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Abstract

The scientific community has learned a great deal from imaging small and naturally transparent 

organisms such as nematodes and zebrafish. The consequences of genetic mutations on their organ 

development and survival can be visualized easily and with high-throughput at the organism-wide 

scale. In contrast, three-dimensional information is less accessible in mammalian subjects because 

the heterogeneity of light-scattering tissue elements renders their organs opaque. Likewise, 

genetically labeling desired circuits across mammalian bodies is prohibitively slow and costly via 

the transgenic route. Emerging breakthroughs in viral vector engineering, genome editing tools, 

and tissue clearing can render larger opaque organisms genetically tractable and transparent for 

whole-organ cell phenotyping, tract tracing and imaging at depth.
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Introduction – The case for a hermeneutic approach to biological 

investigation

From slime mold to the rhesus macaque, countless species have contributed to our current 

understanding of the biological processes that grant life. The optimum animal model for a 

line of research is often determined by a particular anatomical feature that makes the 

organism uniquely suitable for experimentation. For example, although the giant squid may 

seem an unusual choice to further understanding of mammalian neural circuits, the sheer 

size and slow conduction velocity of its axons enabled scientists to study neuronal firing 

with the rudimentary electrophysiological techniques available during the early 20th century 

[1], giving rise to the field of modern cellular neuroscience. By examining individual aspects 

of a diverse range of organisms in great detail, scientists have been able to amass a set of 

unifying principles for the field of neural sciences [2]. The route to this understanding 

parallels the hermeneutic circle, a classic concept in theology and logic [3]. In hermeneutics, 

the process of interpretation follows a spiraling path in which one first studies the overall 

body, then examines its composite parts, and lastly revisits the concept of the whole body as 

a sum of the parts. Similarly, in neuroscience, observation of a particular sensory or motor 

system in an organism leads to investigation of the cellular underpinnings of the related 

circuits, which are then placed in the larger context of the central and peripheral nervous 

systems.

Applying this approach to investigations of molecular and cellular physiology in health and 

disease (Table 1, first column) can be both technologically challenging and time-consuming 

in mammalian subjects. Mammalian tissues can be easily photographed at the macroscopic 

level, and then the organs and tissues can be dissected and thinly sliced for microscopic 

analysis. However, the process of aligning these two different perspectives to reconstruct a 

whole-organism map with subcellular resolution remains nontrivial [4]. Without a clear 

methodology for integrating microscale and macroscale views, it is difficult to apply newly-

discovered molecular mechanisms to systems-level questions and to recognize how systems-

level findings may in turn inform novel hypotheses on molecular processes.

Two recent technical advances can bridge the divide between cellular and systems-level 

studies (Table 1). First, improved viral-vector-based strategies can deliver cargo, such as 

fluorescent labels, efficiently and with cell specificity over entire organs or the whole body. 

This enables tracing of, for example, wide-coverage brain networks or peripheral nerves ([5–

14], reviews: [15–20]). Second, optimized tissue-clearing methodologies (Table 2–3) can 

map intact local and long-range circuits [21–41]. The former merges two powerful 

biological techniques: the use of genetically encoded tools for studying cellular function and 

connectivity, and the development of viral vectors as a vehicle for delivering these tools into 

cells [10,11,13,19,42–54]. The latter illustrates how the century-old technique [55,56] of 

tissue clearing may gain renewed importance when it is refined to incorporate current 

advances in microscopy [27,29,57–61], genetically encoded fluorescent labeling tools 

[7,8,14,62–66], protein affinity tags [67–71], and tissue-binding size-adjustable polymeric 

scaffolding [22,29,32,37,41,72,73]. This brief review will highlight recent work on 

generating adeno-associated viruses with unique properties via specialized viral-vector 
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screening methods [53,74–80] (Figure 1, Box 1), and on modern tissue-clearing 

methodologies that preserve fluorescence and support high-resolution imaging at depth 

(Figure 2, Table 2, and Box 1; the following protocols generally achieve both goals: [21–

25,28,29,31,32,35–37,39–41,81–83] and uDISCO, which outperforms 3DISCO in 

fluorescence preservation, personal communication with Dr. Ali Ertürk).

Scientific motivation for broad coverage gene delivery and imaging of 

whole intact tissues in mammals by tissue clearing

Although viral vectors are commonly used for delivering genetically encoded cargo to 

mammalian cells in vivo, therefore avoiding slow and costly transgenic means, few are 

capable of both safe and efficient transduction of specific cellular targets. Fewer still are 

capable of broad coverage across all cellular connectivity under study. For example, adeno-

associated viruses (AAVs) are widely used, especially in non-dividing cells, due to their 

safety [78,84–86]; however, the handful of serotypes available cannot efficiently and 

specifically target many populations of interest. Past and ongoing efforts on engineering 

viral vectors with desired properties [79,87,88], including cell-type and/or organ specificity 

[74–77,79,89], will greatly benefit research in mapping and genome editing [90]. To 

contribute to and complement these efforts we have recently developed an in vivo Cre-

REcombination-based AAV Targeted Evolution (CREATE) selection platform for 

identifying AAVs that more efficiently transduce genetically defined cell populations (Figure 

1A) [53]. We used CREATE to identify variants from a systemically delivered AAV capsid 

library that cross the blood–brain barrier and transduce neurons and astrocytes brain-wide. 

Using this method, we identified one variant, AAV-PHP.B1, that achieves 40- to 90-fold 

more efficient brain-wide transduction than the current standard, AAV9 (Figure 1D) [91]. 

AAV-PHP.B transduces most neuronal types and glia throughout the brain, which supports 

its use to deliver multicolor labels to genetically defined circuits for mapping distributed 

networks, such as those recruited by deep brain stimulation [92–97]. Furthermore, 

engineered vectors that label discrete cell populations could be put to immediate use, for 

example in elucidating points of contact between major somatic sensory nerves and the 

CNS, or in mapping the autonomic motor branch of the PNS to better understand metabolic 

and endocrine disorders.

Despite these new labeling technologies, it remains difficult to create maps for 

phenotypically distinct fine axons that run in bundles throughout the brain when the 

traditional method involves sectioning the tissue into paper-thin slices, imaging each slice, 

and recovering the 3D perspective with imaging software: it is slow, tedious, costly, and 

error prone. Over the past decade there has been a surge in methods for increasing the 

transparency of thick mammalian tissue samples and whole organs so that they may be 

examined intact (Table 2). Here, the scientific value of fluorescence-preserving tissue 

clearing for vector engineering is also apparent: the ability to process major organs 

simultaneously and without sectioning (Figure 1B–C) will greatly facilitate transduction 

1Novel AAV capsid: AAV-PHP.B was named in honor of Caltech Professor Paul H. Patterson (1943–2014).
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mapping of systemically delivered genes (Figure 1D), including small-molecule tags and 

fluorescent labels.

Whole-organ and whole-body tissue-clearing methodologies

The original century-old tissue-clearing techniques [55,56] enable deep imaging into tissue 

without physical sectioning, but the harsh organic solvents damage cellular architecture and 

are incompatible with modern immunolabeling and fluorescence microscopy tools. Thus, the 

application of modern labeling technologies to ex vivo mapping studies requires new 

developments to render tissues transparent while also stabilizing critical macromolecules 

and preserving endogenous fluorescence (see Table 2 for a comprehensive list of major 

clearing protocols of the last decade). In particular, the CLARITY technique provides a 

method to further stabilize samples by anchoring tissue components in place using an 

interpolating hydrogel scaffold [22,37]. This transparent, tissue-binding hydrogel mesh 

secures proteins and nucleic acids into place without causing epitope masking and allows 

scientists to visualize intact organs at the subcellular [40,41] and even single transcript scale 

[22,29,32,37,41]. Recently, a method to clear whole adult rodents and organs emerged from 

the realization that hydrogel monomers as well as clearing detergents and immunolabeling 

reagents could all be infused throughout the intact post-mortem organism using the intrinsic 

circulatory system (vasculature) (Figure 1B–C, Figure 2A–B) [32,41]; PARS (Perfusion-

assisted Agent Release in Situ) achieves delipidation and labeling steps rapidly in the intact 

post-mortem organism via perfusion. The PARS approach, which has also proven 

compatible with a variety of tissue-clearing reagents [25,31,39,40], can prepare transparent 

whole organisms for imaging at depth and aligns with a paradigm shift in biomedical 

research. Namely, efforts to profile the two-dimensional molecular content of samples have 

been superseded by more comprehensive inquiries into the relationship between an organ’s 

volumetric composition and its resulting biological function [98].

Across most disciplines and within a variety of laboratory settings, it has become 

increasingly relevant to engage in the fine-scale phenotyping of whole specimens, whether 

of intact samples, such as tissue biopsies, excised organs and cultured organs in a dish 

[99,100], or of whole organisms. Thus, tissue clearing methods must be simple, economical 

and adaptable to a variety of applications to be adopted across scientific fields. Toward this 

goal, we developed a set of hydrogel-embedding and delipidation protocols that can be used 

to rapidly clear excised organs individually or all organs simultaneously within the intact 

body without compromising cellular architecture or endogenous fluorescence (for 

experimental timeline and details, see Tables 2–3; for troubleshooting advice, see: http://

www.nature.com/nprot/journal/v10/n11/fig_tab/nprot.2015.122_T5.html) [32,41]. PACT 

(PAssive CLARITY Technique) and PARS entail hybridizing the tissue sample to polymers 

in order to anchor proteins and nucleic acids during detergent-mediated lipid extraction and 

to preserve gross tissue architecture during all tissue-processing steps (Figure 1B–C, Figure 

2A–B) [32,41]. While many clearing protocols are successful at removing lipids through 

detergent treatment alone, we have found that the porous structure of the tissue–hydrogel 

matrix, particularly when coupled to the driving force of detergent perfusion, facilitates 

rapid diffusion of solubilized lipids out of the tissue and the subsequent penetration of 

immunolabels into the remaining tissue–hydrogel matrix. Furthermore, the utility of tissue-
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hydrogel hybridization and detergent perfusion extends beyond their capacity to facilitate 

rodent organ and whole-body clearing and immunolabeling [32,41]. For example, hydrogel 

embedding effectively stabilizes amorphous or fragile samples [41], such as sputum 

(unpublished results), for processing, and secures microorganisms to sites of infection. This 

latter property has proven valuable in studying bacterial colonization (personal 

communication with Dianne Newman). Although originally demonstrated in whole rodents, 

perfusion-based methods may also render large, excised samples such as primate and pig 

organs transparent via the recirculation of PARS reagents through catheterized organ 

vasculature [101], an undertaking which would be prohibitively slow via passive immersion-

based clearing. Finally, after initial lipid extraction and/or solvation steps (Table 2, chemical 

clearing), most tissue-clearing protocols employ a refractive-index homogenization step to 

minimize differences in light deflection by the heterogeneous tissue biomolecules (Table 3, 

optical clearing). This is most commonly accomplished via immersing chemically cleared 

samples in a solution of matched refractive index, such as RIMS (Figure 2A) [32,41]; polyol 

and concentrated sugar or sugar alcohol solutions such as glycerol [22], sucrose and fructose 

[21,24,39,102]; or organic solvents such as BABB [27,28,82] and others (see Table 3).

The ability to expediently process and analyze samples without sectioning has 

revolutionized modern histology. For example, tissue clearing allows pathologists to map 

tumor cells in whole human biopsies and postmortem samples [41]. Likewise, the ability to 

conduct fast whole-body clearing, as granted by the perfusive force in the PARS 

methodology [39], opens new avenues for exploring small-molecule biodistribution, 

examining viral-vector tropism (Figure 1), and tracing peripheral nerve networks to their 

target organs (Table 1) [31,32,39,41]. For difficult-to-clear bone samples, PACT with 

decalcification (PACT-deCAL [41]), SeeDB [103], 3DISCO [28], Murray’s clear (1:2 

Benzyl Alcohol: Benzyl Benzoate; BABB [27]) [104] and other decalcification methods 

[105] all facilitate mapping the three-dimensional architecture of skeletal tissue and stem 

cell niches [106]. Regardless of the clearing protocol used, all carry trade-offs in terms of the 

degree of optical transparency achieved, the maintenance of endogenous fluorescence, the 

preservation of cellular integrity, and the permeability of cleared tissue to macromolecule 

labels. Although clearing with organic solvents or with electrophoresis may deliver more 

rapid and effective clearing than passive methods involving immersion in aqueous solutions, 

these harsher methods may also hinder fluorescent imaging, prove incompatible with 

immunolabeling, or risk tissue damage (see Table 2). In selecting a specific protocol or 

shuffling aspects of multiple protocols [107], researchers must consider their project 

objectives (e.g., imaging sparse epitopes, whole-body tract tracing) and experimental 

constraints (e.g., integration with smFISH or electron microscopy studies on cleared 

samples). Thus, this comprehensive list of available protocols (Tables 2–3) will serve most 

experimental needs (Table 1).

Towards structure–function mapping with tissue clearing

For tissue-clearing methods to reach their full potential, several major challenges must first 

be tackled: (1) Imaging: large tissue volumes require specialized microscopy; (2) Data 

analysis: meaningful data must be extracted from terabyte data sets; (3) Access to functional 

information: markers of activity must be preserved during tissue processing.
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Regarding the extraction of functional information, a record of neuronal activity can be 

encoded via transcriptional or biochemical changes. For example, immediate-early-gene 

activation (e.g. through Targeted Recombination in Active Populations, or TRAP [108–

111]), Ca2+ influx, and voltage spikes can all be detected by genetically encoded fluorescing 

sensors (for reviews, see [112–114]) [53,111,115–118]. An exciting possibility for resolving 

neuronal activation across longer timescales is to pair this in vivo activity sensing with ex 
vivo analysis of previously active cell circuits using thick-tissue clearing. Specifically, 

genetically encoded stable fluorescent markers can permanently tag living cells that respond 

to time-restricted stimuli so that their chemical identity and connectivity can be probed post-

mortem. One such marker, CaMPARI (calcium-modulated photoactivatable ratiometric 

integrator of neuronal activity), grants persistent quantitative detection of any neuronal 

activity that occurs during subsecond application of the photoconversion light [64,119]. One 

can envision the combined use of CaMPARI with subsequent tissue-clearing methods that 

preserve endogenous fluorescence (such as ScaleS [40] clearing and RIMS incubation 

[32,41]) to map the activity of intact biological networks in response to behaviorally relevant 

stimuli.

As we learn more about the transcriptional correlates of neuronal activity, quantitative and 

multiplexed RNA detection in intact tissue could also serve the role of extracting functional 

proxies from deceased tissue. Combinatorial labeling (“barcoding”) via single-molecule 

fluorescence in situ hybridization (smFISH) [120,121] allows for simultaneous detection of 

mRNA transcripts for multiple genes within individual cells [122,123]. Importantly, smFISH 

has been validated in thick sections, wherein tissue clearing and swelling improve single-

transcript resolution through reducing background and physically separating single-molecule 

labels [32,122]. Further enlargement of the optical space within a cell, either for 

fluorescently barcoding multiple transcripts or for examining single-cell morphology, may 

be achieved through recent protocols (e.g. ExM [72], ePACT [41]) that expand tissue four-

fold or more with the possibility to retain endogenous fluorescence (Figure 2C–D for 

ePACT; [41]). Combined, these evolving technologies raise the possibility of single-cell 

transcriptomics with preserved spatial information. By applying high-resolution microscopy 

[58–60,124] to the detection of mRNA-binding probes (e.g., single-molecule hybridization 

chain reaction (smHCR) probes with high signal-to-noise [125–127]) in cleared and, if 

needed, expanded tissue, scientists will be able to achieve more robust single-molecule RNA 

detection and hence quantitative data for transcriptional profiling of intact circuits across 

organs [122,123,128].

Outlook

Studies in naturally transparent organisms have recently progressed to real-time monitoring 

of neuronal activity during controlled behavior via light-gated and light-emitting tools 

[118,129]. Although the protocols for tissue stabilization and lipid removal described above 

can produce samples with sufficient transparency for intact tissue imaging and rapid tissue 

phenotyping, these methods are limited to ex vivo use. Transparent or not, deceased tissue 

can offer only a static picture of neuronal connections. Even with a connectome in hand as a 

road-map for cellular networks, we would still be far from understanding the brain. For 

example, neuropeptides can act at a distance disregarding explicit wiring [130–132], parallel 
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pathways within a network can result in degeneracy in circuit function [133], and apparent 

structural connectivity (e.g. as elucidated via GRASP [134]) does not imply active synaptic 

connectivity [135]. A crucial next step will involve registering the three-dimensional 

information obtained through tissue-clearing with either ex vivo or in vivo cellular activity 

mapping. Compatible with cleared tissue imaging, methods such as TRAP [108–111] and 

smFISH [32,122] enable the permanent tagging of recently active cells in thick tissues. This 

snapshot only captures a single time point, however. What remains to be developed is a 

method for time-stamping signaling events across bulk cell populations such that the time-

varying metabolic information from a single-cell’s lifetime can be retrieved and cross-

correlated to the metabolic records of all neighboring cells. To this end, single-cell 

transcriptomics [136,137] and ‘molecular ticker tapes’ (i.e. an engineered DNA polymerase 

mis-incorporates nucleotides into a DNA 'ticker tape' based on spikes in ion concentration 

[138,139]) represent two areas of promise.

A second approach under development aims to bring the CLARITY concept to living tissue. 

Namely, instead of altering tissue to reduce light-scattering, scientists are recruiting the 

power of ultrasound focusing at depth to deliver and collect light non-invasively from living 

tissue. Methods such as Time-Reversal Ultrasound-Encoded (TRUE) aim to correct the 

light-wavefront in scattering tissue [140] and currently enable focusing at depth within ex 
vivo tissue [141,142]. Because of its high sensitivity to motion, challenges remain in using 

TRUE for noninvasive deep-tissue imaging and light delivery in vivo [143]. One possibility 

is to combine advances in optical imaging, such as TRUE, with the application of gentle 

tissue clearing reagents in vivo to decrease autofluorescent background and homogenize the 

refractive index [144,145].

Bringing “clarity” to living tissue, when combined with developments in labeling, imaging, 

and computation, will enable mapping of anatomical and functional connectivity and will 

illuminate the workings of intact circuits with high temporal precision. Although whole-

body imaging is still a nascent technology, analysis of the resulting volumetric datasets will 

convey a level of scientific understanding that cannot be replicated in a two-dimensional 

context; akin to previous work in the nematode and zebrafish, large-scale tissue clearing 

represents a first step towards a hermeneutic approach to mammalian biology.
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Box 1. Glossary of acronyms and terminology related to tissue-clearing and 
cell-mapping

3DISCO: Three-Dimensional Imaging of Solvent-Cleared Organs; 3DISCO and uDISCO versions.

AAV: Adeno-Associated Virus; multiple natural and non-natural serotypes, including AAV-PHP.B.

BABB: Benzyl Alcohol and Benzyl Benzoate; BABB and Murray’s Clear techniques.

Brainbow: stochastic expression of multiple fluorescent proteins from a single transgene; Brainbow v1.0–3.2 in 
addition to other variants (e.g.,
Autobow, Flybow, Zebrabow, R26R–Confetti, MAGIC Marker).

CaMPARI: Calcium-Modulated PhotoActivatable Ratiometric Integrator of neuronal activity

CLARITY: Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging/immunostaining/in situ 
hybridization-compatible Tissue hYdrogel;
CLARITY, advanced CLARITY, passive CLARITY, and stochastic-electrotransport versions.

CREATE: Cre-recombination-based AAV Targeted Evolution

CUBIC: Clear Unobstructed Brain Imaging cocktails and Computational analysis; CUBIC, advanced CUBIC 
and perfusion-CB variations.

Clear: a formamide-based optical clearing method; ClearT and ClearT2 (formamide/polyethylene glycol) 
variation.

DMSO: dimethyl sulfoxide

EDTA:ethylenediaminetetraacetic acid

ETC: Electrophoretic Tissue Clearing; clearing approach of CLARITY.

ePACT: expansion-PACT

ExM: Expansion Microscopy

Fruit: optical clearing method that utilizes an aqueous cocktail of fructose, urea, and α-thioglycerol.

GRASP: GFP Reconstitution Across Synaptic Partners

HCR: Hybridization Chain Reaction; operable with RNA and DNA probes

iDISCO: Immunolabeling-enabled 3D Imaging of Solvent-Cleared Organs; iDISCO and iDISCO+ variation.

IHC: Immunohistochemistry

NPS: Neuronal Positioning System

PACT: PAssive Clarity Technique

PACT-deCAL: PACT-deCALcification

PARS: Perfusion-assisted Agent Release in Situ ; PARS and PARS-CSF variation.

PFA: Paraformaldehyde

RI: refractive index

RIMS: Refractive Index Matching Solution; RIMS (histodenz-based) and sRIMS (sorbitol-based) variation.

Scale: a urea-based optical clearing method; ScaleA2 and ScaleU2 versions.

ScaleS: a sorbitol-based optical clearing method; includes AbScale, Chemscale, and ScaleSQ variations.

SDS: sodium dodecyl sulfate

SeeDB: See Deep Brain; SeeDB, SeeDB37 and SeeDB37ht variations.

smFISH: single-molecule Fluorescence In Situ Hybridization

Spalteholz’s preparation: Benzyl benzoate and methyl salicylate

SWITCH: System-Wde control of Interaction Time and kinetics of CHemicals

TDE: 2,2’-thiodiethanol

Tissue-Hydrogel: tissue structure and/or molecular content may be stabilized via tissue-hydrogel crosslinking 
or embedding; multiple hydrogel
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formulations, including any/all of acrylamide, bisacrylamide, paraformaldehyde, glutaraldehyde, sodium 
acrylate, agarose.

TRAP: Targeted Recombination in Active Populations

TRIO: ‘Tracing the Relationship between Input and Output’ method; TRIO and cTRIO methods.

TRUE: Time-Reversal Ultrasound-Encoded
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Highlights

1. Tissue clearing and viral vectors for resolved 3D imaging of unsevered 

circuits

2. Size-adjustable tissue-hydrogels for sample stabilization and selective 

extraction

3. Whole-body clearing and labeling via Perfusion-assisted Agent Release 

in Situ

4. High-throughput method for in vivo vector selection and bodywide 

transduction mapping

5. AVV vector for transgene expression brainwide via systemic injection 

in the adult
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Figure 1. 
Concept for an in vivo selection technology for panning large-scale libraries to identify 

compounds or biologicals with optimized physiological properties. Whole-body tissue 

clearing can then facilitate biodistribution mapping. For example, to engineer viral vectors 

for more effective transgene delivery, one strategy involves exposing live cells or whole-

organisms to AAV capsid libraries and then identifying positive hits via a cell or tissue type-

dependent recovery strategy (A). Whole-body clearing by Perfusion-Assisted Agent Release 

in Situ (PARS, [32,41]) speeds up the multi-organ assessment of vector variants expression 

Treweek and Gradinaru Page 23

Curr Opin Biotechnol. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



profiles. Internal organs before and after clearing (B). Individual PARS-cleared organs (C) 

before (top) or after (bottom) equilibration in RIMS, a Refractive Index Matching Solution 

[32,41], as imaging media. Black pointers correspond to the adrenal gland on the kidney, and 

to the ovaries on the fallopian tubes. Each square represents 0.5 cm2. The qualitative 

assessment of cell-type transduction can be conducted by packaging fluorescent reporters in 

individual capsid variants and then simultaneously clearing all organs in situ (D). As proof-

of-principle, a novel capsid variant (AAV-PHP.B, bottom), selected for enhanced brain 

transduction, was rapidly evolved from AAV9 (top). Comparisons of PARS-cleared organs 

demonstrate that AAV-PHP.B and AAV9 have similar cellular tropisms outside of the brain. 

Arrows (→) indicate neuronal morphology, and asterisks (*) designate pancreatic islets. 

Differences in brain transduction are depicted in the images of mouse brain sagittal sections. 

Figures 2A and 2D adapted from [53], and figures 2B–C adapted from [41].
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Figure 2. 
Clearing techniques that enable high-resolution, volumetric imaging of tissue architecture 

and cellular morphology. Whole-body hydrogel embedding and detergent-based clearing via 

the PARS-CLARITY method [22,32,37,41] preserves gross tissue structure (A) and fine 

neuronal processes (B) alike, while the purposeful expansion of these tissue-hydrogel 

hybrids via water absorption (C) allows the visualization of subcellular detail via either 

native fluorescence (D), or probes for protein and nucleic acid detection [32]. ePACT 

permits the clearing and 4-fold expansion of 100 µm thick coronal brain sections with 

preservation of tissue shape, cellular morphology and native fluorescence. Figures 1A–B 

adapted from [32], and figures 1C–D adapted from [41].
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Table 1

Anticipated Biomedical Applications of Modern Clearing Techniques

Application Areas Cleared Tissue and Complementary Technologies

Assessing biodistribution of chemicals or biologicals; and 
screening
compound libraries [53,91,146–152]

Whole-body clearinga of rodents (embryos through aged adult; see Figure 
1)
Excised whole-organ delipidation through major blood vessels in larger
mammalian subjects (e.g. pigs, non-human primates) [101,153]
CREATE platform for viral vector screening in cleared samples (Fig. 1) [53]

Labeling and imaging through dense, complex tissues [154–
161]
Mapping discrete cellular niches (e.g. stem cells, tumors) 
[162–168]

PACT-deCAL [41], BABB [27,106] for bone
Clearing tissue biopsiesb and excised organs, or whole-body perfusion-
clearinga
in cancer models

3D–tracing long-range fiber bundles (e.g. vagus nerve); 
lineage-mapping
in neurodevelopment [169]

Viral or transgenic labeling technologies (e.g. Brainbow [7], TRIO [6], 
Confetti
[170], MAGIC markers [171]; Box 1) followed by whole-body clearing

Monitoring the progression of cell death and tissue damage 
(e.g. stroke,
infarcts), and the corresponding re-oxygenation [172,173]

Whole-organ or whole-body clearing
Perfusion labelling to counterstain intact vasculature and surrounding 
tissues

Tracking nerve/axon regeneration and de/re-myelination; 
examining
neuroplasticity at the synaptic level [28,115,174–180]

Whole-body perfusion-clearinga and perfusion-labelling, and PACT-deCAL 
[41] to
clear the vertebral column
Co-registration of array tomography [181,182], light and electron 
microscopy
datasets [8,73,161,183–187]

Spectrally resolving subcellular labels (e.g. single molecule 
transcripts)
within native tissue

Multiplexed labelling and/or sequential barcoding with FISH [120–122] and 
HCR
[127,128]; Neuronal positioning system (NPS) [8]
Hydrogel-embedding and expansion-clearing (ExM [72], ePACT [41])

Exploring topics in parasitology [188] and microbiology 
(e.g., biofilm
formation, microbe distribution within a niche [189–192], 
host interaction
with the microbiome [64,193])

Hydrogel-embedding of fragile samples’b, followed by gentle, passive 
whole-organ
clearing to maintain bacterial colonization

Extending the imaging depth range and resolution for 
optical coherence
tomography [194–197] and photoacoustic tomography 
[141–143,145,198–
205]

Future prospects for optically clearing living tissue with optical and/or 
contrast
clearing reagents (e.g. varying ratios of PEG-400, DMSO, and/or glycerol)

a
For whole-body clearing and perfusion-labeling methods, see [31,32,39,41], with detailed methods on PARS and perfusion-CUBIC in their 

respective Nature Protocols

b
For further advice, see troubleshooting instructions at http://www.nature.com/nprot/journal/v10/n11/fig_tab/nprot.2015.122_T5.html [41]
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Table 3

Sample mounting for enhanced optical clarity.

Methoda Sample Preparation Clearing Reagents Size Fluctuations Fluorescence

organic solvents
RI ~ 1.52–1.57

none methyl salicylate [209] shrinkage NO

Ultramicroscopy [27] BABB shrinkage Y/N»

3DISCO
iDISCO dibenzyl ether shrinkage Y/N

amides
RI ~ 1.38–1.44

ClearT, ClearT2 [24] formamide ± PEG none, n/db Y/N

Sca/eA2, Sca/eS, CUBIC, 
FRUIT urea slight -moderate expansion YES

polyol and concentrated sugar or
sugar alcohol solutions
RI ~ 1.43–1.50, tunable

CLARITY, PACT, PARS glycerol slight expansion YES

SeeDB [21,102] fructose minimal YES

FRUIT fructose + thioglycerol + 
urea slight expansion YES

Sca/eA2 glycerol + urea moderate expansion YES

CUBIC sucrose + urea + 
triethanolamine moderate expansion YES

Sca/eS, PARS, PACT sorbitol, sRIMS slight - moderate expansion YES

aqueous contrast media
RI ~ 1.46, tunable

CLARITY Focus Clear:
Diatrizoic acid slight expansion YES

PACT, PARS, RIMS RIMS: Histodenz acute shrinkage,
gradual expansion YES

aqueous mounting media
RI ~ 1.33–1.52, tunable TDE [34] 2,2’-thiodiefhanol [83] none YES

a
Optical clarity, or reduced light scattering through tissue, may be enhanced via homogenizing the refractive indices throughout heterogeneous 

tissues and at all material interfaces between the sample and objective lens

b
Y/N = signal decay may necessitate prompt imaging upon sample mounting
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