k=0

sup |ḡ|
M−k
∑

j=1

E
ρJ,l,δ [|EJ,l

u(0)g(u
(j))− E

ρJ,l,δ [g]|]

≤ E
ρJ,l,δ [ḡ(u(0))2] + 4

1

M

M−1
∑

k=0

sup |ḡ|2
M−k
∑

j=1

(1− R)j.

In the last line we have used the estimate on the total variation contraction from

Proposition 5 noting, as in Remark 6, that because supu∈U ‖P J,l(u)‖V is bounded

uniformly with respect to the (discretization) parameters J and l, the constant 0 <

R < 1 is independent of the parameters J and l. Since supJ,l E
ρJ,l,δ [ḡ(u(0))2] is bounded

independently of J and of l, we deduce that

sup
J,l,M∈N

M EρJ,l,δ,J,l
[∣

∣

∣

1

M

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

<∞ .

Next, we note that

Eρ,J,l
[∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

=

∫

U

EJ,l

u(0)

[∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

dρ(u(0))

=

∫

U

EJ,l

u(0)

[∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2] dρ

dρJ,l,δ
(u(0))dρJ,l,δ(u(0))

≤ EρJ,l,δ,J,l
[∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

ZJ,l(δ) sup
u∈U

exp(ΦJ,l(u; δ)) .
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As ZJ,l(δ) ≤ 1 and supu∈U |ΦJ,l(u; δ)| are bounded uniformly with respect to J and l, we

get the conclusion after using the bound from Proposition 10 on the Hellinger distance

between ρδ and ρJ,l,δ. ✷

We consider the case where g(u) = ℓ(P (·, u)) with ℓ ∈ V ∗ being a bounded linear

functional on V . As there exists a constant C > 0 such that for all J, l ∈ N, u ∈ U ,

there holds

|Eρδ [ℓ(P (·, u))]− E
ρδ [ℓ(P J,l(·, u))]| ≤ C(J−q + 2−l)

and

|Eρδ [ℓ(P J,l(·, u))]− E
ρJ,l,δ [ℓ(P J,l(·, u))]| ≤ C(J−q + 2−l),

we have

|Eρδ [ℓ(P (·, u))]− E
ρJ,l,δ [ℓ(P J,l(·, u))]| ≤ C(J−q + 2−l) .

We therefore perform an MCMC algorithm to approximate E
ρJ,l,δ [ℓ(P J,l(·, u))]. As

ℓ(P J,l(·, u)) and ΦJ,l(u; δ) depend only on the finite set of coordinates {u1, . . . , uJ} in

expansion (5), we perform the Metropolis-Hastings MCMC method on this set with

proposals being drawn from the restriction of the prior measure ρ to this finite set.

Proposition 12 Let Assumptions 1 (i), (ii) and 7 hold, and assume that g(u) =

ℓ(P (·, u)) where ℓ is a bounded linear functional in V ∗. Then the approximate evaluation

of the sample average 1
M

∑M
k=1 ℓ(P

J,l(·, u(k))) by the Plain MCMC method with M

realizations of the chain, with Finite Element discretization in the domain D at mesh

level l as described above, and with J-term truncated coefficient representation (13),

requires O(ld−12dlMJ) floating point operations.

Proof The approximate computation of each of the O(ld−12dl) non-zero entries of the

stiffness matrix of (16), requires at most O(J) operations to compute the coefficients

KJ at the quadrature points. ‖ Therefore the cost of constructing the stiffness matrix

is O(ld−12dlJ). Since the condition number of this stiffness matrix is assumed to be

uniformly bounded, the conjugate gradient method for the approximate solution of

the linear system resulting from the Finite Element discretization with an accuracy

comparable to the order of the discretization error requires at most O(ld−12dl) floating

point operations. The total cost for solving the approximated forward problem at each

step of the Markov chain requires at most O(ld−12dlJ) floating point operations. The

numerical evaluation of ℓ(P J,l(u(k))) requires at most O(2dl) floating point operations.

Since we generate M draws of the chain, the assertion follows. ✷

Theorem 13 Let Assumptions 1 (i), (ii) and 7 hold. For g(u) = ℓ(P (u)) where ℓ is

a bounded linear functional in V ∗, with probability pNdof
(t) the conditional expectation

E
ρδg(u) can be approximated using Ndof degrees of freedom to approximate the forward

‖ There is an implicit assumption here that the basis functions can be evaluated at a point with O(1)

cost.
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PDE and t2N
2/d
dof MCMC steps (with a total of t2N

1+2/d
dof degrees of freedom), incurring

an error of O(N
−1/d
dof ), and using at most

ct2 log(Ndof)
d−1N

1+(2+1/q)/d
dof

floating point operations for a positive constant c where, for all t,

lim
Ndof→∞

pNdof
(t) →

∫ c′t

−c′t

1√
2π

exp(−x2/2)dx ,

for a positive constant c′ independent of Ndof and t.

In mean square with respect to the measure Pρ,J,l, Eρδ [g(u)] can be approximated

with an error O(N
−1/d
dof ), using at most N

1+2/d
dof number of degrees of freedom in total,

and O(log(Ndof)
d−1N

1+(2+1/q)/d
dof ) floating point operations.

Proof We first prove the probabilistic convergence result. We invoke the error estimate

in Proposition 11, and choose the parameters M , J and l so as to balance the bounds

M−1/2, J−q and 2−l, taking into account the fact that the coefficient of M− 1
2 is only

known through its asymptotic normality. We select J = 2l/q and M = t2N
2/d
dof where

t = c3|ξM |, with Ndof denoting the number of degrees of freedom at each step being

Ndof = O(2dl); the constant c3 and the random variable ξM is as in Proposition 11.

Then the total number of floating point operations required as l → ∞ is not larger than

O(t2ld−12(d+2+1/q)l). We then arrive at the conclusion. The mean square convergence is

proved in a similar manner. ✷

4. Sparse gpc-MCMC

We again study computational complexity of the MCMC method defined by (10) to

sample the posterior probability distribution ρδ. We adapt the approach in the previous

section to use a computational method which effects a reduction in computational cost

by precomputing the parametric dependence of the forward model, which enters the

likelihood. The main results are summarized in Theorem 18. This method is introduced,

and used in practice, in the series of papers [21, 19, 20]. The major cost in MCMC

methods is the repeated solution of the forward equations, with varying coefficients

from the MCMC sampler of ρδ. The complexity of these repeated forward solves

can be drastically reduced by precomputing an approximate, deterministic parametric

representation of the system’s response which is valid for all possible realizations of

u ∈ U . Specifically, we precompute a sparse tensor finite element approximation of

the parametric, deterministic forward problem by an approximate polynomial chaos

representation of the solution’s dependence on u and by discretization of the forward

solutions’ spatial dependence from a multilevel hierarchy of Finite Element spaces in D.

This precomputed “surrogate” of the parametric response map is then evaluated when

runningM steps of the chain to estimate expectations with respect to the (approximate

due to the use of the surrogate) posterior measure.
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As we shall show, this strategy is particularly effective if the observations consist

only of continuous, linear functionals of the system’s response. In this case, only scalar

coefficients of the forward map’s gpc expansion need to be stored and evaluated. We

use this to reduce the cost per step of the MCMC method. We continue to work

under Assumption 1(i),(ii) and, furthermore, we add Assumption 1(iii) throughout the

remainder of the paper.

4.1. Approximation of the Posterior Measure

For the solution PN,L in Assumption 9, we define the parametric, deterministic forward

map based on the N -term truncated gpc expansion and Finite Element projected

surrogate forward map, as specified in Section 2.5

GN,L(u) = (O1(PN,L(·, u)), . . . ,Ok(PN,L(·, u))), (30)

and the corresponding approximate Bayesian potential

ΦN,L(u; δ) =
1

2
|δ − GN,L(u)|2Σ .

The conditional measure ρN,L,δ on the measurable space (U,Θ) is defined as

dρN,L,δ

dρ
∝ exp(−ΦN,L(u; δ)) .

We then have the following approximation result.

Proposition 14 Let Assumptions 1(i) and 9 hold. Then there is a constant C(δ) which

only depends on the data δ such that, for every N and L as in Assumption 9,

dHell(ρ
δ, ρN,L,δ) ≤ C(δ)N−τ

dof .

Proof The proof for this proposition is similar to the proof of Proposition 10, differing

only in a few details; hence we highlight only the differences. These are due to estimates

on the forward error from Assumptions 9 being valid only in the mean square sense whilst

Proposition 8 holds pointwise for u ∈ U . Nonetheless, at the point in the estimation of

I1 and I2 where the forward error estimate is used, it is possible to use a mean square

forward error estimate instead of a pointwise forward error estimate. From Assumption

9, we deduce that there is a positive constant c such that:

ρ{u : |G(u)− GN,L(u)| > 1} ≤ cN−2τ
dof .

As ‖P (u)‖V is uniformly bounded for all u, there is a constant c1(δ) > 0 such that

|δ − G(u)|Σ < c1(δ). Choose a constant c2(δ) > 0 sufficiently large. If |δ − GN,L(u)|Σ >
c2(δ), then

|GN,L(u)− G(u)|Σ ≥ |δ − GN,L(u)|Σ − |δ − G(u)|Σ > c2(δ)− c1(δ) > 1 .

Let U1 ⊂ U be the set of u ∈ U such that |δ − GN,L(u)|Σ > c2(δ). We have that

ρ(U1) ≤ cN−2τ
dof . Thus,

1

Z(δ)

∫

U1

∣

∣

∣
exp

(

− 1

2
Φ(u; δ)

)

− exp
(

− 1

2
ΦN,L(u; δ)

)∣

∣

∣
dρ(u) ≤ C(δ)N−2τ

dof .
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When u /∈ U1, |δ−GN,L(u)|Σ ≤ c2(δ) so there is a constant c3(δ) so that |GN,L(u)| ≤ c3(δ).

An argument similar to that for (24) shows that
∣

∣

∣
exp

(

−1

2
Φ(u; δ)

)

− exp

(

−1

2
ΦN,L(u; δ)

)

∣

∣

∣
≤

C(2|δ|+ |G(u)|+ |GN,L(u)|)|G(u)− GN,L(u)|.
Therefore

I1 =
1

Z(δ)

∫

U

∣

∣

∣
exp

(

− 1

2
Φ(u; δ)

)

− exp
(

− 1

2
ΦN,L(u; δ)

)∣

∣

∣

2

dρ(u)

≤ C(δ)N−2τ
dof +

c

∫

U

(2|δ|+ |G(u)|+ c3(δ))
2|G(u)− GN,L(u)|2dρ(u)

≤ C(δ)N−2τ
dof + C(δ)

∫

U

‖P (·, u)− PN,L(·, u)‖2V dρ(u)

≤ C(δ)N−2τ
dof .

To show that I2 < C(δ)N−2τ
dof we still need to verify that

ZN,L(δ) =

∫

U

exp(−ΦN,L(u; δ))dρ(u)

is uniformly bounded from below by a positive bound for all N and L. As PN,L is

uniformly bounded in L2(U, ρ;V ),
∫

U

|GN,L(u)|dρ(u) ≤ c

∫

U

‖PN,L(u)‖V dρ(u) ≤ c.

Fixing r > 0 sufficiently large, the ρ measure of the set u ∈ U such that |GN,L(u)| > r

is bounded by c/r. Therefore the measure of the set of u ∈ U such that |GN,L(u)| ≤ r

is bounded from below by 1− c/r. Thus we have proved that for every realization δ of

the data, there exists C(δ) > 0 such that

ZN,L(δ) ≥
∫

U

exp(−1

2
(|δ|Σ + |GN,L(u)|Σ)2)dρ(u) > C(δ) > 0 .

✷

Let (u(k))k be the Markov chain generated by the sampling process (10) with the

acceptance probability being replaced by

αN,L(u, v) = 1 ∧ exp(ΦN,L(u, δ)− ΦN,L(v, δ)) . (31)

We denote by

EρN,L,δ

M [g] =
1

M

M
∑

k=1

g(u(k)) .

We then have the following error for the gpc-FE surrogate based MCMC method (for

notation we refer to Section 1.2)
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Proposition 15 Let Assumptions 1(i) and 9 hold and let g be a bounded continuous

function from U to R. Then

|Eρδ [g]−EρN,L,δ

M [g]| ≤ c6M
−1/2 + c7N

−τ
dof , (32)

PρN,L,δ,N,L almost surely, where c6 ≤ c8|ξM | where ξM is a random variable which

converges weakly as M → ∞ to ξ ∼ N(0, 1); the constants c7 and c8 are deterministic

and do not depend on M , N and Ndof .

There exists a deterministic positive constant c9 such that the gpc-MCMC converges

in the mean square with the same rate of convergence
(

Eρ,N,L
[ ∣

∣

∣
E
ρδ [g]− EρN,L,δ

M [g]
∣

∣

∣

2 ])1/2

≤ c9(M
−1/2 +N−τ

dof ) .

Proof Using (31), a random draw from ρ has probability larger than exp(−ΦN,L(v; δ))

of being accepted. Therefore the transition kernel of the Markov chain generated by

(10) with the acceptance probability (31) satisfies

p(u,A) ≥
∫

A

exp(−ΦN,L(v; δ))dρ(v).

Using Theorem 16.2.4 of [22], we deduce that the nth iteration of the transition kernel

satisfies

‖pn(u, ·)− ρN,L,δ‖TV ≤ 2

(

1−
∫

U

exp(−ΦN,L(v; δ))dρ(v)

)n

.

From the proof of Proposition 14, we have
∫

U

exp(−ΦN,L(v; δ))dρ(v) ≥ exp(−c2(δ)2/2) + cN−2τ
dof .

Thus, we can choose a constant R < 1 independent of the approximating parameters N

and L so that for all n ∈ N holds

‖pn(u, ·)− ρN,L,δ‖TV ≤ 2(1− R)n .

In a similar manner as for Proposition 11, we deduce the probabilistic bound. For the

mean square bound, similar to the proof of Proposition 11, we have

EρN,L,N,L
[ ∣

∣

∣
E
ρδ [g]−EρN,L,δ

M [g]
∣

∣

∣

2 ]

≤ C(M−1/2 +N−τ
dof )

2 .

Let U ′ := {u ∈ U : |GN,L(u)−G(u)| > 1}. We deduce that there exists a constant c > 0

independent of L, Ndof , N such that ρ(U ′) ≤ cN−2τ
dof and such that we may estimate

Eρ,N,L
[ ∣

∣

∣
E
ρδ [g]−EρN,L,δ

M [g]
∣

∣

∣

2 ]

=

∫

U ′

EN,L

u(0)

[ ∣

∣

∣
E
ρδ [g]− EρN,L,δ

M [g]
∣

∣

∣

2 ]

dρ(u(0))

+

∫

U\U ′

EN,L

u(0)

[ ∣

∣

∣
E
ρδ [g]− EρN,L,δ

M [g]
∣

∣

∣

2 ]

dρ(u(0))

≤ CN−2τ
dof +

∫

U\U ′

EN,L

u(0)

[ ∣

∣

∣
E
ρδ [g]− EρN,L,δ

M [g]
∣

∣

∣

2 ]

dρ(u(0))

≤ CN−2τ
dof +

∫

U\U ′

EN,L

u(0)

[ ∣

∣

∣
E
ρδ [g]− EρN,L,δ

M [g]
∣

∣

∣

2 ]

ZN,L(δ) exp(ΦN,L(u; δ))dρN,L,δ(u(0)) .
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On U \ U ′, supu∈U |GN,L(u)| is uniformly bounded with respect to all N and L. From

this, we arrive at the conclusion. ✷

Remark 16 In Proposition 15, g is assumed to be a bounded continuous function from

U to R. The gpc-FE surrogate accelereated MCMC is of particular interest in the case

where g is given by ℓ◦P where ℓ is a bounded, linear functional on V , i.e. ℓ ∈ V ∗. From

Assumption 9 and the fact that

dρδ

dρ
(u) =

1

Z(δ)
exp(−Φ(u; δ)) ,

we deduce that

|Eρδ [ℓ(P (·, u))]− E
ρδ [ℓ(PN,L(·, u))]| ≤ C(δ, ℓ)N−τ

dof .

On the other hand, from Proposition 14, we have (cf. [8, Eq. (2.7)])

|Eρδ [ℓ(PN,L(·, u))]− E
ρN,L,δ

[ℓ(PN,L(·, u))]| ≤ C(δ, ℓ)N−τ
dof .

Therefore, by the triangle inequality,

|Eρδ [ℓ(P (·, u))]− E
ρN,L,δ

[ℓ(PN,L(·, u))]| ≤ C(δ, ℓ)N−τ
dof .

We wish to approximate E
ρN,L,δ

[ℓ(PN,L(·, u))] with a Markov Chain-Monte Carlo

algorithm. In doing so, the following difficulty may arise: although ℓ(P (·, u)) is

uniformly bounded with respect to u ∈ U , supu∈U ℓ(PN,L(·, u)) may not be uniformly

bounded with respect to N and L. However, we can still apply Proposition 15 by using a

cut-off argument: to this end, we define the continuous bounded function g̃(u) : U → R

by truncation, i.e.

g̃(u) :=















ℓ(PN,L(·, u)) if |ℓ(PN,L(·, u))| ≤ supu∈U |ℓ(P (·, u))|+ 1 ,

sup
u∈U

|ℓ(P (·, u))|+ 1 if ℓ(PN,L(·, u)) > supu∈U |ℓ(P (·, u))|+ 1 ,

− sup
u∈U

|ℓ(P (·, u))| − 1 if ℓ(PN,L(·, u)) < − supu∈U |ℓ(P (·, u))| − 1 .

Define U ′ := {u ∈ U : |ℓ(P (·, u)) − ℓ(PN,L(·, u))| > 1}. From Assumption 9, we find

that ρ(U ′) < C(ℓ, δ)N−2τ
dof . It follows then that there exists a constant c > 0 depending

on the data δ, but independent of N and of L such that

|EρN,L,δ

[ℓ(PN,L(·, u))− g̃(u)]| ≤
∫

U ′

|ℓ(PN,L(·, u))− g̃(u)|dρN,L,δ(u)

≤ C(δ)

∫

U

IU ′(u)(|ℓ(PN,L(·, u))|+ c)dρ(u)

≤ C(δ)ρ(U ′)1/2(‖ℓ(PN,L(·, u))‖L2(U,ρ;R) + c) ≤ C(δ)N−τ
dof .

Therefore, we may run the MCMC algorithm on E
ρN,L,δ

[g̃(u)].

At each step of the MCMC algorithm, we need to compute ℓ(PN,L(·, u(k))) which,
for linear functionals ℓ(·), is equal to

∑

ν∈Λ ℓ(Pν,L)Lν(·, u(k)). Because the parametric

solution of the elliptic problem can be precomputed before the MCMC is run, and then

needs only to be evaluated at each state of the MCMC method, significant savings can

be obtained. We illustrate this, using the ideas of the previous Remark 16, to guide the

choice of test functions.



Complexity Analysis of Accelerated MCMC Methods for Bayesian Inversion 24

Proposition 17 Let Assumptions 1(i) and 9 hold and let g(u) = ℓ(P (·, u)) where

ℓ ∈ V ∗. Then the total number of floating point operations required for performing M

steps in the Metropolis-Hastings method as N,M → ∞ is bounded by O(Nα
dof(logNdof)

β+

MN logN).

Proof By Assumption 9 and with the notation as in that assumption, the cost of solving

one instance of problem (62) is bounded by O(Nα
dof(logNdof)

β). At each MCMC step,

we need to evaluate the observation functionals

Oi(PN,L(u
(k))) =

∑

ν∈ΛN

Oi(Pν,L)Lν(u
(k)) . (33)

We note in passing that the storage of the parametric gpc-type representation of the

forward map (33) requires only one real per gpc mode, provided that only functionals of

the forward solution are of interest. We now estimate the complexity of computing one

draw of the forward map (33). For ν ∈ F , each multivariate Legendre polynomial

Lν(u
k) can be evaluated with O(|ν|) float point operations. As |ν| = O(logN),

computing the observation functionals Oi(PN,L) requires O(N logN) floating point

operations. Thus we need O(Nα
dof(logNdof)

β + MN logN) floating point operations

to perform M steps of the Metropolis-Hastings method with sampling of the surrogate,

sparse gpc-Finite Element representation of the forward map.

✷

Theorem 18 Let Assumptions 1(i) and 9 hold. For g(u) = ℓ(P (·, u)) with given ℓ ∈ V ∗,

with probability pNdof
(t) the conditional expectation E

ρδ [g(u)] can be approximated with

Ndof degrees of freedom, incurring an error of O(N−τ
dof ) using at most

cNα
dof(logNdof)

β + ct2N
2τ+τ/σ
dof log(Ndof)

many floating point operations, where

lim
Ndof→∞

pNdof
(t) →

∫ c′t

−c′t

1√
2π

exp(−x2/2)dx,

for some constants c, c′ independent of Ndof .

In the mean square with respect to the measure Pρ,N,L, Eρδ [g(u)] can be approximated

with Ndof degrees of freedom, with an error N−τ
dof using at most

O(Nα
dof(logNdof)

β +N
2τ+τ/σ
dof log(Ndof))

floating point operations.

Proof We relate the number of MCMC realizationsM with the total number of degrees

of freedom Ndof by equating the terms in the error bound (32). To this end, we choose

M = t2N2τ
dof where t = c8|ξM |; the constant c8 and the random variable ξM are as in

Proposition 15 . With N = O(N
τ/σ
dof ), the number of floating point operations required

in Proposition 17 is bounded by

O
(

Nα
dof(logNdof)

β + t2N
2τ+τ/σ
dof logNdof

)

.
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As ξM converges weakly to the normal Gaussian variable, we deduce the limit for the

probability density pNdof
(t) of the random variable t. The proof for the mean square

approximation is similar. ✷

Remark 19 In studying complexity of the Plain MCMC method in Theorem 13, the

discretized parametric PDE (4) is to be solved once at every step of the MCMC

process, using Ndof degrees of freedom, with O(N
2/d
dof ) steps required (the multiplying

constant depends on a random variable when we consider the realization-wise error).

Ignoring log factors, the error resulting from discretization and running the MCMC

on the discretized PDE can be bounded in terms of the total number of floating point

operations Nfp by O(N
−1/(d+2+1/q)
fp ). In Theorem 18 the discretized forward PDE is

solved for every realization before running the MCMC process. The rate of convergence

of the MCMC process in terms of the total number of floating point operations used is

O(N
−min(τ/α,1/(2+1/σ))
fp ). This can be significantly smaller than the rate of convergence

in Theorem 13 when α is close to 1. To see this we need to dig into the manner

in which Assumptions 9 are typically verified which, in turn, requires Assumptions

1(iii),(iv) (which together imply Assumptions 1(ii), see discussion in Appendix E). For

example, with the decay rate of ‖ψj‖∞ in Assumption 1(iii), the summability constant

p in Assumption 30 can be any constant that is greater than 1/s. Therefore, the gpc

approximation rate σ in Proposition 31 can be chosen as any positive constant smaller

than s−1/2. On the other hand, the J-term approximation rate q of the unknown input

K in Assumption 1(ii) is bounded by s− 1. As

2 +
1

s− 1/2
< d+ 2 +

1

s− 1
,

we therefore can choose σ so that

1

2 + 1/σ
>

1

d+ 2 + 1/q
.

As shown in [5], when (‖Pν‖H2(D))ν ∈ ℓp(F), τ can be chosen as 1/d. Thus, when α is

sufficiently close to 1, the complexity of the sparse gpc-MCMC approach is superior to

that of the Plain MCMC approach in the previous section.

5. Multilevel MCMC

In the preceding section we showed that complexity reduction is possible in the Plain

MCMC sampling of the posterior measure ρδ provided that all samples are determined

from one precomputed, “surrogate” sparse tensor gpc-representation of the forward

map of the discretization of the parametric, deterministic problem (4). Specifically,

we proved that when the forward map G(u) consists of continuous, linear functionals

Oi(·) on the forward solution U ∋ u 7→ P (·, u) ∈ V , and when the functional whose

posterior expectation we seek is also linear on this space, this gpc-type approximation

of the solution can reduce the complexity required. Lower efficiency results if, for

example, the rate of convergence of the sparse tensor finite element solution in



Complexity Analysis of Accelerated MCMC Methods for Bayesian Inversion 26

(62) is moderate in terms of the total number of degrees of freedom, and/or if the

complexity grows superlinearly with respect to the number of degrees of freedom.

Furthermore, although an increasing number of efficient algorithms for the computation

of approximate responses of the forward problem on the entire parameter space U are

available (e.g. [3, 27, 11, 2, 4]) and therefore gpc-surrogates for the MCMC are available,

many systems of engineering interest may not admit gpc-based representations of the

parametric forward maps. Finding other, non-gpc based, methods for reducing the

complexity of Plain MCMC sampling under ρδ is therefore of interest. We do this

by using ideas from Multilevel Monte Carlo. The resulting complexity is summarized

in Theorem 21. We give sufficient conditions on the approximation methods and on

the basis functions ψj appearing in (5) such that complexity reduction is possible by

performing a multilevel sampling procedure where a number of samples depending on

the discretization parameters is used for problem (4).

5.1. Derivation of the MLMCMC

For given, fixed ℓ ∈ V ∗, a bounded linear functional on V , we aim at estimating

E
ρδ [ℓ(P (·, u))] where P is the solution of problem (4). For each level l = 1, 2, . . . , L,

we assume that problem (4) is discretized with the truncation of the Karhúnen-Loève

expansion after J terms with J = Jl as defined in (13) and with a finite element

discretization meshwidth hl. The multilevel FE-discretization of the forward problem

(4) and the truncation (13) induces a corresponding hierarchy of approximations ρJl,l,δ

of the posterior measure ρδ.

Following [9, 1, 23, 10] the MLMCMC will be based on sampling a telescopic

expansion of the discretization error with a level-dependent sample size. Contrary to

[9, 1, 23], however, we introduce now two multilevel discretization hierarchies, one for the

parametric forward solutions {P Jl,l}Ll=0 (where the level corresponds to mode truncation

of the coefficient and to discretization for the approximate solution of the parametric

forward problem) and a second one {ρ(Jl′ , l′, δ)}Ll′=0 for the posterior measure. The

‘usual’ telescoping argument as in [9] or in [1, 23] together with the single-level error

bound in Proposition 11 alone does not allow for obtaining a convergence for the present

problem.

As in Section 3, we work under Assumptions 1 (i), (ii) and 7. We recall the

sequence of discretization levels in the FE discretizations in the physical domain D,

as in Assumption 7, and the input truncation dimension J in Assumption 1(ii). We

then derive the Multilevel MCMC-FEM as follows. First, we note that, by Assumption

7, using the uniform boundedness of the P J in W as in the preceding section, there

exists C > 0 independent of L such that

|Eρδ [ℓ(P (·, u))]− E
ρδ [ℓ(P JL,L(·, u))]| ≤ C sup

u∈U
‖P (·, u)− P JL,L(·, u)‖V ≤ C2−L . (34)

With the convention that expectation with respect to ρJ−1,−1,δ denotes integration with

respect to the measure which assigns zero mass to all subsets of the probability space,
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we write

E
ρJL,L,δ

[ℓ(P (·, u))] =
L
∑

l=0

(

E
ρJl,l,δ [ℓ(P (·, u))]− E

ρJl−1,l−1,δ

[ℓ(P (·, u))]
)

(35)

=
L
∑

l=0

(

E
ρJl,l,δ − E

ρJl−1,l−1,δ
)

[ℓ(P (·, u))] . (36)

Analogously we may write, for any L′ ≤ L (omitting the arguments of P and its

approximations for brevity of notation)

E
ρJL,L,δ

[ℓ(P JL′ ,L′

)] =
L
∑

l=0

(

E
ρJl,l,δ − E

ρJl−1,l−1,δ
)

[ℓ(P JL′ ,L′

)]. (37)

With the convention that P J−1,−1 := 0 we have for each l and L′

(

E
ρJl,l,δ − E

ρJl−1,l−1,δ
)

[ℓ(P JL′ ,L′

)] =

L′
∑

l′=0

(

E
ρJl,l,δ − E

ρJl−1,l−1,δ
)

[ℓ(P Jl′ ,l
′

)−ℓ(P Jl′−1,l
′−1)] .(38)

Finally, a computable multilevel approximation will be obtained on running, for each

level l = 0, 1, ..., L of truncation resp. Galerkin projection, simultaneously a suitable

number of realizations of a Markov chain Cl to approximate the expecations

L
∑

l=0

(

E
ρJl,l,δ − E

ρJl−1,l−1,δ
)

[ℓ(P JL′ ,L′

)]

=
L
∑

l=0

L′
∑

l′=0

(

E
ρJl,l,δ − E

ρJl−1,l−1,δ
)

[ℓ(P Jl′ ,l
′

)− ℓ(P Jl′−1,l
′−1)]

(39)

by sample averages ofMll′ many realizations, upon choosing L′(l) judiciously. To derive

a computable MLMCMC estimator we observe that, for any measurable functions

Q : U → R which is integrable with respect to the approximate posterior measures

ρJl,l,δ,
(

E
ρJl,l,δ − E

ρJl−1,l−1,δ
)

[Q]

=
1

ZJl,l

∫

U

exp(−ΦJl,l(u; δ))Q(u)dρ(u)− 1

ZJl−1,l−1

∫

U

exp(−ΦJl−1,l−1(u; δ))Q(u)dρ(u)

=
1

ZJl,l

∫

U

exp(−ΦJl,l(u; δ))
(

1− exp(ΦJl,l(u; δ)− ΦJl−1,l−1(u; δ))
)

Q(u)dρ(u)

+

(

ZJl−1,l−1

ZJl,l
− 1

)

1

ZJl−1,l−1

∫

exp(−ΦJl−1,l−1(u; δ))Q(u)dρ(u) .

We note further that

ZJl−1,l−1

ZJl,l
− 1 =

1

ZJl,l

∫

U

(

exp(ΦJl,l(u; δ)− ΦJl−1,l−1(u; δ))− 1
)

exp(−ΦJl,l(u; δ))dρ(u) .

Thus an approximation for ZJl−1,l−1/ZJl,l − 1 can be found by running the MCMC

with respect to the approximate posterior ρJl,l,δ to sample the potential difference
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exp(ΦJl,l(u; δ) − ΦJl−1,l−1(u; δ)) − 1. We define the Multilevel Markov Chain Monte

Carlo estimator EMLMCMC
L [ℓ(P )] of Eρδ [ℓ(P )] as

EMLMCMC
L [ℓ(P )] =

L
∑

l=0

L′(l)
∑

l′=0

EρJl,l,δ

Mll′

[(

1− exp(ΦJl,l(u; δ)− ΦJl−1,l−1(u; δ))
)

(ℓ(P Jl′ ,l
′

)− ℓ(P Jl′−1,l
′−1))

]

+EρJl,l,δ

Mll′

[

exp(ΦJl,l(u; δ)− ΦJl−1,l−1(u; δ))− 1
]

· EρJl−1,l−1,δ

Mll′

[

ℓ(P Jl′ ,l
′

)− ℓ(P Jl′−1,l
′−1)
]

.

Up to this point, the choice of the index L′(l) and the sample sizes Mll′ are still at our

disposal. Choices for them will be made based on an error-versus-work analysis of this

estimator that we now present.

5.2. Error Analysis

To perform the error analysis of the MLMCMC approximation we decompose the error

into three terms as follows.

Proposition 20 There holds

E
ρδ [ℓ(P )]− EMLMCMC

L [ℓ(P )] = IL + IIL + IIIL (40)

where

IL := E
ρδ [ℓ(P )]− E

ρJL,L,δ

[ℓ(P )], IIL =

L
∑

l=0

(EρJl,l,δ − E
ρJl−1,l−1,δ

)[ℓ(P )− ℓ(P JL′(l),L
′(l))]

and

IIIL :=
L
∑

l=0

L′(l)
∑

l′=0

{

E
ρJl,l,δ

[

(1− exp(ΦJl,l(u; δ)− ΦJl−1,l−1(u; δ)))](ℓ(P Jl′,l
′

)− ℓ(P Jl′−1,l
′−1))

]

−EρJl,l,δ

Mll′

[

(1− exp(ΦJl,l(u; δ)− ΦJl−1,l−1(u; δ)))](ℓ(P Jl′,l
′

)− ℓ(P Jl′−1,l
′−1))

]}

+
{

E
ρJl,l,δ [exp(ΦJl,l(u; δ)− ΦJl−1,l−1(u; δ))− 1] · EρJl−1,l−1,δ

[ℓ(P Jl′ ,l
′

)− ℓ(P Jl′−1,l
′−1)]

−EρJl,l,δ

Mll′
[exp(ΦJl,l(u; δ)− ΦJl−1,l−1(u; δ))− 1] · EρJl−1,l−1,δ

Mll′
[ℓ(P Jl′ ,l

′

)− ℓ(P Jl′−1,l
′−1)]

}

respectively.

Proof From equation (36) we have

E
ρδ [ℓ(P )]− E

ρJL,L,δ

[ℓ(P )] = E
ρδ [ℓ(P )]−

L
∑

l=0

(

E
ρJl,l,δ [ℓ(P )]− E

ρJl−1,l−1,δ

[ℓ(P )]
)

. (41)

from which it follows that

E
ρδ [ℓ(P )]− E

ρJL,L,δ

[ℓ(P )] = E
ρδ [ℓ(P )]

−
L
∑

l=0

(

E
ρJl,l,δ [ℓ(P JL′ ,L′

)]− E
ρJl−1,l−1,δ

[ℓ(P JL′ ,L′

)]
)

− IIL .
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Rearranging and using (38) gives

E
ρδ [ℓ(P )] = IL + IIL +

L
∑

l=0

(

E
ρJl,l,δ − E

ρJl−1,l−1,δ
)

[ℓ(P JL′ ,L′

)]

= IL + IIL +

L
∑

l=0

L′
∑

l′=0

(

E
ρJl,l,δ − E

ρJl−1,l−1,δ
)

[ℓ(P Jl′ ,l
′

)− ℓ(P Jl′−1,l
′−1)] .

The claimed expression follows from the definition of the MLMCMC method which

computes the MCMC sample path averages of the terms on the right hand side in (39).

✷

We next derive an error bound by estimating the three terms in the error (40)

separately. Throughout we choose Jl = 2⌈l/q⌉. For the first term IL, we obtain from

Proposition 10, the bound

|IL| ≤ C(δ)(J−q
L + 2−L) ≤ C(δ)2−L . (42)

Likewise we obtain, using Assumption 7 in addition to Proposition 10,

|IIL| ≤ C(δ)

L
∑

l=0

(J−q
ℓ + 2−l)2−L′(l) ≤ C(δ)

L
∑

l=0

2−(l+L′(l)) . (43)

We now estimate IIIL. Since Jl = 2⌈l/q⌉ we have that

sup
u∈U

|ℓ(P Jl′ ,l
′

)− ℓ(P Jl′−1,l
′−1)| ≤ C2−l′ .

Further

sup
u∈U

|1− exp(ΦJl,l(u; δ)− ΦJl−1,l−1(u; δ))|

≤ sup
u∈U

|ΦJl,l(u; δ)− ΦJl−1,l−1(u; δ)|(1 + exp(ΦJl,l(u; δ)− ΦJl−1,l−1(u; δ)))

≤ C2−l .

As in Section 3, for each discretization level l ∈ N, we introduce the Markov chains

Cl = {u(k)}k∈N0 ⊂ R
Jl which are started in the restriction of u(0) to R

Jl and then

generated by (10) with the Jl-term truncated parametric coefficient expansions (13)

and forward problems (16) which are Galerkin-discretized at mesh level l, ie. with the

acceptance probability α(u, v) in (9) replaced by

αJl,l(u, v) = 1 ∧ exp(ΦJl,l(u; δ)− ΦJl,l(v; δ)) , (u, v) ∈ U × U . (44)

For each discretization level l = 1, 2, ..., the chains Cl are pairwise independent. For every
fixed discretization level L, we denote by CL = {C1, C2, . . . , CL} the collection of Markov

chains obtained from the different discretizations, and by PL the product probability

measure on the probability space generated by the collection of these L chains. For each

fixed discretization level L, this measure describes the law of the collection of chains

CL:

PL := Pρ,J1,1 ⊗ Pρ,J2,2 ⊗ . . .⊗Pρ,JL,L .
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Let EL be the expectation over all realizations of the collection CL of chains Cl with
respect to the product measure PL. We have, by Assumption 7 and by Proposition 5,

EL

[{

E
ρJl,l,δ

[

(1− exp(ΦJl,l(u; δ)− ΦJl−1,l−1(u; δ)))](ℓ(P Jl′,l
′

)− ℓ(P Jl′−1,l
′−1))

]

−EρJl,l,δ

Mll′

[

(1− exp(ΦJl,l(u; δ)− ΦJl−1,l−1(u; δ)))](ℓ(P Jl′,l
′

)− ℓ(P Jl′−1,l
′−1))

]}2]

≤ CM−1
ll′ 2

−2(l+l′) .

We also have, again using Assumption 7 and the last estimate in Proposition 5,

EL

[{

E
ρJl,l,δ [exp(ΦJl,l(u; δ)− ΦJl−1,l−1(u; δ))− 1] · EρJl−1,l−1,δ

[ℓ(P Jl′ ,l
′

)− ℓ(P Jl′−1,l
′−1)]

−EρJl,l,δ

Mll′
[exp(ΦJl,l(u; δ)− ΦJl−1,l−1(u; δ))− 1] · EρJl−1,l−1,δ

Mll′
[ℓ(P Jl′ ,l

′

)− ℓ(P Jl′−1,l
′−1)]

}2]

≤ C EL

[{

E
ρJl,l,δ [exp(ΦJl,l(u; δ)− ΦJl−1,l−1(u; δ))− 1]− EρJl,l,δ

Mll′
[exp(ΦJl,l(u; δ)− ΦJl−1,l−1(u; δ))− 1]

}2]

· sup
u∈U

|ℓ(P Jl′ ,l
′

)− ℓ(P Jl′−1,l
′−1)|2 +

C sup
u∈U

| exp(ΦJl,l(u; δ)− ΦJl−1,l−1(u; δ))− 1|2

· EL

[{

E
ρJl−1,l−1,δ

[ℓ(P Jl′ ,l
′

)− ℓ(P Jl′−1,l
′−1)]− EρJl−1,l−1,δ

Mll′
[ℓ(P Jl′ ,l

′

)− ℓ(P Jl′−1,l
′−1)]

}2]

≤ CM−1
ll′ 2

−2(l+l′) .

Hence

EL[|IIIL|2] ≤ CL
L
∑

l=0

L′(l)

L′(l)
∑

l′=0

M−1
ll′ 2

−2(l+l′) . (45)

To achieve a bound on the error (40) which is O(Lm2−L) for some m ∈ R+, we choose

L′(l) := L− l, and Mll′ := 22(L−(l+l′)) . (46)

We then have

E [|IIIL|2] ≤ CL

L
∑

l=0

(L− l)22−2L ≤ CL42−2L .

Theorem 21 For d = 2, 3, under the assumption that P ∈ L∞(U, ρ;H2(D)
⋂

V ), and

with the choices (46) we have that

EL[|Eρ(δ)[P ]− EMLMCMC
L [P ]|] ≤ C(δ)L22−L . (47)

The total number of degrees of freedom used in running the MLMCMC sampler is

bounded by O(L22L) for d = 2 and O(23L) for d = 3. Assuming the availability of a

linear scaling multilevel iterative solver for the linear systems of equations arising from

Galerkin discretization, the total number of floating point operations in the approximate

evaluation of the conditional expectation under the posterior (for one instance of data

δ) is bounded by O(Ld−12(d+1/q)L). Denoting the total number of degrees of freedom

which enter in running the chain on all discretization level by N , the error in (47)

is bounded by O((logN)3/2N−1/2) for d = 2 and by O((logN)2N−1/3) for d = 3.
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The total number of floating point operations to realize the MLMCMC is bounded by

O((logN)−1/(2q)N1+1/(2q)) for d = 2 and by O((logN)2N1+1/(3q)) for d = 3.

Proof At each step we solve the truncated forward equation (14) for the truncation

levels Jl and Jl′ in expansion (13) and the Finite Element discretization levels l

and l′, respectively. Assuming approximate solution of the discretized problems with

termination at the discretization error O(2−l), resp. O(2−l′), and a linear scaling

iterative solver with the choices (46) the total work is bounded by an absolute multiple

of the total number of degrees of freedom, which in turn is bounded, for d ≥ 2, by

L
∑

l=0

L′(l)
∑

l′=0

Mll′(2
dl + 2dl

′

) = 22L
L
∑

l=0

L′(l)
∑

l′=0

(

2(d−2)l · 2−2l′ + 2−2l · 2(d−2)l′
)

. 22L

(

L
∑

l=0

2(d−2)l +

L
∑

l=0

2−2l

L−l
∑

l′=0

2(d−2)l′

)

.

Therefore for d = 2, the number of degrees of freedom is bounded by

. 22L

(

L+

L
∑

l=0

2−2l(L− l)

)

. L22L.

For d = 3, it is bounded by

. 22L

(

2L +

L
∑

l=0

2−2l2L−l

)

. 22L

(

2L +

L
∑

l=0

2L2−3l

)

. 23L .

From the proof of Proposition 12, we infer that the number of floating point operations

at each step is not larger than O(ld−12dlJl + l′d−12dl
′

Jl′) so that, using again (46), the

total number of floating point operations required to evaluate the MLMCMC estimator

is bounded by

.

L
∑

l=0

L′(l)
∑

l′=0

Mll′(l
d−12dlJl + l′

d−1
2dl

′

Jl′)

. 22L
L
∑

l=0

L′(l)
∑

l′=0

(ld−12(d−2+1/q)l2−2l′ + l′d−12(d−2+1/q)l′2−2l)

. Ld−122L

(

L
∑

l=0

2(d−2+1/q)l +

L
∑

l=0

2(d−2+1/q)(L−l)2−2l

)

. Ld−12(d+1/q)L .

✷

Remark 22 In the preceding work analysis we assumed the availability of linear scaling,

iterative solvers for the approximate solution of the Finite Element discretizations (16) of

the parametric, elliptic problems (14). These include Richardson or conjugate gradient

iteration with diagonal preconditioning using Riesz bases for the Finite Element spaces

V l as presented in Appendix D. However, if such bases are not available, our results

will also apply to standard Finite Element discretizations, provided that linear scaling
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multilevel solvers, such as multigrid, are used to solve (16), for each increment of the

Markov chain. Our work versus accuracy analysis will also apply in these cases, with

identical conclusions.

6. Conclusions

Rewriting the convergence bounds in Theorems 13, 18 and 21 in terms of the error,

to achieve an error ε in the mean square with respect to the probability measure that

generates the randomness of the Markov Chain ie., Pρ,J,l, Pρ,N,L and PL, respectively

we bound the complexity as follows (ignoring the logarithmic factors for conciseness):

• for the Plain MCMC procedure: O(ε−d−2) degrees of freedom and O(ε−d−2−1/q)

floating point operations;

• for the gpc-MCMC procedure: O(ε−1/τ ) degrees of freedom and O(ε−max(α/τ,2+1/σ))

floating point operations;

• and for the MLMCMC procedure: the essential optimal complexity of O(ε−d)

degrees of freedom and O(ε−d−1/q) floating point operations.

Therefore, the complexity of the gpc-MCMC is superior to that of the Plain MCMC

procedure when in Assumption 9 τ is close to 1/d and α is close to 1, which holds in

many cases (see, e.g. [27] and the references therein). We also have shown that the

asymptotic accuracy vs. work of the MLMCMC is always superior to that of the Plain

MCMC. We note that the complexity of the MLMCMC is of the same order as that for

solving one single realization of equation (4) with the same level of truncation for the

coefficient, which indicates some form of optimality of the MLMCMC method proposed

here.

We have considered the MLMCMC estimation of functionals ℓ(·) of the solution;

in doing so, we used only minimal regularity ℓ(·) ∈ V ∗ of these functionals, leading

to the convergence rates (34). Higher regularity ℓ(·) ∈ L2(D) will entail in (34) the

Finite Element convergence rate 2−2L, via a classical Aubin-Nitsche duality argument.

Likewise, we only used the lowest order Finite Element methods. In the present

analysis, we focused on first order Finite Element discretizations as stronger regularity

assumptions on f , on ℓ(·) and on the ψj will not imply corresponding higher rates of

convergence for gpc-MCMC and ML-MCMC, due to the (maximal) order 1/2 afforded

by the MC method.

A further aspect pertaining to the overall complexity is the following: in [28]

an entirely deterministic approach to the solution of the Bayesian inverse problem

is presented, and in [26] corresponding numerical experiments are presented. These

methods offer convergence rates in terms of the numberM of samples which are superior

to the rate 1/2 of MC methods such as those analyzed here. Nonetheless, MCMC

methods will remain popular because of their data-adaptive nature; the present results

indicate how the use of gpc and multilevel ideas may be used to attain significant

speedups of MCMC methods.
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We also observe that we have concentrated on a very special MCMC method,

namely the independence sampler. This has been dictated by the need to use MCMC

methods which scale-independently of dimension and for which there is a complete

analysis of the convergence resulting chain demonstrating this fact. Whilst there are

now several dimension-independent MCMC methods [7, 31] the independence sampler

is the only one for which the required analysis of the convergence properties is sufficiently

developed for our theory; we anticipate further theoretical developments for different

MCMC methods, and different inverse problems, in the future. However we do note that

the independence sampler will work well when the negative log likelihood Φ does not

vary significantly, although it will be inefficient in general. For problems where the prior

is Gaussian or log-normal Gaussian, appropriate MCMC methods may be found in [7].

However for these more general methods the analysis of the Markov chain based on the

methods of [22], as we have used for the independence sampler here, is not appropriate

and more sophisticated arguments are required, as presented in [14].

Appendix A: Lipschitz Dependence of the Forward Map on Parameters

Proof of Proposition 2 The existence of a solution P to (4), and the bound (7), follows

from standard application of Lax-Milgram theory. We have, for every φ ∈ V , u, u′ ∈ U ,
∫

D

K(x, u)(∇P (x, u)−∇P (x, u′)) · ∇φ(x)dx

=

∫

D

(K(x, u′)−K(x, u))∇P (x, u′) · ∇φ(x)dx . (48)

Again using (6), i.e. that K(x, u) is bounded below uniformly with respect to (x, u) ∈
D × U , it follows that there exists C > 0 such that for all u ∈ U

‖P (·, u)− P (·, u′)‖V ≤ C‖P (·, u′)‖V ‖K(·, u′)−K(·, u)‖L∞(D) . (49)

Due to (7), it follows from (49) that there exists a constant C > 0 such that

∀u ∈ U : ‖P (·, u)− P (·, u′)‖V ≤ C‖K(·, u′)−K(·, u)‖L∞(D) . (50)

From (5) and Assumption 1(i) it follows with C > 0 as in (50) that

‖P (·, u)− P (·, u′)‖V ≤ C
∑

≥1

|uj − u′j|‖ψj‖L∞(D)

≤ C‖u− u′‖ℓ∞(N)

∑

j≥1

‖ψj‖L∞(D)

≤ C
κ

1 + κ
K̄min‖u− u′‖ℓ∞(N) .

This establishes the desired Lipschitz continuity,

Appendix B: Bayesian inverse problems in measure spaces

On a measurable space (U,Θ) where Θ is a σ-algebra consider a measurable map

G : U → (Rk,Bk). The data δ is assumed to be an observation of G subject to an
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unbiased observation noise ϑ:

δ = G(u) + ϑ.

We assume that ϑ is a centred Gaussian with law N(0,Σ). Let ρ be a prior probability

measure on (U,Θ). Our purpose is to determine the conditional probability P(u|δ) on
(U,Θ). The following result holds.

Proposition 23 Assume that G : U → R
k is measurable. The posterior measure

ρδ(du) = P(du|δ) given data δ is absolutely continuous with respect to the prior measure

ρ(du) and has the Radon-Nikodym derivative (2) with Φ given by (3).

This result is established in Cotter et al.[8] and Stuart [29]. Though the setting in [8]

and [29] is in a Banach space X , the proofs of Theorem 2.1 in [8] and Theorem 6.31 of

[29] hold for any measurable spaces as long as the mapping G is measurable.

To study the well-posedness of the posterior measures, that is continuity with

respect to changes in the observed data, we use the Hellinger distance, as in Cotter

et al. [8], which is defined as

dHell(µ, µ
′) =





1

2

∫

U

(
√

dµ

dρ
−
√

dµ′

dρ

)2

dρ





1/2

(51)

for any two measures µ and µ′ on U which are absolutely continuous with respect to a

common reference measure ρ¶. In [8], it is proved that when U is a Banach space, if

the prior measure ρ is Gaussian, and under the conditions that Φ grows polynomially

with respect to u, and is locally Lipschitz with respect to u fixing y and with respect to

y fixing u, in the second case with a Lipschitz constant which also grows polynomially

in u, then the posterior measure given the data δ, i.e. ρδ, is locally Lipschitz in the

Hellinger distance dHell:

dHell(ρ
δ, ρδ

′

) ≤ c|δ − δ′| ,
where (recall) | · | denotes the Euclidean distance in R

k. The Fernique theorem plays an

essential role in the proofs, exploiting the fact that polynomially growing functions are

integrable with respect to Gaussians. In this section, we extend this result to measurable

spaces under more general conditions than those in Assumption 2.4 of Cotter et al. [8];

in particular we do not assume a Gaussian prior. The following assumption concerning

the local boundedness, and local Lipschitz dependence of Φ on δ, will be crucial in our

argument. Its validity for the model problem (4), with (5) and Assumption 1 will be

verified in the ensuing proof of Proposition 26.

Assumption 24 Let ρ be a probability measure on the measure space (U,Θ). The

Bayesian potential function Φ : U × R
k → R satisfies:

(i) (local boundedness) for each r > 0, there is a constant Φ⋆(r) > 0 and a set U(r) ⊂ U

of positive ρ measure such that for all u ∈ U(r) and for all δ such that |δ|Σ ≤ r

0 ≤ Φ(u; δ) ≤ Φ⋆(r) . (52)

¶ Note that any such common reference measure will deliver the same value for the Hellinger distance
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(ii) (local Lipschitz continuity of Bayesian Potential Φ on data δ) there is a mapping

G : R × U 7→ R such that for each r > 0, G(r, ·) ∈ L2(U, ρ); and for every

|δ|Σ, |δ′|Σ ≤ r it holds that

|Φ(u; δ)− Φ(u; δ′)| ≤ G(r, u)|δ − δ′|Σ .
Under Assumption 24, the definition (2) of the posterior measure ρδ is meaningful as

we now demonstrate.

Proposition 25 Under Assumption 24, the measure ρδ depends locally Lipschitz

continuously on the data δ with respect to the Hellinger metric: for each positive constant

r there is a positive constant C(r) such that if |δ|Σ, |δ′|Σ ≤ r, then

dHell(ρ
δ, ρδ

′

) ≤ C(r)|δ − δ′|Σ .

Proof Throughout this proofK(r) denotes a constant depending on r, possibly changing

from instance to instance. The normalization constant in (2) is

Z(δ) =

∫

U

exp(−Φ(u; δ))dρ(u) . (53)

We first show that for each r > 0, there is a positive constant K(r) such that

Z(δ) ≥ K(r) when |δ|Σ ≤ r. From (53) and Assumption 24(i) it follows that when

|δ|Σ ≤ r, there holds

Z(δ) ≥ ρ(U(r)) exp(−Φ⋆(r)) > 0 . (54)

Using the inequality | exp(−x)− exp(−y)| ≤ |x− y| which holds for x, y ≥ 0 we find

|Z(δ)− Z(δ′)| ≤
∫

U

|Φ(u; δ)− Φ(u; δ′)|dρ(u) .

From Assumption 24(ii),

|Φ(u; δ)− Φ(u; δ′)| ≤ G(r, u)|δ − δ′|Σ .
As G(r, u) is ρ-integrable, there is K(r) such that

|Z(δ)− Z(δ′)| ≤ K(r)|δ − δ′|Σ .
The Hellinger distance satisfies

2dHell(ρ
δ, ρδ

′

)2 =

∫

U

(

Z(δ)−1/2 exp(−1

2
Φ(u; δ)) − Z(δ′)−1/2 exp−1

2
Φ(u; δ′)

)2

dρ(u)

≤ I1 + I2,

where

I1 =
2

Z(δ)

∫

U

(

exp(−1

2
Φ(u; δ))− exp(−1

2
Φ(u; δ′))

)2

dρ(u),

and

I2 = 2|Z(δ)−1/2 − Z(δ′)−1/2|2
∫

U

exp(−Φ(u; δ′))dρ(u).
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Using again | exp(−x)− exp(−y)| ≤ |x− y|, we have, for constant K(r) > 0,

I1 ≤ K(r)

∫

U

|Φ(u; δ)− Φ(u; δ′)|2dρ(u)

≤ K(r)

∫

U

(G(r, u))2dρ(u)|δ − δ′|2Σ ≤ K(r)|δ − δ′|2Σ .

Furthermore,

|Z(δ)−1/2 − Z(δ′)−1/2|2 ≤ K(r)|Z(δ)− Z(δ′)|2 ≤ K(r)|δ − δ′|2Σ .
The conclusion follows. ✷

Proposition 26 For the elliptic PDE (4), the function G defined by (8) and viewed as

map from U to R
k is Lipschitz , if U is endowed with the topology of ℓ∞(N). Moreover,

Assumption 24 holds with U(r) = U and G(r, u) = G(r) independent of u.

Proof We have

∀u, u′ ∈ U : |G(u)− G(u′)| ≤ Cmax
i

{‖Oi‖V ∗}‖P (·, u)− P (·, u′)‖V .

From (50) there exists a constant c > 0 such that

∀u, u′ ∈ U : |G(u)− G(u′)| ≤ C‖K(·, u)−K(·, u′)‖L∞(D) .

From Proposition 2, we deduce that G as map from U ⊂ ℓ∞(N) to R
k is Lipschitz .

We now verify Assumption 24. For the function G(u) we have from (8) for every

u ∈ U the bound

|G(u)| ≤ max
i

{‖Oi‖V ∗}‖P (·, u)‖V .
From (7), sup{|G(u)| : u ∈ U} <∞. We note that for given data δ, there holds

∀u ∈ U : |Φ(u; δ)| ≤ 1

2
(|δ|Σ + |G(u)|Σ)2

and hence, since supu∈U |G(u)| is finite, the set U(r) in Assumption 24(i) can be chosen

as U for all r. We have, for every u ∈ U ,

|Φ(u; δ)− Φ(u; δ′)| ≤ 1

2
|〈Σ−1/2(δ + δ′ − 2G(u)),Σ−1/2(δ − δ′)〉|

≤ 1

2
(|δ|Σ + |δ′|Σ + 2|G(u)|Σ)|δ − δ′|Σ .

Choosing the function G(r, u) in Assumption 24(ii) as

G(r, u) =
1

2
(2r + C),

for a sufficiently large constant C > 0 (depending only on bounds of the forward map

and the observation functionals, but independent of the data δ and of u), we have

shown that Assumption 24(ii) holds in the desired form. With Proposition 25 follows

the assertion. ✷

Proof of Proposition 3 From Proposition 26, we deduce that G as map from

U ⊂ ℓ∞(N) to R
k is Lipschitz and, hence, ρ-measurable. We then apply Proposition 23

to deduce the existence of ρδ and the formula for its Radon-Nikodym derivative with

respect to ρ. Proposition 25 gives the desired Lipschitz continuity, since Proposition 26

establishes Assumption 24. ✷
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Appendix C: Convergence Properties of the Independence Sampler

Proof of Proposition 5 We claim that (10) defines a Markov chain {u(k)}∞k=0 which is

reversible with respect to ρδ. To see this let ν(du, dv) denote the product measure

ρδ(du) ⊗ ρ(dv) and ν†(du, dv) = ν(dv, du). Note that ν describes the probability

distribution of the pair (u(k), v(k)) on U × U when u(k) is drawn from the posterior

distribution ρδ, and ν† designates the same measure with the roles of u and v reversed.

These two measures are equivalent as measures if ρδ and ρ are equivalent, which we

establish below; it then follows that

dν†

dν
(u, v) = exp(Φ(u; δ)− Φ(v; δ)) , (u, v) ∈ U × U . (55)

From Proposition 1 and Theorem 2 in [30] we deduce that (10) is a Metropolis-

Hastings Markov chain which is ρδ reversible, since α(u, v) given by (9) is equal to

min{1, dν†
dν

(u, v)}.
Equivalence of ρδ and ρ follows since the negative of the log-density is bounded

from above and below, uniformly on U , because Proposition 26 shows that (52) holds

with U(r) = U . Using (52) and (9) it follows that the proposed random draw from ρ

has probability greater than exp(−Φ⋆(r)) of being accepted. Thus

p(u,A) ≥ exp(−Φ⋆(r))ρ(A) ∀u ∈ U .

The first result follows from [22], Theorem 16.2.4 with X = U. The second result follows

from [22], Theorem 17.0.1. To see that the constant c in (11) can be bounded only in

terms of Φ⋆(r) and supu∈U |g(u)|, we note that it is given by

c2 = Eρδ |ḡ(u(0))|2 + 2

∞
∑

n=1

Eρδ [ḡ(u(0))ḡ(u(n))] (56)

where to ease notation we introduced the function ḡ as ḡ = g − E
ρδ(g) (and we do

not tag the dependence of ḡ on the data δ in the remainder of this proof). Note that

supu∈U |ḡ(u)| is bounded uniformly w.r. to the data δ. The equation (56) is commonly

known as the integrated autocorrelation time. Now

2
∞
∑

n=0

Eρδ [ḡ(u(0))ḡ(u(n))] ≤ 2 sup
u

|ḡ(u)|Eρδ
∞
∑

n=0

|Eu(0)[ḡ(u(n))]|

= 2 sup
u

|ḡ(u)|Eρδ
∞
∑

n=0

|Eu(0)[g(u(n))]− E
ρδ [g]|

≤ 4 sup
u

|ḡ(u)|2
∞
∑

n=0

(

1− exp(−Φ⋆(r))
)n

.

For the mean square approximation, using the stationarity of the Markov chain

conditioned to start in U ∋ u(0) ∼ ρδ, we have

1

M
Eρδ
[∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

= E
ρδ [ḡ(u(0))2] + 2

1

M

M
∑

k=1

M
∑

j=k+1

Eρδ [ḡ(u(k))ḡ(uj)]
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= E
ρδ [ḡ(u(0))2] + 2

1

M

M−1
∑

k=0

M−k
∑

j=1

Eρδ [ḡ(u(0))ḡ(u(j))]

= E
ρδ [ḡ(u(0))2] + 2

1

M

M−1
∑

k=0

M−k
∑

j=1

E
ρδ [ḡ(u(0))Eu(0)[ḡ(u(j))]]

≤ E
ρδ [ḡ(u(0))2]

+ 2
1

M

M−1
∑

k=0

sup
u

|ḡ(u)|
M−k
∑

j=1

E
ρδ [|Eu(0)[g(u(j))]− E

ρδ [g]|]

≤ E
ρδ [ḡ(u(0))2] + 4

1

M

M−1
∑

k=0

sup
u

|ḡ(u)|2
M−k
∑

j=1

(

1− exp(−Φ⋆(r))
)j

≤ E
ρδ [ḡ(u(0))2] + 4 sup

u
|ḡ(u)|2

∞
∑

j=1

(

1− exp(−Φ⋆(r))
)j

,

which is clearly bounded uniformly with respect to M . Thus we have shown that there

exists C > 0 such that for all M

Eρδ
[∣

∣

∣

1

M

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

≤ C

M
.

It remains to show that the expectation Eρδ with respect to the unknown posterior ρδ

can be replaced by an expectation with respect to the prior measure ρ.

To this end we note that

Eρ
[∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

=

∫

U

Eu(0)

[∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

dρ(u(0))

=

∫

U

Eu(0)

[∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2] dρ

dρδ
(u(0))dρδ(u(0))

≤ Eρδ
[∣

∣

∣

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

Z(δ) sup
u∈U

[

exp(Φ(u; δ))
]

.

As Z(δ) ≤ 1 and Φ(·; δ) is assumed to be bounded uniformly, we deduce that

Eρ
[∣

∣

∣

1

M

M
∑

k=1

ḡ(u(k))
∣

∣

∣

2]

≤ C

M
,

for a constant C independent of M . The conclusion then follows. ✷

Appendix D: Finite Element Methods

In this Appendix we prove that Assumption 7 holds if we employ a Riesz basis for

the Finite Element space and when the domain and the equation’s coefficients possess

sufficient regularity.

We assume in the following that the union of all Finite Element basis functions

wl
j of the spaces V l = span{wl

j : j = 1, ..., Nl}, l = 0, 1, 2, ..., constitutes a Riesz
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basis in V . We remark that such bases are available in two and three dimensional

polyhedral domains (see, e.g., [24]) (the following assumption of availability of V -stable

Riesz bases is made for convenience, and may also be replaced by the availability of a

linear complexity, optimal preconditioning, such as a BPX preconditioner).

Assumption 27 (Riesz Basis Property in V ) For each l ∈ N0 there exists a set of

indices I l ⊂ N
d of cardinality Nl = O(2ld) and a family of basis functions wl

k ∈ H1
0 (D)

indexed by a multi-index k ∈ I l such that V l = span{wl
k : k ∈ I l}, and there exist

constants c1 and c2 which are independent of the discretization level l such that if w ∈ V l

is written as w =
∑

k∈Il c
l
kw

l
k ∈ V l, then

c1
∑

k∈Il

|clk|2 ≤ ‖w‖2V ≤ c2
∑

k∈Il

|clk|2 .

Multiscale Finite Element bases entail, in general, larger supports than the standard,

single scale basis functions which are commonly used in the Finite Element Method,

which implies that the stiffness matrices in these bases have additional nonzero entries,

as compared to O(dimV l) = O(2dl) many nonzero entries of the stiffness matrices that

result when one-scale bases, such as the hat functions, are used.

To bound the number of nonzero entries, we shall work under

Assumption 28 (Support overlap) For all l ∈ N0 and for every k ∈ I l, for every

l′ ∈ N0 the support intersection supp(wl
k) ∩ supp(wl′

k′) has positive measure for at most

O(max(1, 2l
′−l)) values of k′.

Assumption 28 implies that the number of non-zero entries in the stiffness matrix of the

approximating problem (16) is at most O(ld−12dl). To prove the error bound (17), we

require the regularity P (·, u) belonging and being bounded inH2(D)
⋂

H1
0 (D) uniformly

with respect to u ∈ U . Assumption 1(ii) implies the following regularity results.

Proposition 29 If D is convex and f ∈ L2(D), and if Assumptions 1(i),(ii) hold, then,

for every u ∈ U , the solution P J(·, u) of (14) belongs to the space W := H2(D)∩H1
0 (D)

and there exists a positive constant C > 0 such that

sup
J∈N

sup
u∈U

‖P J(·, u)‖W ≤ C‖f‖L2(D) .

Proof By (6), KJ(x, u) ≥ Kmin > 0 and we may rewrite the PDE in (14) as

−∆P J(x, u) =
1

KJ(x, u)
(f(x) +∇KJ(x, u) · ∇P J(x, u)).

By our assumptions, the right hand side is uniformly bounded with respect to J and

u ∈ U in the space L2(D). As the domain D is convex, we deduce that P J are uniformly

bounded with respect to J and u ∈ U in the space W : it holds

supu∈U ‖∆P J(·, u)‖L2(D) ≤ 1

Kmin
sup
u∈U

sup
J≥1

[

‖f‖L2(D) + ‖KJ(·, u)‖W 1,∞(D)‖P J(·, u)‖V
]

≤ C <∞
due to the summability of the W 1,∞(D)-norms of the ψj implied by Assumption 1(ii).

The desired, uniform (w.r. to J and u) bound in the W norm then follows from the L2

bound on ∆P J(·, u) and (7) and the convexity of the domain D. ✷
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Appendix E: Generalized Polynomial Chaos Methods

We justify Assumption 9 in this section. For the ensuing analysis, we shall impose the

following assumption on the summability of the gpc expansion of P :

Assumption 30 There exists a constant 0 < p < 1 such that the coefficients Pν of the

gpc expansion of P satisfy (‖Pν‖V )ν ∈ ℓp(F).

This assumption is valid under the provision of suitable decay of the coefficient functions

ψj such as Assumption 1(ii). We refer to [5, 6] for details. By a classical argument

(“Stechkin’s Lemma”), this implies the following, so-called “best N -term approximation

property”.

Proposition 31 Under Assumption 30, there exists a nondecreasing sequence

{ΛN}N∈N ⊂ F of subsets ΛN whose cardinality does not exceed N , such that
∥

∥

∥

∥

∥

P −
∑

ν∈ΛN

PνLν

∥

∥

∥

∥

∥

2

L2(U,ρ;V )

=
∑

ν∈F\ΛN

‖Pν‖2V ≤ CN−2σ, (57)

where the convergence rate σ = 1/p − 1/2 > 1/2 and where the constant C =

‖(‖Pν‖V )ν∈F‖2ℓp(F) is bounded independently of N .

The best N -term approximations

PΛN
:=
∑

ν∈ΛN

PνLν (58)

in Proposition 31 indicate that sampling the parametric forward map with evaluation

of N solutions Pν , ν ∈ ΛN of the parametric, elliptic problem with accuracy N−σ is

possible; since σ > 1/2, this is superior to what can be expected from N MC samples.

There are, however, two obstacles which obstruct the practicality of this idea: first, the

proof of Proposition 31 is nonconstructive, and does not provide concrete choices for

the sets ΛN of “active” gpc coefficients which realize (57) and, second, even if ΛN were

available, the “coefficients” Pν ∈ V can not be obtained exactly, in general, but must

be approximated for example by a Finite Element discretization in D.

As P ∈ L2(U, ρ;V ), we consider the variational form “in the mean” of (4) as
∫

U

∫

D

K(x, u)∇P (x, u) · ∇Q(x, u)dxdρ(u) =
∫

U

∫

D

f(x)Q(x, u)dxdρ(u), (59)

for all Q ∈ L2(U, ρ;V ). For each set ΛN ⊂ F of cardinality not exceeding N that

satisfies Proposition 31, and each vector L = (lν)ν∈ΛN
of nonnegative integers, we define

finite dimensional approximation spaces as

XN,L = {PN,L =
∑

ν∈ΛN

Pν,L(x)Lν(u); Pν,L ∈ V lν} . (60)

Evidently, XN,L ⊂ L2(U, ρ;V ) is a finite-dimensional (hence closed) subspace for any N

and any selection L of the discretization levels.
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The total number of degrees of freedom, Ndof = dim(XN,L), necessary for the sparse

representation of the parametric forward map is given by

Ndof = O

(

∑

ν∈ΛN

2dlν

)

as N, lν → ∞ . (61)

The stochastic, sparse tensor Galerkin approximation of the parametric forward problem

(4), based on the index sets ΛN ⊂ F , and L = {lν : ν ∈ ΛN}, reads: find PN,L ∈ XN,L

such that for all QN,L ∈ XN,L holds

b(PN,L, QN,L) :=

∫

U

∫

D

K(x, u)∇PN,L · ∇QN,Ldxdρ(u)

=

∫

U

∫

D

f(x)QN,L(x, u)dxdρ(u) .
(62)

The coercivity of the bilinear form b(·, ·) ensures the existence and uniqueness of PN,L

as well as their quasioptimality in L2(U, ρ;V ): by Cea’s lemma, for a constant C > 0

which is independent of Λ and of L,
‖P − PN,L‖L2(U,ρ;V ) ≤ C inf

Qν,L∈V lν

‖P −
∑

ν∈Λ

Qν,LLν‖L2(U,ρ;V ) .

We obtain the following error bound which consists of the error in the best N -term

truncation for the gpc expansion and of the Finite Element approximation error for the

“active” gpc coefficients.

‖P − PN,L‖2L2(U,ρ;V ) ≤ C(N−2σ +
∑

ν∈ΛN

inf
Qν,L∈V lν

‖Pν −Qν,L‖2V ) . (63)

Let us indicate sufficient conditions that ensure Assumptions 30, 9. The first

condition is quantitative decay rate of the coefficient functions ψj in the parametric

representation (5) of the random input.

To obtain convergence rates for the FE-discretization in the domain D, i.e. of the

term ‖Pν−Qν,L‖V in (63), it is also necessary to ensure spatial regularity of the solution

P (x, u) of the parametric problem (4). To this end we employ Assumptions 1(iii). We

remark that Assumptions 1(iii) and (iv) imply Assumption 1(ii) with q = s − 1 > 0.

Under these assumptions, the following proposition holds.

Proposition 32 Under Assumptions 1(i),(iii) and (iv) and if, moreover, the domain D

is convex and f ∈ L2(D), the solution P (·, u) of the parametric, deterministic problem

(4) belongs to the space L2(U, ρ;W ).

From estimate (63), we get with Proposition 32 and standard approximation properties

of continuous, piecewise linear FEM the error bound

‖P − PN,L‖2L2(U,ρ;V ) ≤ C(N−2σ +
∑

ν∈ΛN

2−2lν‖Pν‖2H2(D)) . (64)

In order to obtain an error bound in terms of Ndof defined in (61) which is uniform in

terms of N , we select, for ν ∈ ΛN the discretization levels lν of the active gpc coefficient

Pν so that both terms in the upper bound (64) are of equal order of magnitude. This
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constrained optimization problem was solved, for example, in [5], under the assumption

that (‖Pν‖H2(D))ν ∈ ℓp(F).

In recent years, several algorithms have appeared or are under current development

which satisfy Assumption 9 with various exponents α ≥ 1 and β ≥ 0. See for example

the references [3, 27, 11, 2, 4]
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appear in: Inverse Problems, 2013).

[27] Christoph Schwab and Claude Jeffrey Gittelson. Sparse tensor discretizations of high-dimensional

parametric and stochastic PDEs. Acta Numerica, 20:291–467, 2011.

[28] Christoph Schwab and A. M. Stuart. Sparse deterministic approximation of Bayesian inverse

problems. Inverse Problems, 28(4), 2012.

[29] Andrew M. Stuart. Inverse problems: A Bayesian perspective. Acta Numerica, 2010.

[30] L. Tierney. A note on Metropolis-Hastings kernels for general state spaces. Ann. Appl. Prob.,

8:1–9, 1998.

[31] S.J. Vollmer. Dimension-independent MCMC sampling for elliptic inverse problems with non-

Gaussian priors. arXiv preprint arXiv:1302.2213, 2013.


	1 Introduction
	1.1 Overview of Paper
	1.2 Overview of Notation

	2 Elliptic Inverse Problem and Approximations
	2.1 Forward Problem
	2.2 Bayesian Elliptic Inverse Problem
	2.3 Independence Sampler
	2.4 Finite Element Approximation of the Forward Problem
	2.5 Sparse Tensor gpc-Finite Element Surrogate of the Parametric Forward Problem

	3 Plain MCMC
	3.1 FE Approximation of the Posterior Measure
	3.2 Computational Complexity of Plain MCMC

	4 Sparse gpc-MCMC
	4.1 Approximation of the Posterior Measure

	5 Multilevel MCMC
	5.1 Derivation of the MLMCMC
	5.2 Error Analysis

	6 Conclusions

