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Abstract

Studying thermal ignition mechanisms is a key step for evaluating many ignition hazards. In the present work, two-

dimensional simulations with detailed chemistry are used to study the effect of differential diffusion on the prediction of

ignition thresholds of a stoichiometric hydrogen-air mixture by moving hot spheres. Numerical experiments showed an

increase of 40 K in the minimum ignition temperature required for ignition when diffusion of species at different rates is

taken into account. Detailed analysis of the species profiles at the ignition location and a sensitivity study of the system to

the diffusivity of H2 and H revealed the key role played by the diffusion of H atoms in preventing ignition to take place at

temperatures below 1000 K.
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1. Introduction

Improved scientific understanding and characterization of ignition is of prime importance for evaluating

the risk of accidental fire and explosions in commercial aviation, nuclear power plants and the chemical process

sector [1]. Typical thermal ignition sources include concentrated hot surfaces, moving hot particles and extended

hot surfaces [2]. Common sources of heated particles are mechanical sparks in manufacturing processes and

mining operations, and as a result of lighting strikes on aircraft. Previous experiments on hot particle ignition

include particles heated in a furnace and then injected into explosive atmospheres [3, 4, 5], as well as stationary

particles placed in flammable mixtures and heated via laser light [6, 7, 8, 9, 10, 11]. This work focuses on the

former configuration. Silver [3] found an experimental threshold of 1073 K and 1083 K for a 20% hydrogen-air

mixture when using 4 and 5 mm diameter particles moving at 4 m/s, respectively. Paterson [5] used a leaner

mixture (10% hydrogen-air), smaller (2 mm) and slower (1.2 m/s) particles, and found a minimum ignition

temperature of 1073 K. No ignition events were reported for temperatures below 1000 K for all particle sizes

and concentrations considered in [3, 5]. Previous numerical and theoretical studies have been limited to 1-

D simulations of stationary particles assuming spherical symmetry [6, 7], and to stagnation point ignition of

premixed combustible mixtures using boundary layer equations, one-step irreversible reactions and asymptotic

approximations [12, 13, 14, 15]. The aim of this study is to understand the effects of differential diffusion on

the numerical prediction of the ignition threshold of stoichiometric hydrogen-air mixtures using 2-D numerical

simulations with detailed chemistry.
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2. Computational methodology

2.1. Governing equations

The motion, transport and chemical reaction in the gas surrounding the particle are modeled using the

variable-density reactive Navier-Stokes equations with temperature-dependent transport properties [16].

∂t(ρ) +∇ · (ρu) = 0 (1)

∂t(ρu) +∇ · (ρuu) = −∇p+∇ · τ + ρg (2)

∂t(ρYi) +∇ · (ρuYi) = −∇ · ji + ω̇i (3)

∂t(ρhs) +∇ · (ρuhs) = −∇ · jq + q̇chem (4)

p = ρR̄T, τ = µ[∇u + (∇u)T ]− 2

3
µ(∇ · u)I (5)

In equations (1)-(5), ρ, p and T are the gas density, pressure and temperature, u is the velocity vector, hs is

the mixture sensible enthalpy, g is the gravitational acceleration, Yi is the mass fraction of species, ji is the

species diffusion flux, ω̇i represents the rate of production/consumption of species, jq is the heat flux, q̇chem =∑N
i=1 ∆hof,iω̇i is the rate of conversion of chemical into thermal energy, ∆hof,i is the enthalpy of formation of

species, R̄ is the specific gas constant, τ is the deviatoric stress tensor, µ is the mixture viscosity, and I is the

identity matrix. Radiation is neglected in the current model. The species diffusion term, ji, uses Fick’s law for

binary mixtures. For multicomponent mixtures where one component is present in large amounts (i.e. N2 for

combustion in air) all other species may be treated as trace species. Writing the binary diffusion coefficient with

respect to N2 only yields:

ji = −ρDi∇Yi, with Di = Dj,N2 (6)

where Di is the effective diffusion coefficient. In Eq. 6, thermodiffusion or Soret effect has been neglected.

While thermodiffusion is known to be important in hydrogen combustion systems, the purpose of this study is

to quantify and assess the importance of differential diffusion on hot particle ignition. Assessing the effect of

themodiffusion will be a topic of future study.

We solve the mass conservation equation, Eq. 1, and only forN−1 species equations. The last species mass

fraction, N2, is obtained by writing YN2 = 1 −∑N−1
i=1 Yi and absorbs all inconsistencies introduced by Fick’s

law. This error is negligible when the last species YN2 is in a high concentration as is the case for combustion in

air [16]. The heat flux jq includes the effect of sensible enthalpy transport by diffusion

jq = − κ
cp
∇hs +

N−1∑
i=1

hs,i

(
ji +

κ

cp
∇Yi

)
(7)
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where κ and cp are the thermal conductivity and specific heat respectively. In Eq. 7, the Dufour effect (i.e. energy

flux due to a concentration gradient) has not been taken into account [17]. Substituting Eq. 6 into 7 yields:

jq = − κ
cp
∇hs +

N−1∑
i=1

hs,i

(
1− 1

Lei

)
κ

cp
∇Yi (8)

where Lei = κ/(cpρDi) is the Lewis number of species i. The second term on the right hand side of Eq. 8 van-

ishes if the Lewis numbers of all species are assumed to be unity. This approximation is common in combustion

codes and is not justified in many applications [16].

The equations above are integrated in two dimensions using the Open source Field Operation And Manipu-

lation (OpenFOAM) toolbox [18]. The spatial discretization of the solution domain is performed using finite

volumes. Specifically, the convective terms were discretized using a second order, bounded TVD scheme; the

mass fractions were discretized using a linear centered scheme for scalars bounded between zero and one. The

diffusion terms were discretized using the linear centered scheme together with a second order, conservative

scheme for the evaluation of the surface normal gradients. The linear systems that result from the discretization

of the governing equations are solved through iterative techniques [19]. The PBiCG (Preconditioned Biconju-

gate Gradient) method is used for all linear systems including the chemical source terms preconditioned through

the DILU (Diagonal Incomplete-LU) technique, whereas the Poisson equation for pressure is solved using the

PCG (Preconditioned Conjugate Gradient) preconditioned by the DIC (Diagonal Incomplete Cholesky). The

pressure-velocity coupling is achieved using the PIMPLE (PISO+SIMPLE) algorithm [21]. Finally, the time-

step is dynamically adapted during the course of the computation based on a specified Courant number to ensure

stability of the numerical scheme [20]. In the current study the Courant number used is 0.2.

2.2. Chemical and transport models

The chemistry is modeled using Mével’s detailed mechanism for hydrogen oxidation which includes 9

species and 21 reactions [22]. The Sutherland Law [23], Eucken relation [24] and JANAF polynomials [25]

are used to account for the functional temperature dependence of mixture viscosity (µ), thermal conductivity (κ)

and specific heat (cp) respectively. Species diffusivities are computed using Cantera [26]; a constant non-unity

Lewis number, Lei, is specified for each species. This is a convenient approximation since Lei values are es-

sentially constant and usually vary in small amounts across flame fronts [16]. For convenience the subscript i is

dropped for the rest of the discussion.

The current numerical framework, chemical and transport models have been validated in a recent hot surface

ignition study performed by the authors [27].
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3. Domain, initial and boundary conditions

The computational domain consists of a vertical rectangle with a 2-D-axisymmetric sphere located at ( 0 , 0 , 0 )

with diameter d = 4 mm. The top, bottom and side boundaries are placed 15d, 5d and 10d away from the center

of the sphere, respectively. A resolution of approximately 300,000 cells is used, with finer resolution near the

sphere; a minimum cell size of 60µm ensures that the thermal/hydrodynamic boundary layers are properly re-

solved.

The numerical integration is divided in two parts: first, a free fall in N2 for 0.25 s (fall time measured experi-

mentally) during which a steady axisymmetric thermal boundary layer develops. Second, contact with reactive

stoichiometric hydrogen-air mixture (YH2 = 0.0283, YO2 = 0.2264, YN2 = 0.7453) for 20 ms (experimental

observation window) or until ignition is observed and initial stages of flame propagation take place. The initial

conditions are po = 101 kPa, To = 300 K, uo = ( 0 , 0 , 0 ) m/s and a constant (uniform) sphere surface temper-

ature, Tsphere, providing an isothermal boundary condition for the gas. The validity of this boundary condition

was assessed using a Biot number analysis [28]. The temperature drop during the simulation test time was found

to be of less than 1% for the sphere surface temperatures considered here. There is no net flux of species to the

wall, and the effects of surface heterogeneous reactions have been ignored. The frame of reference is attached to

the sphere, hence, a time dependent inflow boundary condition is prescribed at the bottom of the computational

domain to properly simulate the fall of the heated particle, as its velocity increases at a rate of g = 9.81 m/s2,

given by u(t) = ( 0 , gt , 0 ) m/s. At the top, a non-reflective/pressure transmissive boundary condition is used to

simulate an outflow.

4. Results and Discussion

4.1. 2-D ignition delay times

In Fig. 1, the ignition times obtained from the 2-D simulations for different surface temperatures computed

with (Le 6= 1) and without (Le = 1) differential diffusion effects are plotted together with constant pressure (CP)

delay times. The time to ignition, τign, shown in Fig. 1 was defined as the time elapsed from contact with reactive

mixture until the maximum temperature in the domain reached Tsphere +150 K. For the CP calculations, the time

to maximum temperature gradient is reported. The ignition time from the 2-D simulation increases rapidly as

the temperature of the sphere is decreased to 960 K for Le = 1 (solid), and 1000 K for Le 6= 1 (dashed). The

vertical asymptotes (dotted) indicate the existence of a threshold, namely, the temperature below which ignition

does not occur during the simulation time (20 ms). Note that the ignition threshold increases by 40 K when

differential diffusion is included. Further examination of the curve also reveals the existence of a horizontal

asymptote at τign = 2.1 ms; temperatures higher than 1100 K will result in ignition immediately after contact

of the sphere with reactive mixture. Above 1100 K, the reaction rates are too fast for diffusive and convective

5



losses to counteract the chemical heat release. Overall, the ignition delay times computed for the 2-D simulation

that accounts for differential diffusion are slightly longer than their unity Le counterpart, except at the ignition

threshold where the delay time is marginally shorter, 15.208 ms for Le 6= 1 and 16.306 ms for Le = 1. This is

due to the lower temperature threshold found for Le = 1.
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Figure 1: Comparison of ignition times obtained from 2-D simulations (unity (solid lines) and non-unity (dashed lines) Le number cases)
and CP ignition delay times.

The ignition location along the sphere is characterized by the angle, θ, measured from the vertical centerline

starting at the front stagnation point (θ = 0◦) and increasing towards the rear stagnation point (θ = 180◦). The

ignition location moves from the front stagnation point towards the zone of flow separation (near θ = 120◦)

as the temperature decreases towards the minimum ignition temperature. For all cases considered, ignition was

never observed to occur in the recirculation region, hot wake, or rear stagnation point. In contrast to the 2-

D simulation ignition times, the CP ignition times continue to decrease as the initial temperature of the gas

increases. The large differences observed between the two types of simulations are mostly due to differences in

the initial mixture composition and the absence of convective and diffusive losses in the CP calculations. In the

2-D simulations, several milliseconds are required to create a flammable mixture in the boundary layer through

diffusion (from 2 ms at the front stagnation point up to about 8 ms at the separation point (see Fig.7)), whereas

the CP calculations consider a reactive mixture with fixed composition from t = 0. As chemical reactions start to

take place, convective and diffusive losses counteract the formation of reactive species and subsequent thermal

runaway by transporting species and heat away from the region of highest temperature in the flow field. Note

also that τign for the 2-D simulations is plotted as a function of Tsphere which is typically 30 to 50 K higher than

the gas temperature at the ignition location just before chemistry is activated.

4.2. 2-D fields at ignition threshold

We now focus on explaining the differences observed between the simulations performed with and without

Lewis number effects or differential diffusion. Of particular interest is the higher ignition threshold obtained

when accounting for species diffusing at different rates. Figure 2 shows fields of H2, O2, and N2, 10 ms after
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sphere contact with reactive mixture for Le = 1 (left) and Le 6= 1 (right). The differences become very apparent

in the thickness of the interface between H2 and N2, and the extent of H2 present in the wake. For the Le 6= 1

case, concentrations of H2 greater than 0.01 reach the rear stagnation point of the sphere, however, the absence

of O2 renders the mixture non-flammable and ignition is never observed to take place place in this region during

the experimental observation window. All these differences, as expected, are due to the high mass diffusivity of

H2 into N2 compared to that of O2.
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Figure 2: Comparison of mass fraction fields (H2, O2, and N2 ) 10 ms after hot sphere contact with reactive mixture with (Le 6= 1) and
without (Le = 1) differential diffusion for Tsphere = 960 K.

Figure 3 shows velocity, temperature and mass fraction fields at the time ignition takes place for the unity Le

case (τign = 16.306 ms). An ignition kernel forms within the thermal boundary layer close to the region where

flow separation occurs (see Fig. 3 top left). The mass fraction of product, H2O, reaches 0.0573 signaling that

the exothermic formation of H2O through OH+H+M=H2O+M and H2+OH=H2O+H is active, hence the gas

temperature in the ignition kernel peaks to 1103 K, roughly 150 K higher than the sphere temperature. For the

Le 6= 1 case, no heat deposition in the gas is triggered after 16.306 ms of contact with reactive mixture, resulting

in a H2O mass fraction 7 orders of magnitude lower (1.24 x 10−9). A less diluted wake (lower N2 concentration)

is also present in this case, consistent with the higher entrainment of H2 into the boundary layer expected after

allowing for 6 ms extra of diffusion.

4.3. Wall heat flux and ignition location

Although the ignition location can be visually determined using the 2-D fields in Fig. 3, a more exact way

of determining it is by plotting the wall heat flux along the sphere at different times during the simulation as

shown in Fig. 4. The horizontal axis is normalized by π (180◦) resulting in θ/π = 0 at the front stagnation point,

and θ/π = 1 at the rear stagnation point. The horizontal black dashed line drawn at 0 wall heat flux is a visual
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Figure 3: Comparison of temperature, velocity and mass fraction fields (N2 and H2O) 16.306 ms after hot sphere contact with reactive
mixture with (Le 6= 1) and without (Le = 1) differential diffusion for Tsphere = 960 K.

indicator to aid with determining the exact time and location when the heat transfer switches direction: from

the sphere to the gas, positive heat flux, and from the gas to the sphere, negative heat flux, or equivalently, the

onset of the exothermic step in the reaction mechanism and heat deposition in the gas. The transition takes place

between t = 16.250 and 16.258 ms, however the onset of significant chemical activity starts 0.058 ms earlier, at

16.2 ms, with the initiation step involving H2 and O2 at constant temperature and initial production of H and O

atoms. Due to having a Tsphere = 960 K, the low temperature non-chain branching pathways are favored, mainly

those concerned with the production of HO2 (see Fig. 6). Finally, the ignition location is found at θ/π = 0.67 or

θ = 120.6◦; this corresponds to a minimum in the wall heat flux.

0.5 0.55 0.6 0.65 0.7 0.75 0.8
θ/π

0

0.25

0.5

0.75

1

0 0.2 0.4 0.6 0.8 1
θ/π

-1.5

-0.75

0

0.75

1.5

W
al

l h
ea

t f
lu

x 
x 

10
-5

 (
W

/m
2 ) t = 10 ms

t = 16.2
t = 16.208
t = 16.216
t = 16.224
t = 16.232
t = 16.240
t = 16.250
t = 16.258
t = 16.266
t = 16.274
t = 16.282
t = 16.290

Figure 4: wall heat flux along sphere for Tsphere = 960 K (Le = 1).

4.4. Energy equation analysis

Analyzing the wall heat flux along the sphere allowed us to determine the exact location where chemical

activity starts and initial heat release occurs, however the ignition of the gas takes place some distance away

from the surface of the sphere. Figure 5 shows the contribution of each term in the energy equation normal to

the sphere surface at θ = 120.6◦ and t = 16.203 ms. The abscissas represent the normal radial distance from

the surface of the heated sphere, and the ordinates show the corresponding energy density and temperature.
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The terms plotted are hConvection = −∇ · (ρuhs), hDiffusion = ∇ · (κ/cp∇hs), and hSource = q̇chem, their sum,

hUnsteady, and the gas temperature, T. A few important features are worth mentioning: (1) the thermal boundary

layer thickness (2.5 mm) is of the same order of the radius of the sphere (2 mm); (2) the temperature maximum

(ignition location) is located 0.081 mm away from the surface of the sphere; (3) close to the sphere surface, the

source term is mostly balanced by diffusion but about 2 times larger at this time; (4) the dip in the convective

term is due to the expansion of the gas taking place in this region as a result of the initial chemical energy release;

(5) the net energy addition (sum term) is positive up to 0.5 mm away from the sphere surface. At later times, the

typical structure of a flame develops as the ignition kernel grows and propagates into the surrounding reactive

mixture.
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Figure 5: Contributions of each term in the energy equation and temperature normal to the surface of the sphere at θ = 120.6◦ for Tsphere

= 960 K (Le = 1).

4.5. Temporal evolution of species at ignition location

After finding the ignition location from the 2-D simulations (θ = 120.6◦, 0.081 mm away from surface of the

sphere) the temporal evolution of species for Le = 1 (ignition case) and Le 6= 1 (no ignition case) are monitored

in detail to understand why differential diffusion pushes the ignition threshold 40 K higher. Figure 6 shows the

temporal evolution of major (top) and minor (bottom) species for Le = 1 at Tsphere = 960 K during the ignition

event. A sharp increase in temperature is observed along with fast consumption of the reactants, H2 and O2, and

rapid production of the combustion product, H2O, and of very reactive transient species, H, O and OH. The gas

temperature drops after ignition indicating heat conduction from hot combustion products towards the sphere

surface. The minor species profiles are characterized by a significant accumulation of HO2 radicals before

ignition occurs. This indicates that as expected, under low temperature conditions, the production of OH radical

is achieved through non-chain branching pathways, R1: H+O2+M=HO2+M followed by R2: HO2+H=OH+OH,

rather than through the classical chain-branching reactions: R3: H+O2=O+OH and R4: O+H2=H+OH.

To emphasize the differences between Le = 1 (ignition) and Le 6= 1 (no ignition) at 960 K, the species

profiles at the ignition location are analyzed for both cases. Figure 7 shows the evolution of concentration of

reactants from 3 ms after contact with reactive mixture to 16.3 ms (shortly before ignition takes place in the

Le = 1 case). The profiles show H2 diffusing rapidly into the ignition location when using the non-unity Le
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Figure 6: Temporal evolution of major and minor species and temperature at ignition location - θ = 120.6◦, 0.081 mm away from surface
of the sphere for Tsphere = 960 K (Le = 1).

formulation, resulting in an infinite equivalence ratio, Φ, because only H2 is present at that location initially as

it takes a few milliseconds longer for O2 to diffuse. The equivalence ratio slowly converges to 1.15 after 7.5 ms,

indicating the presence of a slightly richer and less diluted mixture (N2 concentration is not shown in Fig. 7)

when compared to the unity Le case. As expected, for Le = 1, the equivalence ratio remains constant at unity

during the course of the simulation. CP calculations were performed to quantify the impact of the change of

initial composition induced by differential diffusion on the ignition delay time. The composition at 15 ms after

contact with the reactive mixture was selected for the computations. The delay times obtained were 9.39 ms

and 9.09 ms for Le = 1 and Le 6= 1, respectively. This result suggests that the increase on the ignition threshold

observed for Le 6= 1 is not related to the change of initial mixture composition as richer mixtures seem to ignite

slightly faster.
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Figure 7: Temporal evolution of H2, O2 and equivalence ratio, Φ, for unity (solid lines) and non-unity (dashed lines) Le cases at the
ignition location - θ = 120.6◦, 0.081 mm away from surface of the sphere for Tsphere = 960 K.

The comparison of the minor species profiles, Fig. 8, clearly displays how the concentration of H, O, OH,
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H2O2 and HO2 achieve constant values after 5 ms when Le 6= 1. Additionally, the temperature remains essen-

tially constant at 915 K (see Fig. 6). Conversely, in the unity Lewis number case, the concentration of all these

species increases continuously and eventually induces an exponential growth of the radical pool resulting in the

combined chain-branching thermal runaway characteristic of ignition events. The most likely explanation of this

difference in behavior is the high mass diffusivity of H atoms. In the Le 6= 1 case, the rapid diffusion of H atoms

balances its production, significant build up of H cannot be achieved thereby hindering the production of OH

radicals through R1 and R2. For Le = 1, H atoms reside longer where they are produced allowing for significant

build up of species and subsequent ignition at lower temperatures.
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Figure 8: Temporal evolution of minor species for unity (solid lines) and non-unity (dashed lines) Le number cases at ignition location -
θ = 120.6◦, 0.081 mm away from surface of the sphere for Tsphere = 960 K.

In order to test this hypothesis, additional simulations were performed to assess the effect and sensitivity of

the individual species Le on the ignition threshold. First, all species Le were set to unity except for the fuel Le,

LeH2 , which was kept fixed at 0.28. No ignition was observed for Tsphere = 960 K, however at 975 K the gas

ignited after 7.168 ms. For Tsphere = 1000 K, ignition took place after 4.592 ms. Both ignition times are very

close to those obtained when Le = 1 for all species. Second, the Le of H, LeH, was set to 0.17 (its physical value)

while keeping the Le numbers of the remaining species at unity. Ignition occurred after 12.076 ms for a sphere

surface temperature of 1000 K. At 975 K and 960 K the reactive gas within the thermal boundary layer did not

ignite. Allowing for H atoms to diffuse at their physical rate resulted in a higher ignition threshold. In fact, the

same temperature threshold as in the non-unity Le number case (1000 K) was obtained by varying only LeH.

Regarding ignition delay times, the Le = 1 with LeH 6= 1 case ignited 2.952 ms earlier than the Le 6= 1 case. This

outcome shows the importance of diffusion of H atoms in preventing ignition to occur at temperatures lower

than 1000 K. When the Le of the intermediate species are set to unity, the H atoms do not diffuse as quickly, and

accumulate close to the sphere surface allowing for enough time for their concentration to grow leading to the

rapid formation of OH by R2. On the other hand, if the proper Le number for H is used at Tsphere = 960 K, the

rate of production of H atoms is balanced by diffusion which limits the growth of HO2 and subsequently of OH

radicals. The only way to counteract the loss of H atoms by diffusion is by going to higher temperatures so that

a critical concentration of H is reached and the rapid production of OH is activated resulting in ignition of the
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gas.

5. Conclusion

In the present study, the ignition of stoichiometric hydrogen-air mixtures by a moving hot sphere has been

investigated. To the authors knowledge, this is the first time a 2-D simulation with detailed chemistry is per-

formed to investigate the ignition of a combustible mixture by moving heated spheres. The purpose of the study

was to quantify the effect of heat and mass transport phenomena, particularly that of differential diffusion, on the

minimum ignition temperature for a given composition, sphere size and velocity. It was shown numerically that

accounting for diffusion of species at different rates gave rise to an increase of 40 K (from 960 to 1000 K) in the

ignition threshold. Sensitivity analyses of the system to the diffusivities of H2 and H demonstrated that the loss

of H atoms through diffusion was responsible for the increase in the ignition threshold. The rapid diffusion of H

atoms results in a balance between chemical production and transport losses, significant build up of H cannot be

achieved thereby hindering the rapid production of OH radical via HO2+H=OH+OH, and ultimately ignition. At

slightly higher temperature (1000 K), the chemical production of H is sufficiently fast to overcome its diffusion

losses resulting in ignition of the gas. The present results demonstrate that quantitative predictions of ignition

thresholds for moving hot spheres require a detailed simulation that includes correct initial and boundary con-

ditions, as well as adequate transport models to capture important features such as boundary layer separation,

energy and species diffusion processes. Including additional physics such as surface reactions, as well as a sys-

tematic variation of the system parameters (e.g. hot surface size, mixture equivalence ratio, sphere velocity, etc.)

and their effect on ignition thresholds were outside of the scope of this study and remain to be investigated in

detail.
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