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Abstract: The atomic-level structures of liquids and glasses are similar, obscuring any structural 

basis for the glass transition. To delineate structural differences between them, we characterized 

the atomic structures using the integrated radial distribution functions (RDF) from molecular 

dynamics (MD) simulations for several metallic liquids and glasses: Cu46Zr54, Ni80Al20, 

Ni33.3Zr66.7, and Pd82Si18. We find that the integrated RDF leads to cumulative coordination 

numbers (CN) that are similar for all four metallic glasses and for all four liquids, but are 

consistently different between the liquid and glass phases. We find that metallic liquids have a 

fractal dimension of df  = 2.54 ± 0.06 from the center atom to the first coordination shell whereas 

the metallic glasses have df  = 2.66 ± 0.04, which suggests the development of weak ordering 

during the glass transition. Beyond the second coordination shell, the CN indicates a dimension 

of d = 3 as for a crystal. Crossovers in dimension from df~2.54-2.66 to d = 3 between the first 

and second coordination shells imply an underlying percolation structure in metallic liquids and 

glasses. 

KEYWORDS: Molecular dynamics, fractal dimension, coordination number, crossover 

 

The viscosities and relaxation times of glasses and liquids across the glass transition 

temperature (Tg) are separated by many orders of magnitude.1 This large increase in viscosity 

over a short temperature range is not accompanied by significant changes in the long-range 
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atomic structure, which remains amorphous. Metallic glasses are locally more ordered in the 

short- and medium-range than their liquid counterparts,2,3 but this distinction is merely correlated 

to the glass transition, the origin of which remains a topic of active research.4 A structural model 

that captures both liquids and glasses is needed for understanding the subtle changes that occur 

across Tg and their relationship to the glass transition phenomenon. 

The fractal dimension df is a measure of how, on average, the mass of atoms within a spherical 

section of material with radius r scales, M(r) ∝ rdf.5 In relating the positions of the first sharp X-

ray diffraction peaks (q1) to volume (V), several groups have reported a scaling relationship in 

metallic glasses, with exponent, df~2.31-2.5, which deviates from the d = 3 expected under the 

assumption that q1 ∝ 1/a, where a is the interatomic spacing.6-8 Recent experiments on 

electrostatically levitated metallic liquids also show a non-cubic power law exponent of df~2.28.9 

These power law exponents may be related to the dimension of the atomic structure, and the 

observations of an exponent/dimension less than 3 have led to suggestions of an underlying 

fractal structure in metallic glasses.6,8 The long-range scaling relationship in metallic glass 

structure is not fractal because no macroscopic pores or voids are present in their microstructure, 

with such pores serving as a defining characteristic of fractals that maintain their scaling 

relationships over all length scales (e.g. the Sierpinski triangle). 

To help resolve these issues Chen et al. proposed that metallic glasses at the atomic-level can 

be described using percolation,8 a model that captures the interconnectivity of sites on a lattice or 

spheres in a continuum.5 Three-dimensional percolation models, such as hard sphere and 

overlapping sphere continuum models, exhibit a fractal dimension of df~2.52 at lengths below a 

correlation length, ξ, and a crossover to a dimension d~3 above ξ, where ξ is roughly the 

diameter/length of finite, non-percolating clusters.5 Using molecular dynamics (MD) 

simulations, Chen et al. found that two dissimilar metallic glasses exhibit a fractal dimension, 

estimated to be df~2.5, over short lengths below ξ~2 atomic diameters, but with a crossover to an 

exponent of 3 over longer lengths. This suggested that metallic glasses are structurally similar to 

a continuum percolation of spherical particles.8 This crossover at ξ may explain the anomalous 

non-cubic scaling exponents in q1 vs. V observed experimentally in macroscopically 

homogeneous and fully dense metallic glasses and liquids.6-9 Such a connection between 

percolation structure and glasses has also been suggested by Orbach, who applied percolation 
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theory to describe high frequency (short length) vibrational states in glassy systems and also 

suggested that amorphous materials may exhibit fractal properties at short length scales.10 

The question remains whether liquids exhibit a crossover in dimension from df to d. 

Percolation structure has been studied in hard spheres,11,12 overlapping spheres,13,14 and recently 

metallic glasses,8 suggesting a likely connection to metallic liquids, which share structural 

similarities with both metallic glasses and hard sphere systems15. One previous method to 

measure fractal dimension utilized hydrostatic pressures to induce peak shifts in radial 

distribution functions (RDF) that were compared to corresponding volume changes.8 However, 

this hydrostatic pressure-induced RDF peak shift method is not well suited for studying liquids, 

in which atoms rearrange and exchange neighbors under pressure. Moreover, the broadness of 

the RDF peaks leads to results that are sensitive to the specific method of generating and 

measuring the RDF.16 To overcome this issue of sensitivity, we chose here to integrate the RDFs 

to obtain cumulative coordination numbers (CN). This integral method calculates the local 

dimension of the structure using system snapshots without the need for applying hydrostatic 

pressures or measuring small shifts in broad amorphous peak positions, methods that we used 

previously8. With this CN analysis, we observe a crossover in dimension from df  = 2.54 ± 0.06 in 

metallic liquids and df  = 2.66 ± 0.04 in metallic glasses, to d = 3 for the second coordination 

shell and beyond, suggesting that ξ~2. We also refined our previous estimates of df for metallic 

glasses, which led to a ~0.1 increase in df for metallic glasses compared to metallic liquids, 

indicating that some degree of order develops across the glass transition. 

 

Percolation structure 

Fractal dimension arises from the scaling of extensive properties with size such as mass, i.e. 

M(r) ∝ rdf, where M(r) is the mass contained in a sphere of radius r. M(r) is calculated as an 

average over the entire system by choosing different atoms as the center of the sphere.5 In our 

analysis, we used the value CN+1 to represent the average number of atoms within a sphere of 

radius r (1 added to account for the center atom), an extensive property that is proportional to 

average mass. The scaling relationship for a percolation structure above the percolation 

threshold, ϕ!, exhibits a crossover in dimension from df~2.52 to d~3 at ξ, where ξ ∝ (ϕ−

ϕ!)!!.5 The parameter definitions are: ϕ is the packing fraction, ν = 0.8764 is the critical 
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exponent for the correlation length,17 and ϕ! is the percolation threshold in 3-dimensional 

continuum percolation.5 The expected crossover point for several of the metallic systems studied 

here has been estimated to be ξ~2.8 This value represents the average size of clusters in units of 

atomic diameters, and suggests that the crossover point occurs around the first atomic 

coordination shell. To avoid inaccuracies that may arise from determining precise peak locations 

from broad amorphous peaks, we obtain the dimension of each atomic structure by measuring 

the slope of ln(CN+1) versus ln(r) for Cu46Zr54 (two separate force fields), and Ni80Al20 metallic 

liquids and glasses. We find that a crossover from df to d occurs in all cases beyond the first to 

second coordination shell. We compare these results to those for pure Cu and Zr (SI) in liquid 

and crystalline phases. 

 

Fractal dimension of metallic glasses 

We measure df by performing a linear fit between the radius of the center atom, rcenter, and the 

outer radius of the first coordination shell, r1_shell. The rcenter is calculated by dividing the position 

of the first RDF peak, r1 (Figure 1), by two (i.e. rcenter = r1/2), which is representative of the 

average metallic radius of the center atom. There is on average one atom (i.e. the center atom) 

within this radius, making it an appropriate first point in the analysis of the dimension. Using this 

approach, we establish the following estimates of dimensions: df = 2.68 for Ni80Al20, df = 2.68 for 

Ni33.3Zr66.7, df = 2.69 for Pd82Si18, and df = 2.66 or 2.60 for Cu46Zr54 using FF1
18 or FF2

19, 

respectively (Figure 2), all at 300 K. Our Ni80Al20 displays pronounced ordering in the first 

coordination shell; the coordination number rises more steeply and has a flatter plateau than the 

other systems studied (Figure 2c). This may be due to the covalent nature of the Al bonding. The 

average dimension for metallic glasses of df = 2.66 ± 0.04 is ~0.14 higher than what would be 

expected from percolation theory, where df~2.52,5 and is higher than previous measurements of 

~2.3-2.56,7 (diffraction experiments) and ~2.58 (molecular dynamics with hydrostatic pressure). 

In the region between the center atom and first coordination shell, rcenter-r1_shell, CN rises sharply 

due to the discrete nature of the atom counting procedure. A continuous measure of the CN that 

allows for fractions of atoms to be counted would give a smooth, filled-in curve between the 

center atom and first coordination shell.  Between the outer radii of the first and second 

coordination shells, r1_shell-r2_shell, the dimension crosses over to 3 for all cases, suggesting that 
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these metallic glasses have percolation structures with a correlation length around ξ~2, in 

agreement with previous estimates.8 Within the first to second coordination shell, free volume 

arising from packing inefficiencies contributes to a fractal dimensionality in the structure. This 

fractal dimension cannot proliferate to greater lengths because the free volume necessarily 

remains smaller than the volume occupied by atoms, whose relative positions are dictated by 

long-range attraction and low kinetic energy. At longer length scales, where free volume is less 

significant and the atom clusters appear closely packed, we find that the dimension of the 

structure is 3. 

 

Figure 1. a) Diagram of expected crossover in log-log plot of mass versus radius. Short-range 

fractal dimension df crosses over to long-range dimension d=3 at the correlation length ξ. b) 

Radial distribution functions for Cu46Zr54 (FF2) in the glass and liquid phase. Dashed lines 

indicate positions for the first peak, r1, and coordination shells, ri_shell. 
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Figure 2. Log-log plots of total atom number (CN+1) versus radius, r, showing dimensions df 

and d for metallic glasses of Cu46Zr54 a) FF1, b) FF2, c) Ni80Al20, d) Ni33.3Zr66.7, and e) Pd82Si18. 

Fractal dimension df is measured through a linear fit between the radius of the center atom and 

the outer radius of the first coordination shell. Long-range dimension d is measured from a linear 

fit of points beyond the outer radius of the second coordination shell. 

 

Fractal dimension of metallic liquids 

Applying the same method to metallic liquids, we measure df = 2.51 for Cu46Zr54 FF1 at 2500 

K, df = 2.55 for FF2 at 2000 K, df = 2.47 for Ni80Al20 at 3000 K, df = 2.62 for Ni33.3Zr66.7 at 2500 

K, and df = 2.53 for Pd82Si18 at 2000 K (Figure 3). The average value of df  = 2.54 ± 0.06 is in line 

with the expected value of ~2.52 from percolation theory,5 and is roughly ~0.1 lower than the 

average value obtained from the quenched metallic glasses, suggesting that some order develops 

in the glass that contributes to a higher df. This order may be related to the formation of dense 

clusters, such as icosahedra, which reduce local free volume.3,20,21 A crossover in dimension from 
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df to d occurs in the same region as in the metallic glasses, which indicates that the liquids also 

have percolation structures with a correlation length around ξ~2, in agreement with previous 

suggestions.8 The correlation length is inversely related to the atomic packing fraction, and more 

loosely packed liquid structures may exhibit longer crossover lengths. Metallic liquids are dense, 

possessing packing fractions of around ϕ~0.67 (FF2 at 2000 K), a value that is only ~8% lower 

than their glassy counterparts (ϕ~0.73 for FF2 glass at 300 K). To observe structures with ξ~3 or 

longer, we estimate that we would need to study liquids and glasses with packing fractions in the 

neighborhood of ϕ~0.5, which is not feasible for our metallic systems, as a first-order phase 

transition to the gaseous phase would likely precede such a low packing fraction in the liquid 

phase. 

	  

Figure 3. Log-log plots of total atom number (CN+1) versus radius, r, showing dimensions df 

and d for metallic liquids of Cu46Zr54 a) FF1 at 2500 K, b) FF2 at 2000 K, c) Ni80Al20 at 3000 K, d) 

Ni33.3Zr66.7 at 2500 K, and e) Pd82Si18 at 2000 K. Fractal dimension df is measured through linear 

fit between the radius of the center atom and the outer radius of the first coordination shell. 



 8 

Long-range dimension d is measured from a linear fit of points beyond the outer radius of the 

second coordination shell. 

 

Comparison to pure Cu 

We compare our results to those for crystalline Cu at 300 K, which has a dimension of 2.93 

between the center atom and the minimum after the first peak (measured at the midpoint between 

the first and second peak (SI)). Beyond the first peak, the dimension is ~3 (Figure 4). We expect 

the crystal dimension to be exactly 3 because it is a close-packed cubic structure; the observed 

deviation suggests that our short-range measurement is not precise, yielding a value of 2.93. We 

attribute this to the discrete nature of the atom counting process, which counts atoms by their 

center of mass position, disregarding the volume occupied by the atoms. In a continuous 

counting procedure, the curve would be smoothed, enabling more accurate measurement of the 

dimension.  

Comparison of the crystalline, glassy, and liquid phases of Cu shows that the major 

contribution to fractal dimensionality in the liquid and glassy phases is the short-range structure, 

which is locally more open. The overall coordination number curve is shifted toward higher radii 

for the liquid phase, which reduces the short-range fractal dimension, df. The short-range 

structure in the glass phase is denser and more ordered compared to the liquid – the coordination 

number rises more steeply in the first shell, increasing df towards a close-packed, crystalline 

value. 
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Figure 4. Comparison of dimensions in pure Cu systems. a) d~2.93-3 in crystalline Cu. b) 

df~2.45 in liquid Cu and df~2.74 in amorphous Cu. The liquid structure is notably more open 

than the glass and crystal, shifting its coordination number curve (red) toward higher r and 

leading to a lower df value. 

 

Discussion  

The glass transition may be related to the densification/ordering that occurs in the local glass 

structure, but the connection is not clear. Previous analyses comparing amorphous and crystalline 

structures have emphasized that radii ratios of ~0.6-0.95 in binary systems favors formation of 

amorphous phases,22 and local icosahedral structure in the first shell plays an important role in 

driving glass formation for Cu-Zr-Al metallic glasses.18,23 In our analysis, the increase in df above 

~2.5 for the glass phase compared to the liquid phase suggests that the atomic structure may be 

deviating from the percolation structure across the glass transition. In simple percolation models, 

the constituent units occupy lattice sites or are allowed to overlap one another5 such that no limit 
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exists for the site occupancy probability or volume fraction of overlapped spheres. In real 

systems and hard sphere percolation models, the constituent spherical particles (e.g. metallic 

atoms) have excluded volume. A fundamental limit exists in the random close packing fraction 

of hard spheres, which is ~0.637 for monodisperse spheres,24 and ~0.64-0.83 for bi-disperse 

spheres, depending on their radii ratios and compositions.25 Stable binary metallic glasses have 

high packing fractions: ~0.73 for our Cu46Zr54 (FF2) and above ~0.7 for other binary alloys.26 The 

increase in df above ~2.52 for our glassy systems suggests that the packing fraction of our 

systems may be approaching geometrical limits allowed by random packing of spheres with 

excluded volume, which forces a deviation from percolation structure and giving rise to rigidity 

and large viscosity increases across the glass transition. This concept may be related to jamming 

or a rigidity percolation.27,28 

 

Summary 

We find that the cumulative CN analysis allows the short-range order in metallic glasses to be 

distinguished from that in liquids. We observe that the short-range dimension is fractal, df~2.47-

2.69 for both liquids and glasses. The long-range dimension, d, crosses over to 3 beyond the 

second coordination shell, which suggests that the underlying structure in these metallic liquids 

and glasses is related to percolation, a model that exhibits similar values of short-range fractal 

dimension, df~2.52, and also has a crossover. These observations indicate that both the liquid and 

glassy phases possess underlying percolation structures marked by short-range clusters with free 

volume that contributes to a fractal dimensionality. Clusters in the glass phase are smaller and 

more ordered than those in the liquid phase, leading to a higher value for df (2.66 ± 0.04 in the 

glass compared to 2.54 ± 0.06 in the liquid) that deviates from the expected dimension in 

percolation structures, where df~2.52.  

 

Molecular dynamics methods 

All molecular dynamics simulations of the metallic liquids and glasses discussed here used 

embedded atom model (EAM) potentials: 



 11 

• The Cu46Zr54 systems (54,000 atoms) were prepared using two potentials, Cheng et al.18 (FF1) 

and Mendelev et al.19 (FF2).  

• The Ni80Al20 systems (32,000 atoms) were prepared using Pun et al.,29  

• The Ni33.3Zr66.7 systems (32,000 atoms) were prepared using Mendelev et al.30, and  

• The Pd82Si18 systems (32,000) were prepared using Ding et al31.  

In all cases the binary metallic glasses were quenched from the liquid phase (2000-3000 K) at 

a rate of ~1012 K/s to room temperature (300 K). The Cu crystal (13,500 atoms), liquid (2048 

atoms) and glass (2048 atoms) are prepared from FF2. The Cu metallic glass was quenched at a 

rate of ~1014 K/s.  

The RDFs were calculated by binning the atomic structure (100,000 bins for binary systems 

and Cu crystal, 5000 bins for Cu liquid and glass). Coordination numbers are obtained by 

integrating the total RDF.  

 

Supporting Information. Coordination number dimension analysis for Zr crystal, different RDF 

binning conditions, and applied hydrostatic pressures (30 GPa). 
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Here we provide additional analysis on a Zr crystal, where the dimension from the 

center atom to the minimum after the first peak is d~2.9, and in the long-range d=3 (Fig. 
S1). We show that our measurements in the main manuscript are robust and are not 
affected by changes in binning number or hydrostatic pressures (Fig. S2). Radii 
measurements in the main manuscript (e.g. rc, r1_shell) are provided in Tables S1-3. 

 
 

	  
Figure S1: Cumulative coordination number versus radius on log-log plots for A) Cu, B) Zr 
crystals from FF2. Short-range dimensionality is homogeneous, d~2.91 and the long-range 
dimensionality d=3. 

 
 



	  
Figure S2: Cumulative coordination number versus radius on log-log plots for A) Cu46Zr54 liquid 
at 2500 K and calculated from 2K and 50K bins. Results are unchanged for different binning 
conditions.  B) Cu46Zr54 metallic glass at 0 GPa and 30 GPa, both from FF1. Hydrostatic pressure 
shifts the overall curve toward lower r; df~2.63 and d~3. 

 

Table S1: Radii measurements in metallic glass systems 

Potential rc (Å) r1_shell (Å) r2_shell (Å) 
Cu46Zr54 FF1 1.435 3.758 6.443 
Cu46Zr54 FF2 1.374 3.814 6.424 

Ni80Al20 1.231 3.296 5.501 
Ni33.3Zr66.7 1.449* 3.881 6.698 
Pd82Si18 1.339* 3.491 5.933 

*: Split first peak; r1 value taken from weight averages of r1 partials. For Pd82Si18, the Si-Si partial 
does not contribute to the first peak. 
 
 



Table S2: Radii measurements in liquid systems 

Potential rc (Å) r1_shell (Å) r2_shell (Å) 
Cu46Zr54 FF1 1.405 4.073 6.697 
Cu46Zr54 FF2 1.398 3.964 6.566 

Ni80Al20 1.228 3.446 5.561 
Ni33.3Zr66.7 1.465 4.005 7.014 
Pd82Si18 1.323 3.604 8.392 

 
Table S3: Radii measurements in crystalline systems using FF2 

FF2 rc (Å) r1_min (Å) 
Cu 1.288 3.094 
Zr 1.605 3.873 
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