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Correlation potentials and functionals in Hartree-Fock-Kohn-Sham theory

Garnet K-L. Chan, David J. Tozer, and Nicholas C. Handy
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW,
United Kingdom

(Received 2 April 1997; accepted 23 April 1997

We compute molecular Hartree-Fock-Kohn-Sham correlation potentials fadn initio
coupled-cluster densities via a modified Zhao, Morrison and [Pdrys. Rev. A50, (1994 2138

scheme involving exact exchange. We examine the potential for several small systems, and observe
complex structure. By fitting a functional expansion to our potentials we obtain a closed-shell
functional which is an improvement over other pure correlation functionals in
Hartree-Fock-Kohn-Sham calculations. The leading term in our functional is dependent on the
number of electrons. Our results lead us to question the utility of correlation defined within the
Hartree-Fock-Kohn-Sham scheme, and to consider alternative partitionings of the
exchange-correlation energy. €97 American Institute of Physids$0021-960807)00429-7

I. INTRODUCTION Almbladh and PedrozH, Davidson'? Umrigar and Gonzé®
. , and Cheret al}* These studies have focused largely on two-

In recent years Kohn-Sham density functional théﬁr'y electron systems where the two partitionings are equivalent,
has become a very popular technique in quantum chemistry,q \yhere the potential can be obtained from a simple nu-
The Kohn-Sham orbitals are the eigenfunctions of & on€merical inversion of the Kohn-Sham equations. For larger
electron operator involving the multiplicative exchange- qqjecular systems, however, we must consider a new
correlation potential, which is the functional derivative of the athod for computing HFKS potentials. One possible ap-
exchange-correlation energy functional. One possible Wa¥roach is to modify existing techniques for computing
forward in Kohn-Sham theory is to usab initio electron exchange-correlation potentials. Gritsendbals have de-
densities to compute exchange-correlation potentials, angyihed a modification of their scheme, although their corre-
then go on to construct functionals through least-squares rssion notentials are not those of HFKS theory. In sections I
finement to these dafawe are actively pursuing this ap- anq 11l we describe a modification of the Zhao, Morrison,
proach. _ _ _ o Parr proceduré® involving the addition of the Hartree-Fock

An alternative density functlgr:lal formalism is Hartree- o pita) exchange functional, where the resulting potentials
Fock-Kohn-Sham(HFKS) theory™" In this method the pe those of HFKS theory, to within an additive constant. In
exchange-correlation functional is partitioned as section IV we examine the behavior of our computed corre-

E.=ENF+E, (1) lation potentials, and in section V we report our attempts to

- _ _ least-squares fit a functional expansion derivative to the po-
whereE,™ is the Hartree-Fock orbital exchange functional, tentials. Our conclusions are presented in section VI.

which for closed-shell systems is

1
E;'Fz—izj fjq&i(rl)d)j(l’l)r_12¢i(rz)¢j(r2)dr1dr2

(2) Il. THE COMPUTATION OF v (r)
and E. is the HFKS correlation functional. The resulting
one-electron equations involve the regular non-multiplicative ~ We have previously used the Zhao, Morrison, and ¥arr
exchange operator, together with the HFKS correlation po¢ZMP) method for calculating exchange-correlation poten-

tential tials, and we now describe a variafereafter termed
ZMPX) for computation of closed-shell HFKS correlation
ve(r)= M_ (3)  Ppotentials. In HFKS theory, the total electronic energy func-
op(r) tional is

The aim of this paper is to compute and present molecular

HFKS correlation potentials, and use this data in a least- CHE

squares procedure to construct new HFKS correlation func- Elp]=E"p]+Edlp]

tionals. , , =Tdpl+Eedpl+Ipl+E Tl +Edpl. (9
Several workers have computed correlation potentials

through an alternative partitioning involving the optimized

effective potential(OEP.>® In particular we refer to the By analogy with the constrained search of Levy and

work of Smith, Jagannathan and Handie®edroz&  Perdev!’ we define the orbital dependent functiondlg

Aryasetiawan and StottSahni, Gruenebaum and Perd®v, andE, of HFKS theory by
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Te+Ex= min (¥p|T+X|¥p) racy of theab initio density used. In our studies we use
Wp—pg Brueckner DoublegBD) relaxed densities generated using
CADPAC? with Gaussian TZ2P basis sets. These basis sets
= min |> —(¢i|V¥) are Dunning contractioR$of Huzinaga primitive set§! For
25, 6%~ po [ B, C, N, O, F and Ne, it is a 10s6p to 5s4p contraction with
two sets of polarization functions with exponents 1.05 and
Bi(r) dj(r) di(r) dj(ro) 0.35, 1.2 and 0.4, 1.35 and 0.45, 1.35 and 0.45, 2.0 and 0.67,
_2 j Mo drydrs|. and 2.4 and 0.6 respectively. For Li and H the contractions

are 10s to 4s and 5s to 3s respectively and the two sets of
(5 polarization functions have exponents 0.4 and 0.1 and 1.5
Following ZMP we enforce the constrained minimization in and 0.5 respectively.

Eq. (5) through a Lagrange multipliex associated with the It is possible that the input BD density may not be non-
self-repulsion quantity interactingv-representable, in which case taking the limit
N N A —co will give incorrect results. However the success of the
C:E f f[p (r) —po(ryllp (rZ)_'OO(rZ)]drldr2 various schemes to compute exchange-correlation potentials
2 M2 indicates that this problem, for the equilibrium ground-states
-0, 6) of molecules, remains a formal one.

. o _ A problem of much greater importance is the finite basis
and we introduce the usual Lagrange multipliergor diag-  used to solve the ZMPX equations. There will always be a
onal orthonormality constraints. Explicit functionals of the residual error in the density because the correlated density is

density are added to bring the Lagrangian into the usuahot exactly representable by a single Kohn-Sham determi-
HFKS form, and minimization with respect to orbital varia- nant in a finite basis. Consequently, taking the litit>o

tions gives the one-electron equations will result in a potential and eigenvalues that diverge with
1 increasing\. In our previous investigations of the ZMP
( - §V§+véxt(rl)+v§(r1)+v§<(r1)+vé(rl)— € equations we determined an optimum value of the Lagrange
multiplier A2%° by expanding the residual quantity
X ¢i)‘(f1)=0, (7) T1p™(r)— po(r)|dr for largex?°, but such expansions do not
h work well in the ZMPX scheme. However the similarde-
where pendence okfMr and efMr X suggests that we may still use
R pM(ry) Nopt in our calculations. We were encouraged by the agree-
UJ(M):j - dry, ment between our correlation potential for Kgetermined
with A5%") and that of Umrigar and GonZ8 obtained from
A=\ [P}\(rz)_Po(rz)]d an accurate numerical inversion of the Kohn-Sham equa-
ve(r)= I f2: tions. For the set of ten molecules studied in this paper, we
RPNV use\ =900
i (r2)oj(ra
oX(r)=-2 f dr,—— ——— P, ®
: 12 IV. FEATURES OF v(r) AND €homo
and . .
In Figures 1a)-1(d) we present plots of the correlation
otential for Ne, N, F,, and CO. The correlation potentials
pr=23 | © P o 2 P

are approximately an order of magnitude smaller than the
. N . . corresponding exchange-correlation potentials presented in
lele_nl_that);\) (r)=p%(r)_aft_ the s:)dluno_n _pOInItE, th;’ Lagra;nge Ref. 20. We expect the general features to be correct, but the
mlglgg 'er _musth efln Inite. Entll:y;r&gs al )I as the  gmall magnitude of the correlation potentials suggests that
il le_:quatlorgst ere (,)rhe_ gives :jde'}' corre gt|on EOtenfhe quality of the basis sets, the input density, and particu-
tial as 'meU_C(r) to. within an a |t|.ve constanince t © " larly the choice of\ will limit the accuracy. We observe rich
ZMPX potential vanishes asymptotlcallly by COHSFI’UCIIOI’]. structure in the potential which oscillates between negative
Also observe that the exact exchange gives a self-interactiog | positive values, which is in agreement with previous

free correlation potential and 1%0 there is no reason to add th@oservationg.‘l“ For Ne, the early turning points coincide
Fermi-Amaldi factor (+1/N)™ used in the regular ZMP i those of the radial density distribution. The oscillatory
method. We have incorporated the above procedure in oyl e syggests that any successful fivgér) will require
original ZMP codé”“? which uses a quadratically conver- high-order gradient terms, such as the Laplacian of the den-
gent SCF scheme as described by Bacgkay. sity V2p
Despite the complicated behavior wf(r) there are cer-
tain general features we can understand. Hartree-Fock theory
is well-known to produce shell structure in the radial density
The ZMPX method yields the correlation potential that distribution of atoms. It is instructive to see how this arises
gives the input densitpy(r), and so is limited by the accu- in the He atom in the RHF theory for which

Ill. Finite-basis, finite-lambda ZMPX methods

J. Chem. Phys., Vol. 107, No. 5, 1 August 1997
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FIG. 1. The ZMPX correlation potentidin a.u) for (a) Ne, (b) N,, (c) F,, and(d) CO. For Ne the potential is plotted againsfor the diatomics it is plotted
along the bond axis, for zero radial distance.

1 potential?® at the bond midpoint there is a minimum rather
- §V2¢(f1)= ( €— f dry+ r—l) #(ry). (10 than a maximum. The frequency of the oscillations decreases
away from the nuclei. We observe that the magnitude of the
If we solve this equation iteratively and substitute exp(1)  correlation potential is relatively large everywhere in the F
as a first gues’, we obtain an additional turning point W*  molecule, which may be related to the poor Hartree-Fock
(indicative of shell structuf) from the turning point in the description of this system.
Coulomb potential. However a more flexible unrestricted and  \We now consider the behavior in the core and
correlated wavefunction will give a denSity with additional asymptotic regions' Accurate studies of the correlation
shell fine structure. The analogous HFKS theory must reprOpotentia}g have shown that it is approximate|y quadratic
duce the additional shell fine structure associated with thﬁear the nucleus. We observe the correct quadratic beha\/ior,
correlation and this is one reason for the highly oscillatoryajthough our input densities are poor near the nucleus since
correlation potential. we use Gaussian basis sets which cannot reproduce the cusp
A universal observation in the systems studied is a negan the density. Cheret al’* have recently proposed that at
tive v¢(r) near the nucleus, which contracts the HF densityarger, v.(r) approaches its asymptotic limit from above if
near the nucleus. This is consistent with previous studies of< — ¢l "and that the converse is also true. This rule they
correlation potentials in neutral systefs” Particularly in-  interpret in terms of first-order perturbation theory where
teresting is the fact that.(r) at the nuclei is related to the
atomic electronegativity. This can be clearly seen when com- |~ — (e[ +(promdvcl Prome)- (12)
paring the plots for the isoelectronic molecules, CO apd N
If we examine the Blplot we also observe large oscillations We have examined the correlation potential far aiya,)
between the atoms and unlike in the exchange-correlatiofrom the origin in our ten systems. Although we might ex-

p(ry)
12

J. Chem. Phys., Vol. 107, No. 5, 1 August 1997
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pect from the above rule that the potential should generally
be positive far away we do not observe this behavior. How-
ever our potentials far away exhibit slow oscillatory behavior
which is probably an artifact due to the inaccuracy of the
input density at long range. Thus we cannot draw definite 00
conclusions concerning the above rule.

In figures Za) and 2b) we compare the ZMPX correla-
tion potential for Ne with the potentials of the local VWN
and gradient-corrected PW91C® functionals. These po-
tentials completely fail to reproduce the complex features of
v.(r). This is in keeping with previous observatiGhshat
existing correlation functionals, despite giving good total en-
ergies, give poor potentials and thus poor densities and ion-
ization energies. How can a potential with such poor behav-
ior give a good energy? We suggest that total energies do no 00 10 20
give strong bounds on the behavior ©f(r). A plausible
justification is provided by the upper bound for the Kohn-
Sham correlation enerdy/

-0.2

Ecs—J p(r)r-Vo(r)dr. (12
Although the KS correlation energy defined in Ref. 32 is not .l
the same as the HFKS correlation energy defined by the par
titioning of Eq. (1), they are numerically very simildf,and s
thus we might expect the same bound to hold for the HFKS
correlation energy as well. We observe from figurés 2nd oz
2(b) that the VWN and PW91C potentials are generally
negative(the Jacobian effectively eliminates the positive di-
vergence in PW91and increase smoothly wifn| and thus
will give negative correlation energies despite having such
poor behavior. A

Finally we observe that the HOMO energy determined r
by our schemeefm-X is generally closer te-| thaneh.
(see the values in Table)lIWe expect this behavior of a
correlation potential which vanishes at infinity and which is
approximately parallel to the exact correlation potertial.
This confirms the accuracy of our procedure and our input
density. In the cases where the Hartree-Fock eigenvalue it
closer, we attribute this to fortuitous cancellation of correla-
tion and relaxation effects.

Ve

V. FUNCTIONAL EXPANSIONS

In this section we describe our attempts to construct
HFKS correlation energy functionals by least-squares refine-
ment to ZMPX correlation potentials. We choose a func-
tional form for E. containing variable parameters, and com-
pute its functional derivativegt(r). The parameters are then
optimized by minimizing a generalized version of the quan- (© r
tity in Ref. 3

FIG. 2. The ZMPX correlation potentigih a.u for Ne (solid curve, plotted
as a function of . This is compared with the potenti@ashed curvgof (a)

Q= 2 [ [of(n)-vI"™(r)]?p?(r)dr. (13 VWN, (b) PWIIC, andc) Fi2.
molecules
We note that if we include infinite flexibility in our func-
tional and carry out the minimization above over all densi-we use BD densities and density gradients, and ZMPX cor-
ties, we will recover an exchange-correlation functionalrelation potentialdwhich are approximately parallel to the
which differs from the exact exchange-correlation functionaltrue correlation potentials, but may differ by an additive con-
only by terms which functionally differentiate to zero. Here stanj and carry out the minimization over a training set of

J. Chem. Phys., Vol. 107, No. 5, 1 August 1997
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data for B, H,0, HF, CO, b, BH, LiH, CH,, N,, and Ne. ~ TABLE |. Optimized parameters;, m;, andc; (see Eq(14)) for the F:
We have examined several local and gradient-corrected funéo'relation functional.
tional forms such as the expansion

n; m; Ci
m 7 —-0.051484
F“”:f Z cip™x™dr (14 8;2 0 +0105250
9/6 0 +0.006794
with 10/6 0 —0.014952
10/6 1 +0.031501
_ Vol 11/6 1 ~0.085141
X= s (15 12/6 1 +0.051996
13/6 1 —-0.009132
wheren; were restricted to multiples of 1/6 amxdo integers 14/6 2 +0.003251
as in Ref. 3, and the resulting equations are linear least- igg ; —g-ggijgg
. . . + .
squares. We have also examined more flexible forms requir 1776 5 0000193

ing non-linear fitting procedures, where we allojvand m,

to be optimized, and we term these functiorfalg, . Finally,
we have examined Padeapproximant forms such as a
Wigner-like functional

. ties and successive coefficients alternate in sign. The results

Fpag :J' Cip dr (16) using the Padéorms were disappointing. Substantially more
Pace 1+cyp" work is needed to optimism Paflerms as the non-linear fits
are sensitive to the starting position. In this work we will
) - therefore concentrate on a 12 parameter linear expansion de-
_ Cip 1+ Cyp2XT2 noted Fi> whose optimized parameters are presented in

Fpade= 1+ Caph3 Ny My r. (17

3p"3+ Cyp"aX Table I.

and a gradient-corrected form

. ) . . The Q) value for this functional is 0.669 which compares
In our previous attempts to fit functional expansions to_.
with a reference value

ZMP exchange-correlation potentials we have found that a
positive term, proportional to the number of electrons, must _ a ZMPX, 12

be added to the energy functional to obtain accurate Qref—f pA(r)[vg ™ (r)]=dr. (18)
energetics. This term introduces a constant into the poten-

. : . . f 0.844, giving a percentage error (1009%)/() ) of al-
tial, which consequently does not vanish asymptotically, an(r&ost 80%. However. in figure(@ we compare the Ne po-

is consistent with the need to average over the discontinuit i . ’ X .
g gﬁnual associated withF 2 with the ZMPX potential, and
[

in the exchange-correlation potential as the electron numb ere is reasonable qualitative aareement. The large percent-

crosses integer. In Kohn-Sham theory it can be sHfwh ade error in the fit 2 not Sim Iga esult of the ogc'llloator

that for an open-shell system wherg n= €umo, the 9 ! - Imply. u ! y
nature of the potentiat we can fit very well to any single

asymptotic potential isl(— A)/2 wherel andA are the ion- . 0 .
ization potential and electron affinity respectively. In HFKS system(W|_th errors of only 10% Instgad I Qemongtrates
thatv(r) is a highly non-local potential and it is this non-

theory, matters are complicated by the presence of exact ex- "~ ) . . - .
y P y P 1( cality which produces the wide variety of oscillations in

change. However from the above, we should not be surpriset e different systems
if we have to add analogous terms in our fits to HFKS cor- The failure of all of the above forms to fit the correlation

relation potentials. We note that Liu and Pémlso explic- AR .
itly introduce a term proportional to the number of electronspc’tentlal highlights the complex nature of the correlation in
onventional post-Hartree-Fock techniques. Certainly if we

when they fit correlation functionals to total energies, and®

many other researchers have also pointed out the need fH}cIude_mg?her derivatives andt mct))rettterfr?sdn the funcnonalt
explicitly N-dependent functional&:*’ expansion then we can expect a better fit. However we mus

guestion whether it is sensible to fit to the correlation poten-
tial as defined by the partitioning of E¢l). We have ob-
tained significantly smaller percentage errors when fitting to
We have investigated how well the above forms can repthe exchange-correlation potential as a wiokehich would
resent the correlation potential. Increasing the value of thesuggest some cancellation of non-localityuig(r). Indeed,
parameten in Eq. (13) reduces the percentage error, and wethis is consistent with the recent observation that subtracting
feel that a value of 2/3 is near-optimal. Comparkg, with  the Fermi-Amaldi potentialwhich in some respects repre-
Fin we find little improvement in optimizing the powers as sents exchange in regular ZMP theprfrom the ZMP
well as the linear coefficients, and the optimization becomegxchange-correlation potential results in a potential which is
sensitive to the starting guess. It is more desirable to adchore non-local tham,(r) itself2°
more terms toF;,, which follows from the fact that the Our results highlight the fact that if we are to partition
correlation potential is not easily fitted to a short truncatedhe exchange-correlation energy and fit to the residual corre-
expansion in powers ob and x. Unfortunately, increasing lation potential, we must optimize the partitioning to mini-
the number of parameters can introduce numerical instabilimize the non-locality. In the light of these comments we

A. Fitting to the correlation potential

J. Chem. Phys., Vol. 107, No. 5, 1 August 1997
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TABLE II. Negative of the highest occupied eigenvalfie a.u) for F,l,,f TABLE IV. Optimized geometriegA and degreesfor molecules in the
compared to VWN, PW91G, BLYP, H-F, and the ZMPX values. | is the training set computed using the fitted functiorig}?, VWN,, PW91G,
experimental ionization energy, addis the mean absolute error. BLYP and H-F compared with the experimental resulisis the mean
absolute error in the bond lengths.

VWN, PWO1G Fi ZMPX BLYP H-F |

VWN, PWOIG Fi BLYP H-F Expt
H, 0652 0628 0628 0.585 0.377 0.596 0.567

LiH 0.341 0.325 0.294 0.307 0.157 0.297 0.283 H, r(HH) 0.719 0.729 0.741 0.744 0.732 0.741
BH 0.392 0.376 0.343 0.328 0.200 0.347 0.359 H,0 r(OH) 0.929 0.931 0.949 0.971 0.940 0.957
CH, 0.601 0.583 0.535 0,530 0.343 0.547 0.460 A(HOH) 106.6 106.4 106.3 106.4 106.3 104.5
N, 0.682 0.672 0.613 0.624 0.373 0.626 0.573 N, r(NN) 1.058 1.059 1.073 1.104 1.067 1.098
CO 0.603 0.570 0.544 0537 0329 0552 0515 HF r(HF) 0.888 0.889 0.905 0.933 0.898 0.917
HF 0.706 0.689 0.636 0.622 0.342 0.649 0590 F, r(FF) 1.319 1.305 1351 1440 1335 1.412
F, 0.705 0.682 0.640 0.629 0347 0.649 0577 BH r(BH) 1.198 1.213 1.234 1.240 1.220 1.232
Ne 0.909 0.890 0.834 0.817 0.484 0.849 0.792 LiH r(LiH) 1.565 1577 1.617 1598 1598 1.596
H,O 0.562 0.531 0.497 0.487 0.254 0.508 0.463 CO nco 1.094 1.095 1.110 1.137 1.103 1.128

CH, r(CH) 1.066 1.071 1.093 1.094 1.082 1.086

A 0.097 0.077 0.043 0.085 0.197 0.047

A 0.036 0.032 0.016 0.010 0.022

suggest that the hybrid functionals introduced by Betke,
which include only a fraction of the true exchange, may offervalues are very close to the ZMPX values, demonstrating

the flexibility to find some optimized partitioning. that our fit accurately describes the asymptotic regions of the
ZMPX potential. TheF;i2 values are closer te-| than any
B. Performance of the fitted functional other method, including Hartree-Fock. In Table Il we

In this section we examine the performance of FHg present values for molecules that are absent from the training

functional defined in Table I. Despite the poor overall fit, we et ,\?nd draw_gimilrz]ir con_clgsi(;ns. ies in Tables IV and
might expect this functional to give a better potential than hext ggns' erft r(]aoptlmlze é;eometnes n Ia es ¢ an
existing functionals in some “average” way. The functional V The addition of the VWN and PW9IC correlation func-

derivative ofFﬁﬁ vanishes at infinity although, being a func- tionals t.o the Hartree-Fock functional results in a S|gn|f|carjt
shortening of the bond lengths. Hartree-Fock theory is

tional of p and|Vp| alone, it must diverge at cusps in the , 9
density*® In Tables 11-VI we examine self-consistent eigen- known to underestimate bond lengts, and so the accu-
facy of these post-Hartree-Fock methods is poorer still. This

values, geometries, and total energies for molecules bot . : ; .
present and absent from the training set. We compare ofidn be traced to the introduction of dynamic correlation, and

HFKS F22 results with those from HFKS calculations using IS consistent with our view that fitting to energies alone does
the VWI\hlnand PW91C functionals. We denote these method2°t always vyield accurate functionals. In contrast, the effect
VWN, and PW91¢ where the subscript denotes exact ex-

change. We also present Hartree":ddk':) and KOhn_'Sham TABLE V. Optimized geometriegA and degreesfor molecules absent
BLYP reSU|tS-_A|| calculations were perf_ormed using Iargefrom the training set computed using the fitted functiofgf, VWN,,
guadrature grids and TZ2P quality basis sets as describeov91G, BLYP and H-F compared with the experimental resultsis the

previously. mean absolute error in the bond lengths, ands the mean absolute error
In Table 1l we present self-consistent highest occupied” the bond lengths excluding 4i
eigenvalues, at optimized geometries, computed uEiﬁ(ﬁg VWN, PWOIG F2 BLYP HF Expt
VWN,, PW9I1G, BLYP, and H-F. We also present the non-
self-consistent values from the ZMPX procedure. g CH, r(CO 1167 1170 1188 1205 1.180 1.203
r(CH) 1.041 1.048 1.063 1.067 1.054 1.063
C,H, r(CO) 1.299 1.300 1.326 1.335 1.314 1.331
TABLE Ill. Negative of the highest occupied eigenval@e a.u) for Fﬁﬁ r(CH) 1.059 1.065 1084 1.088 1.074 1.081
compared to VWI, PW91G, BLYP, and H-F. | is the experimental ion- 6(HCH) 1168 117.0 116.7 1165 1168 117.1
ization energy, ana is the mean absolute error. Co, r(CO) 1.125 1.125 1143 1174 1136 1.160
O3 r(00) 1.183 1.176 1.210 1.293 1.196 1.272
VWN, PWOIG F2  BLYP  H-F | #(000) 1192 1192 1191 1180 119.2 11638
H,0, r(OH) 0.931 0.934 0.950 0.977 0.942 0.963
CO, 0.601 0.588 0.534 0.329 0.546 0.506 r(00) 1.370 1.355 1411 1496 1.390 1.450
C,H, 0.466 0.456 0.407 0.257 0.416 0.419 6(O0OH) 103.2 103.3 102.6 99.3 1029 99.4
C,H, 0.430 0.422 0.372 0.241 0.380 0.386 Li, r(LiLi) 2.704 2.739 2813 2.724 2785 2.673
NH; 0.475 0.461 0.410 0.217 0.425 0.373 NH; r(NH) 0.985 0.989 1.008 1.021 0.998 1.012
H,0, 0.530 0.511 0.470 0.234 0.479 0.387 6(HNH) 108.1 107.8 107.7 106.4 107.7 106.7
O3 0.550 0.537 0.479 0.288 0.494 0.457 HCN r(CH) 1.051 1.051 1.066 1.072 1.057 1.065
Li, 0.212 0.203 0.183 0.113 0.180 0.188 r(CN) 1.116 1.116 1.131 1.158 1.124 1.153
HCN 0.548 0.548 0.494 0.325 0.505 0.500
A 0.038 0.041 0.027 0.015 0.033
A 0.075 0.064 0.027 0.148 0.030 A, 0.044 0.039 0.016 0.012 0.026
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TABLE VI. Absolute errors in total energiedn E,) computed usingi2, the nuclei, the limiting behavior of this ratio for largemay

F2i7, VWN,, PW91G, BLYP, and H-F at the optimized geometriésis il pe related to the exact high density resffits
the mean absolute error.

lin lin

VWN, PWOIG Fj2 BLYP HF AEez/N F22 Ec=fpecdr, (20)

H, 0056 0007 0040 0004 0042 0020 0038

LH 0133 0007 0107 0002 0087 0027 0048 €.=0.0311Irr;—0.048+ r (A%Inr+ C9), (21)
BM 0192 0001 0172 0007 0159 0029 0061  , 1

CH, 0296 0023 0358 0011 0299 003 0031 = _ 8 = (22)
N, 0392 0063 0638 0017 0556 0046 0094 35S p

CcO 0.410 0.109 0.622 0.023 0.542 0.044 0.077 .
HE 0.311 0.026 0.467 0.023 0.349 0.047 0.078 As N increases for our SyStemS, our constant does appear to

F, 0.541 0.086 0.888 0.071 0.764 0.049 0.187 approach—0.048. Finally we observe that we do not expect
Ne 0.344 0020 0464 0.019 0403 0.046 0.074 a large energy contribution from a highly oscillatory poten-
H,O 0290  0.085 0450 0011 0376 0.045  0.061 tjg] and we observe that thié-dependent term in fact domi-
nates the contribution to the correlation energy. Indeed our
value of —0.0389 is very close to that of Liu and P&who

®The exact energies for the 10 systefftef. 4) are —1.173, —8.070,  obtainedc= —0.0377 by fittingcN to atomic energies.
—-25.289, —40.513, —109.543, —113.325, —100.458, —199.529,

—128.939, and-76.437E,, respectively.

A 0.297 0.043 0.421 0.019 0.362 0.075

VI. CONCLUSIONS

We have computed HFKS correlation potentials from a
modified Zhao, Morrison, Paft scheme involving exact ex-
of ourF,li,f correlation functional is generally to lengthen the change. The computed potentials have a highly non-local
bonds, resulting in an improvement over Hartree-Focksyrycture and are chemically interesting as they reflect the
theory. This is again a result of our better representation ofature of the atoms in the molecules. We have attempted to
the correlation potential, which determines the nuclear defit the derivatives of functional expansions to these poten-
rivative of the HFKS correlation energy. tials, although we experienced great difficulties due to the
For molecules outside the training set the mean absolutgon-|ocal behavior. These observations strongly suggest that
error (A=0.027 A with Fji2 rises considerably, as does that starting from the HFKS approach to density functional
of H-F (A=0.033 A). The main contribution to the absolute theory is not desirable, despite the small magnitude of the
error is from the bond length of Liwhich is overestimated correlation energy defined within the HFKS partitioning. It is
by 0.14 A with Fii3. Disregarding this result, our mean ab- well known that VWN and PW91C perform poorly, and
solute error withFi; (A=0.016 A is again a significant this can be understood in the light of our results. Our best
improvement over H-F £=0.026 A). We believe that the functional is an improvement over these functionals and
poor performance df 7, and indeed all the other correlation Hartree-Fock theory, although it is by no means satisfactory.
functionals, for L arises from the poor performance of |n jine with recent research in this area, we find that a term
Hartree-Fock theory for this system. dependent on the number of electrons does improve the total
In Table VI we present the errors in the total energies fofenergies. The constant in the potential arising from this term
various density functionals. The energies of i func- differs significantly from the constant obtained when we fit
tional are significantly above the exact values, and followingto exchange-correlation potentidl€xact exchange clearly

Ref. 3 we examine these errors as a function of the numbeias an important influence, and we are continuing to inves-
of electrons. The ratio of the energy error to the number ofigate it.

electrons is more variable than was observed for exchange- |f we are to include exact exchange in density functional
correlation fits, which is what we expect since the correlationtheory, then our results emphasize the importance of parti-
energy in one-electron systems is zero. However it is cleafioning the exchange-correlation energy in such a way that
that the addition of a term proportional to the number ofthe residual is maximally local. A detailed study of this lo-
electrons will still improve the energies significantly. In cality is required. We suggest that the flexibility of hybrid

Table VI we also present results for functionals may allow us to find such an optimum partition-
ing.
F2i2=Fj2— 0.0389f p(r)dr, (19
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