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 fig. S1. Idealized schematic of backwater and drawdown hydrodynamics. 

 fig. S2. Instantaneous measurements of water and bed surface profiles along with 

the measured flow depth, depth-averaged flow velocity, and Froude number for 

experiment A. 

 fig. S3. Instantaneous measurements of water and bed surface profiles along with 

the measured flow depth, depth-averaged flow velocity, and Froude number for 

both flows in experiment B. 

 fig. S4. Photo sequence of the process of avulsion in experiment B. 

 fig. S5. Temporal evolution of avulsion length in constant discharge delta. 

 fig. S6. Water surface velocity across the backwater reach in constant discharge 

delta. 

 table S1. Field data compilation of avulsion length and backwater length. 

 Legends for movies S1 to S3 
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Other Supplementary Material for this manuscript includes the following:  

(available at advances.sciencemag.org/cgi/content/full/2/5/e1501768/DC1) 

 

 movie S1 (.mp4 format). Experimental evolution of constant discharge delta. 

 movie S2 (.mp4 format). Experimental evolution of variable discharge delta. 

 movie S3 (.mov format). Overhead dye video of the constant discharge delta. 



  
 

 

Computation of avulsion length and backwater length for field-scale deltas 

 In Fig. 1 of the main text, we report on the measured avulsion length (L A) and the computed 
backwater length scale (Lb) for the field-scale deltas. The following relation approximates the backwater 
length scale (e.g., 11, 18, 20): 
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where S is the channel bed slope, and hc is the characteristic flow depth, which can be estimated by the 
following relation (53): 
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where Qc is the characteristic flow discharge (assumed equal to the flood of 2-year recurrence interval), 
w is the channel width, cf is a bed friction coefficient, and g is gravitational acceleration. Chatanantavet 
et al. (18) report on the characteristic flow discharge, bed slopes, channel widths, and typical friction 
coefficients for alluvial rivers. Further, they also report on the streamwise distance of the avulsion nodes 
from the shoreline measured from satellite imagery. We reproduce their compilation here, which was 
used to produce Fig. 1 of the main text. 
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Supplementary Figures 

 

Idealized schematic of backwater and drawdown hydrodynamics. This plot shows a 
schematic of the longitudinal profiles of water surface elevation for a constant-width and constant-

slope  

river entering an ocean. During low flow (blue curve), the flow decelerates, which causes sediment 
deposition within the backwater reach (0-Lb). In contrast, during high flows (red curve), the water 
surface slope steepens; flow accelerates, which causes erosion in the lowest portions of the alluvial river

 

(e.g., 18, 20, 30). Backwater and drawdown hydrodynamics are characterized by flow deceleration and 
acceleration (nonuniform flows), respectively, which do not prevail upstream in the normal flow reach. 
The water surface curvature shown in this schematic is only expected for the simple case of uniform 
width and constant bed-slope. 
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fig. S2. Instantaneous measurements of water and bed surface profiles along with the measured 
flow depth, depth-averaged flow velocity, and Froude number for experiment A. (A) Long profiles 
of water (blue) and bed (black) surface measured along the centerline of the flume at an experimental 
runtime of 7.6 hrs. The vertical black line indicates the change in confinement in the experimental 
facility and downstream of this location the river widened resulting in an adverse bed-slope. (B) 
Measured flow depth computed by differencing the water surface profile and the bed surface profile 
within the confined portion of the experimental facility. (C) Depth-averaged flow velocity computed as 
the ratio of unit water discharge and measured flow depth in the narrow section of the experimental 
facility. (D) Computed Froude number using the depth-averaged flow velocity and the measured flow 
depth within the confined portion of the experimental facility. The data were averaged over a spatial 
distance of 0.25Lb (0.375 m) and the vertical lines indicate standard deviation. The instantaneous 
measurements shown here are in good agreement with the time-averaged quantities reported in Table 1. 
  



 
figure S3. Instantaneous measurements of water and bed surface profiles along with the measured 
flow depth, depth-averaged flow velocity, and Froude number for both flows in experiment B. (A, 
E) Long profiles of water (blue) and bed (black) surface measured along the centerline of the flume at an 
experimental runtime of 3.8 hrs (low flow) and 4.48 hrs (high flow). The vertical black line indicates the 
change in confinement in the experimental facility and downstream of this location the river widened 
resulting in an adverse bed-slope. (B, F) Measured flow depth computed by differencing the water 
surface profile and the bed surface profile within the confined portion of the experimental facility. (C, 
G) Depth-averaged flow velocity computed as the ratio of unit water discharge and measured flow depth 
in the narrow section of the experimental facility. (D, H) Computed Froude number using the depth-
averaged flow velocity and the measured flow depth within the confined portion of the experimental 
facility. The data were averaged over a spatial distance of 0.25Lb (0.72 m) and the vertical lines indicate 
standard deviation. The instantaneous measurements shown here are in good agreement with the time-
averaged quantities reported in Table 1. 
  



 

fig. S4. Photo sequence of the process of avulsion in experiment B. We picked the avulsion location 
as the site of the levee breach that resulted in an avulsion. (A) The location of the avulsion site that was 
picked for the example shown in Fig. 3. (B, C) These photographs show the creation of the new 
channel during the course of the high flow event in experiment B. The solid white line is at the same 
distance from the change in confinement indicating that our choice of avulsion site and consequently the 
computation of the avulsion length can only have an error of a maximum of the channel width. The scale 
for all the figures is shown at the right corner of panel C. Gray and white dashed lines indicate channel 
banks and the shoreline, respectively. 
 



 

fig. S5. Temporal evolution of avulsion length in constant discharge delta. Plot showing the 
evolution of the ratio of the avulsion length to the backwater length as a function of dimensionless time, 
where the experimental runtime was normalized by the time it takes to build a radially-symmetric, semi-
circular delta of size 0.5Lb (Methods) for the constant discharge delta (Experiment A). In this plot, we 
show the entire dataset available, which corresponds to approximately a dimensionless time of 4 
(Methods). In Fig. 5 of the main text, we show only a subset of the available dataset as the total 
experimental runtime in experiment B was approximately equal to a dimensionless time of 2. 
  



 

 
fig. S6. Water surface velocity across the backwater reach in constant discharge delta. Plot 
showing the water surface velocities across the backwater reach for the constant discharge experiment at 
an experimental runtime of 52.7 hrs when the delta was approximately 1.85 m long along the 
longitudinal axis of the flume (experiment A). The flow velocity stays relatively constant through the 
backwater reach (unlike the multiple discharge experiment; Fig. 6B), which indicates that the flow has 
adjusted to normal-flow conditions through most of the alluvial reach highlighting the transient nature of 
backwater hydrodynamics in the absence flood variability. The flow velocities were computed using the 
overhead videos of dye transport and the shaded region indicates standard error arising from window 
averaging of instantaneous data (Methods). 
  



table S1. Field data compilation of avulsion length and backwater length. Table documenting the 
database of deltaic river characteristics reproduced from Chatanantavet et al. (18), which were used to 
produce Fig. 1 of the main text. 

River Width 
(m) 

Slope Qc (m3/s) hc (m) Lb (km) LA (km) 

Parana  1270 0.00004 22800 11.8 295 210 

Danube 1250 0.00005 9700 6.3 125 95 

Nile 240 0.000064 8800 16.2 254 210 

Lower 
Mississippi 

650 0.000043 29000 21.0 480 490 

Rhine-
Meuse 

700 0.0005 5750 5.0 45.5 51 

Magdalena 1100 0.000095 11040 6.0 63.2 67 

Orinoco 2000 0.00006 24550 8.0 133.3 78 

Mid 
Amazon 

3000 0.00003 47800 12.0 400 404 

 For the Huanghe, we report values of LA and Lb from Ganti et al. (15). They used historical cross-
sections to estimate the bankfull depth of the lower Huanghe, and combining that with the estimated 
channel bed slope yielded a backwater length scale of 21-54 km (15). Huanghe historically avulsed on 
decadal timescales and the avulsion length was variable and the mean and standard deviation of the 
avulsion length was 31 ± 10 km (15). Because avulsion sites on the Huanghe translated downstream, we 
report a scale bar showing the avulsion length instead of tracing the channel from the shoreline to the 
avulsion node in Fig. 1 of main text. 
 
We also note that the backwater length scale is a scaling parameter that determines the length 
scale over which the alluvial river feels the boundary condition of the sea level. The actual length scale 
over which the hydrodynamics of the river are affected by the boundary condition varies with both the 
Froude number and the ratio of the normal flow depth to the depth of flow at the river mouth (e.g., 20, 
54). Bresse (54) and Lamb et al. (20) showed analytically that the minimum length scale over which 
backwater hydrodynamics prevail is Lb while the maximum length scale over which drawdown 
hydrodynamics prevail is 0.5Lb. Thus, the correlation of backwater length scale and the measured 
avulsion length is an indication that backwater hydrodynamics play an important role in setting the 
location of river avulsions on deltas.  
 

 



Supplementary Video captions: 

movie S1. Experimental evolution of constant discharge delta. This video shows the temporal 
evolution of constant discharge delta (experimental delta A). The video was made using the overhead 
images of deltaic evolution with a temporal resolution of 1 min. One second of video time corresponds 
to one hour in real time and the length of the silver rails is approximately 1.6 m. 
 
movie S2. Experimental evolution of variable discharge delta. This video shows the temporal 
evolution of variable discharge delta (experimental delta B). The video was made using the overhead 
images of deltaic evolution with a temporal resolution of 1 min. One second of video time corresponds 
to one hour in real time and the length of the silver rails in the image is approximately 1.6 m. 
 
movie S3. Overhead dye video of the constant discharge delta. This overhead video shows 
fluorescent dye transport captured at a rate of 59 fps at an experimental runtime of 52.7 hrs in 
experiment A. The width of the confined portion of the alluvial river section is 7 cm.  
 




