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ABSTRACT
Aggregators are playing an increasingly crucial role for in-
tegrating renewable generation into power systems. How-
ever, the intermittent nature of renewable generation makes
market interactions of aggregators di�cult to monitor and
regulate, raising concerns about potential market manipu-
lations. In this paper, we address this issue by quantifying
the profit an aggregator can obtain through strategic cur-
tailment of generation in an electricity market. We show
that, while the problem of maximizing the benefit from cur-
tailment is hard in general, e�cient algorithms exist when
the topology of the network is radial (acyclic). Further, we
highlight that significant increases in profit can be obtained
through strategic curtailment in practical settings.

1. INTRODUCTION
The increasing penetration of renewable generation poses

new challenges for controlling the future grid. In particular,
aggregators such as SolarCity [4, 8] are playing an increas-
ingly crucial role in managing renewable generation and de-
mand response for Independent System Operators (ISOs).
Such aggregators have generation resources at multiple lo-
cations in the network and, crucially, can manage these re-
sources in a coordinated manner. Further, unlike traditional
generation resources, the ISO cannot verify the availability
of the generation resources of aggregators. While the re-
pair schedule of a conventional generator can be made pub-
lic, the downtime of a solar generation plant and the times
when solar generation is not available, cannot be scheduled
or verified after the fact. Thus, aggregators have the abil-
ity to strategically curtail generation resources without the
knowledge of the ISO, and this potentially creates significant
opportunities for them to manipulate prices.

In order to understand the impact of aggregators in the
electricity market, market operators need to quantify the
potential profit that aggregators can gain by strategically
curtailing generation. In this paper, we address this goal in a
two-stage market setting where the first stage is the ex-ante
(or day-ahead) market that decides the generation schedule
and the second stage is the ex-post (or real-time) market to
perform fine adjustment based on updated information.

Summary of Contributions: This paper makes three
main contributions. First, we quantify opportunities for
price manipulation and gauge the profit that aggregators
can potentially make through strategic curtailment (Sec-
tion 2.2). Second, we focus on the aggregator’s optimiza-
tion problem, which is hard to solve in general. We develop
an e�cient algorithm that can be used by the aggregators
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in radial networks, to approximate the optimal curtailment
strategy and maximize their profit (Section 3). Such algo-
rithms can also be used by the operator to asses the potential
for strategic curtailment in distribution networks. Third, we
show that in practical scenarios, strategic curtailment can
indeed impact the prices and yield much higher profits for
the aggregators.

Related Work: There is a large volume of literature
that focuses on identifying and measuring market power for
generators in an electricity market, see [11] for a survey.
Early works on market power analysis emerged from microe-
conomic theory suggest measures that ignore transmission
constraints and do not capture renewable producers, e.g., [5,
10]. There is relatively limited literature on market power
of renewable generation producers. Existing works such as
[13] and [12] study market power of wind power producers
ignoring transmission constraints. However, line congestion
is an important source of market power for electricity market
suppliers. Thus, more recently measures have emerged that
take into account transmission constraints, e.g., [3]. None
of these study the impact of strategic curtailment by aggre-
gators of renewable generation.

2. SYSTEM MODEL
We begin by describing how we model the way the Inde-

pendent System Operator (ISO) computes the Locational
Marginal Prices (LMPs). Locational marginal pricing is
adopted by the majority of power markets in the Unites
States, and our model mimics the operation of two-stage
markets like ISO New England, PJM Interconnection, and
Midcontinent ISO, that use ex-post pricing strategy for cor-
recting the ex-ante prices [9, 14].

We consider a power system with n nodes (buses) and t

transmission lines. The generation and load at node i are
denoted by p

i

and d

i

respectively, with p = [p1, . . . , pn]
T and

d = [d1, . . . , dn]
T . Our focus is on the behavior of an aggre-

gator, which owns generation capacity at multiple nodes.
The aggregator has the ability to curtail generation without
penalty, e.g., by curtailing the amount of wind/solar gener-
ation or by not calling on demand response opportunities.
Let N

a

✓ {1, . . . , n} be the nodes where the aggregator has
generation and denote its share of generation at node i 2 N

a

by p

a

i

(out of p

i

). The curtailment of generation at this
node is denoted by ↵

i

, where 0  ↵

i

 p

a

i

. Together, the
net generation delivered to the grid is represented by p�↵,
where ↵

j

= 0 8j 62 N

a

. The flow of lines is denoted by
f = [f1, . . . , ft]

T , where f

l

represents the flow of line l. We
have f = G(p� ↵� d), where G 2 Rt⇥n is the matrix of
generation shift factors [1]. We define B 2 Rn⇥t, the link-
to-node incidence matrix that transforms line flows back to
the vector of net injections as p� ↵� d = Bf.
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2.1 ISO’s Program
At the end of each dispatch interval, in real time, the

ISO obtains the current values of generation, demands, and
flows from the state estimator. Based on this information, it
solves a constrained optimization problem for market clear-
ing. The objective of the optimization is to minimize the
total cost of the network, based on the current state of the
system. The ex-post LMPs are announced as a function
of the optimal Lagrange multipliers of this optimization.
Mathematically, the following program has to be solved.

minimize
f

c

T

Bf (1a)

subject to

�

�
,�

+ : �p  Bf � p+ ↵+ d  �p (1b)

µ

�
, µ

+ : f  f  f (1c)

⌫ : f 2 range(G) (1d)

In the above, c
i

is the o↵er price for the generator at node
i. f

l

is the desired flow of line l, and Bf = p+�p� ↵� d,
where �p

i

is the desired amount of change in the generation
of node i. Constraint (1b) enforces the upper and lower lim-
its on the change of generations, and constraint (1c) keeps
the flows within the line limits. The last constraint ensures
that f

l

are valid flows, i.e. f = Gp̃ for some generation p̃.
Variables ��

,�

+ 2 Rn

+, µ
�
, µ

+ 2 Rt

+ and ⌫ 2 Rt�rank(G) de-
note the Lagrange multipliers (dual variables) corresponding
to constraints (1b), (1c) and (1d).

Definition 1. The ex-post LMP of node i at curtailment
level of ↵, denoted by �

i

(↵), is a function of the optimal dual
variables of the problem (1), and is defined as

�

i

(↵) = c

i

+ �

+
i

� �

�
i

, (2)

for all i = 1, . . . , n.

We assume that there is a unique optimal primal-dual
pair, and therefore the LMPs are unique. There are several
ways that the ISOs ensure such condition, for instance by
adding a small quadratic term to the objective.

2.2 Profit-Maximizing Aggregator
The key feature of our model is the behavior of the ag-

gregator. Aggregators have generation resources at multi-
ple locations in the network and can curtail generation re-
sources without the knowledge of the ISO. Of course, such
curtailment may not be in the best interest of the aggrega-
tor, since it means o↵ering less generation to the market.
But, if through curtailment prices can be impacted, then
the aggregator may be able to receive higher prices for the
generation o↵ered or make money through arbitrage of the
price di↵erential.

Definition 2. The Curtailment Profit (CP) is the dif-
ference between the profit that aggregator makes after cur-
tailment and at the normal condition:

�(↵) =
X

i2Na

(�
i

(↵) · (pa
i

� ↵

i

)� �

i

(0) · pa
i

) (3)

A natural model for a strategic aggregator is one that
maximizes CP, subject to LMPs and curtailment constraints.
Since LMPs are solution to an optimization problem them-
selves, the aggregator’s problem is a nested optimization
problem. Using the KKT conditions of ISO’s program (1),

the aggregator’s problem can be formulated as follows.

�

⇤ = maximize
↵,f,�

�
,�

+
,µ

�
,µ

+
,⌫

�(↵) (4a)

subject to

0  ↵

i

 p

a

i

, i 2 N

a

(4b)

↵

j

= 0, j 62 N

a

(4c)

KKT conditions of (1) (4d)

The objective (4a) is the curtailment profit defined in (3).
Constraints (4b) and (4c) indicate that the aggregator can
only curtail generation at its own nodes, and the amount of
curtailment cannot exceed the amount of available genera-
tion to it. Constraint (4d) enforces the locational marginal
pricing adopted by the ISO.

We have assumed the aggregator has complete knowledge
of the network topology (G), and state estimates (p and
d). This is, perhaps, optimistic; however one would hope
that the market design is such that aggregators do not have
profitable manipulations even with such knowledge. The
results in this paper indicate that this is not the case.

3. AGGREGATOR’S MARKET POWER
The aggregator’s profit maximization problem described

above is a bilevel optimization, which is challenging to ana-
lyze. In fact, bilevel linear programming is NP-hard to ap-
proximate up to any constant multiplicative factor in general
[7]. Furthermore, the objective of the program (4) is even
quadratic (bilinear) in the variables, rather than linear. The
combination of di�culties means that we cannot hope to
provide a complete analytic characterization of the behavior
of a profit maximizing aggregator in general. However, we
can give a tractable algorithm for the case when the network
is radial (acyclic). Hence the result is relevant to strategic
aggregators since most distributed renewable resources are
in distribution networks, and majority of distribution net-
works are acyclic.

In particular, in the following we show that an ✏-approxi-
mation of the optimal curtailment profit can be obtained
using an algorithm with running time linear in the size of the
network and polynomial in 1

✏

in the case of radial networks.
Before we state the main result of this section, we intro-

duce the notion of an approximate solution to (4):

Definition 3. A solution (↵, f,��
,�

+
, µ

�
, µ

+
, ⌫) is an

“✏-accurate solution” if the constraints of (4) are violated
by at most ✏ and � (↵) � �

⇤ � ✏.

Note that if one is simply interested in approximating �

⇤ (as
a market regulator would be), the ✏-constraint violation is
of no consequence, and an ✏-accurate solution of (4) su�ces
to compute an ✏-approximation to �

⇤.

Theorem 1. An ✏-accurate solution to the optimal ag-
gregator curtailment problem (4) for an n-bus radial net-

work can be found by an algorithm with running time cn

�
1
✏

�9
where c is a constant that depends on the parameters p

a

i

, B,
d, p, f , f . On a linear (feeder line) network, the running

time reduces to cn

�
1
✏

�6
.

It can be shown that the problem on any arbitrary acyclic
network can be expressed as one on a binary tree (see the
extended version of this paper [2]). So we focus on binary
trees here. For a node i, let c1 (i) , c2 (i) denote its children
(where c1 = ;, c2 = ; is allowed since a node can have
fewer than two children). Defining x

i

= (�
i

, f

i

,↵

i

) for each
node i allows us to write all the constraints of problem (4)
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(in particular the KKT conditions of (1)) in a “local” form.
The problem can then be expressed as

max
x

nX

i=1

g

i

(x
i

)

s.t. h

i

�
x

i

, x

c1(i), xc2(i)

�
 0

for some functions g
i

(.) and h

i

(.). This form is amenable to
dynamic programming. Define 

n

(x) = g

n

(x) and for i < n

define 

i

recursively as



i

(x) = max
x

0
1,x

0
2

hi(x,x0
1,x

0
2)0

X

j=1,2

g

cj(i)

�
x

0
j

�
+ 

cji

�
x

0�

Then, the optimal value can be computed as �⇤ = max
x

1 (x)+
g1 (x). The above recursion, however, requires an infinite-
dimensional computation at every step since the value of 

i

needs to be calculated for every value of x. However, the
variables �

i

, f

i

,↵

i

are bounded, and hence x

i

can be dis-
cretized to lie in a certain set X

i

such that every feasible x

i

is at most ✏
i

away from some point in X
i

. The discretization
error can be quantified precisely, and this error bound can
be used to relax the constraint to h

i

(x
i

, x

i+1)  � (✏) guar-
anteeing that any solution to (4) is feasible for the relaxed
constraint.

Algorithm 1 Dynamic Programming on the Binary Tree

S  {i : c1 (i) = ;, c2 (i) = ;}


i

(x) g

i

(x) 8x 2 X
i

, i 2 S

while |S|  n do

S

0  {i 62 S : c1 (i) , c2 (i) 2 S}
8i 2 S

0:



i

(x) max
x

0
12Xc1i,x

0
22Xc2i

hi(x,x0
1,x

0
2)�(✏)

X

j=1,2

g

cj(i)

�
x

0
j

�
+

cji

�
x

0� 8x 2 X
i

S  S [ S

0

end while

�  max
x2X1 1 (x) + g1 (x)

The algorithm essentially starts at the leaves of the tree
and proceeds towards the root, at each stage updating  for
nodes whose children have already been updated (stopping
at root). The analysis of the algorithm can be found in the
full version [2].

4. CASE STUDIES
We now illustrate the impact of strategic curtailment by

an aggregator using extensive simulations in a number of
networks with realistic settings. We use IEEE 30- and 57-
bus test cases, and their enhanced versions from NICTA
Energy System Test case Archive [6].

We simulate the behavior of aggregators with di↵erent
sizes, i.e. di↵erent number of buses, in a number of di↵er-
ent networks. In order to examine the profit and market
power of aggregator as a function of its size, we assume that
the way aggregator grows is by sequentially adding random
buses to its set (more or less like the way e.g. a solar firm
grows). Then, at any fixed set of buses, it can choose di↵er-
ent curtailment strategies to maximize its profit. In other
words, for each of its nodes it should decide whether to cur-
tail or not (assuming that the amount of curtailment has
been fixed to a small portion). We assume that the total
generation of the aggregator in each bus is 10 MW and it
is able to curtail 1% of it without detection (0.1 MW ).
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Figure 1: The profit under the normal (no-

curtailment) condition and under (optimal) strate-

gic curtailment, as a function of size of the aggre-

gator in IEEE test case networks: a) IEEE 30-Bus

Case, and b) IEEE 57-Bus Case.

For the two networks, Fig. 1 shows the profit for a random
sequence of nodes. Comparing the profit with and without
strategic curtailment reveals an interesting phenomenon. As
the size of the aggregator (number of its buses) grows, not
only does the profit increase (which is expected), but also
the di↵erence between the two curves increases, which is the
“curtailment profit.” More specifically, the latter does not
need to happen in theory. However in practice, it is observed
most of the time, and it points out that larger aggregators
have higher incentive to behave strategically, and they can
indeed gain more from curtailment.
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