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Abstract

We study the problem of online prediction for realtime
camera planning, where the goal is to predict smooth trajec-
tories that correctly track and frame objects of interest (e.g.,
players in a basketball game). The conventional approach
for training predictors does not directly consider temporal
consistency, and often produces undesirable jitter. Although
post-hoc smoothing (e.g., via a Kalman filter) can mitigate
this issue to some degree, it is not ideal due to overly strin-
gent modeling assumptions (e.g., Gaussian noise). We pro-
pose a recurrent decision tree framework that can directly
incorporate temporal consistency into a data-driven pre-
dictor, as well as a learning algorithm that can efficiently
learn such temporally smooth models. Our approach does
not require any post-processing, making online smooth pre-
dictions much easier to generate when the noise model is
unknown. We apply our approach to sports broadcasting:
given noisy player detections, we learn where the camera
should look based on human demonstrations. Our exper-
iments exhibit significant improvements over conventional
baselines and showcase the practicality of our approach.

1. Introduction
We investigate the problem of determining where a cam-

era should look when broadcasting a team sporting event,
such as basketball or soccer (see Fig. 1). Realtime camera
planning shares many similarities with online object track-
ing: in both cases, the algorithm must constantly revise an
estimated target position as new evidence is acquired. Noise
and other ambiguities can cause non-ideal jittery trajecto-
ries, which in camera planning lead to unaesthetic results
(see Fig. 2). In contrast to object tracking, smoothness is of
paramount importance in camera control: fluid movements
that maintain adequate framing are preferable to erratic mo-
tions that constantly pursue perfect composition.

Non-parametric or model-free estimation methods, such
as random forests [10], are very popular because they can
learn (almost) arbitrary predictors directly from training

Figure 1. Camera Planning. The goal is to predict the pan angle
for a broadcast camera based on noisy player detections. Con-
sider two planning algorithms (the blue and red curves) which
both make the same mistake at time A but recover to a good fram-
ing by C (the ideal camera trajectory is shown in black). The blue
solution quickly corrects by time B using a jerky motion, whereas
the red curve conducts a gradual correction. Although the red
curve has a larger discrepancy with the ideal motion curve, its
velocity characteristics are most similar to the ideal motion path.

data. When applied to smooth trajectory prediction, the esti-
mator is often learned within a time-independent paradigm,
with temporal regularization integrated afterwards as a post-
processing stage (e.g., via a Kalman filter) [28, 30]. One
major limitation of this two-stage approach for camera plan-
ning is that the smoothing is done in a context-independent
way, which can lead to uninformed tradeoffs between accu-
racy and smoothness (see Fig. 1).

In this paper, we propose a recurrent decision tree frame-
work that can make predictions conditioned on its own pre-
vious predictions, which allows it to learn temporal patterns
within the data (in addition to any direct feature-based re-
lationships). However, this recursive formulation (similar
to reinforcement learning [31]) makes the learning problem
much more challenging compared to the time-independent
approach. We develop a learning algorithm based on the
“search and learn” (SEARN) approach [12] to efficiently
converge to a stable recurrent model.

We applied our approach to autonomous camera control
in sports, where the goal is to generate smooth camera mo-
tion that imitates a human expert. We provide both quan-
titative and qualitative evidence showing our approach sig-
nificantly outperforms several strong baselines.
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2. Related work

Sequential Supervised Learning Sequential supervised
learning is broadly applied in many domains, including nat-
ural language processing tasks such as part-of-speech tag-
ging [9] and computational biology tasks such as protein
alignment [32]. Unlike standard supervised learning, se-
quential supervised learning operates on sequences: each
training example pxi,yiq is a sequence of features xi “
〈xi,1, xi,2, . . . , xi,Ti〉 and a corresponding sequence of la-
bels yi “ 〈yi,1, yi,2, . . . , yi,Ti〉. The learned predictor out-
puts a sequence of labels for an input sequence of features.

Our setting is distinguished from conventional sequential
learning because we must learn an online predictor. In other
words, conventional sequential learning typically assumes
access to all of x before predicting y [1, 9, 13, 23, 24, 32].
Our setting is further distinguished from most previous se-
quential prediction work by aiming to learn model-free or
non-parametric predictors. For instance, the bulk of previ-
ous work utilize linear predictors and thus require a well-
specified feature representation [1, 9, 24, 32].

One approach for utilizing arbitrary predictors is via a
sliding window [13, 14, 23], in which any supervised learn-
ing method can be used to learn the sliding window predic-
tor. However, if the predictor is defined recurrently (i.e., it
depends on its previous predictions), then it is not obvious
what values to use for previous predictions when generat-
ing supervised training examples. One way to address this
issue is via “stacked” sequential learning [8, 28, 30], which
is essentially the two-stage approach of first training a non-
recurrent predictor, and then employing recurrent smooth-
ing (e.g., a hidden Markov model or Kalman filter).

Our approach instead directly trains a predictor to make
good predictions given previous predictions, which leads
to a “chicken and egg” problem of how to define a train-
ing set that depends on the predictions of the model to be
trained. We employ a learning reduction approach, based
on SEARN [12], that iteratively constructs a sequence of
supervised training sets such that the resulting sequence of
predictors efficiently converges to a stable recurrent pre-
dictor. Other learning reduction approaches for sequential
learning include DAgger [29], which can be more efficient
in the number of iterations needed to converge, but with
each iteration being more computationally expensive.

Camera Planning Algorithms for determining where a
camera should look have been investigated for a variety
of scenarios from scripted cooking shows and college lec-
tures to team sports [5, 22]. It is widely accepted that a
smoothly moving camera is critical for generating aesthetic
video [16]. One approach is post-processing to regulate the
sequential predictions, which leads to a trade-off between
smoothness and responsiveness [6]. Alternatively, offline
batch processes [19] can be used if there is not an online re-

Figure 2. Jitter and Overshooting Artifact. (a) A plan generated
by [6] includes a sudden direction change (green dashed box) and
jitter. (b) Post-processing independent predictions with a Kalman
filter reduces jitter but causes over shooting (black dashed box).

quirement. Significant filtering constrains the motion of the
camera, making it unable to track fast moving objects [26].
Other approaches can offer more refined control but first re-
quire users to select the main features of interest [17].

Camera Motion Models Camera motion is well-studied
in the context of stabilization. Liu et al. [26] used a low-pass
filter to create constant angular velocity motions for video
stabilization. The rotation component was filtered by lin-
earizing the rotation space using derivatives with respect to
time to obtain angular velocities [25]. The method was ex-
tended to polynomial eigen-trajectories for subspace video
stabilization [27]. In contrast, we are interested in the prob-
lem of camera planning. In other words, rather than trying
to reconstruct a stable camera trajectory from existing tra-
jectories, our goal is to plan a brand new trajectory.

3. Problem Setup
Let dx denote a distribution of input sequences: x “

xx1, . . . , xT y „ dx. In camera planning, x can be a se-
quence of (noisy) detected player locations from stationary
cameras. For clarity, we assume each sequence has the same
length T , but in general T can vary and/or be unknown.

Let Π denote a class of policies that our learner is con-
sidering. Given a stream of inputs x “ xx1, . . . , xT y, each
π P Π generates a stream of outputs y “ xy1, . . . , yT y. In
camera planning, y can be a sequence of pan angles of the
broadcast camera. Section 4 describes our recurrent deci-
sion tree framework that instantiates Π in our experiments.

Operationally, each π is a streaming predictor that takes
a state st “ txt, . . . xt´τ , yt´1, . . . , yt´τu composed of the
recent inputs and predictions, and generates a new predic-
tion yt “ πpstq. Note that the next state st`1 depends only
on the new input xt`1, the current state st, and the current
prediction yt. Hence, for any input sequence x, π equiva-
lently generates a state sequence s “ xs1, . . . , sT y. We also
abuse notation to say that y “ πpxq denotes the sequence
of predictions y generated by streaming x into π (with the
construction of the state sequence s being implicit).

For any policy π P Π, let dπt denote the distribution
of states at time t if π is executed for the first t ´ 1 time



steps (dπt is defined exactly by dx and π). Furthermore, let
dπ “

1
T

řT
t“1 d

π
t be the average distribution of states if we

follow π for all T steps. The goal of the learner is to find
a policy π̂ P Π that minimizes the imitation loss under its
own induced distribution of states:

π̂ “ argmin
πPΠ

Es„dπ r`ps, π, π˚qs . (1)

Since our goal is to learn a policy π that both imitates the
(human) expert π˚ and is also smooth, we decompose our
loss function into precision and smoothness components:

`ps, π, π˚q “ `˚ps, π, π
˚q ` ω`Rps, πq, (2)

where `˚ measures how well πpsq agrees with π˚psq, and
`R measures how smooth the prediction of πpsq is relative
to the current state s, with ω ě 0 controlling the trade-off
between the two. The precision error `˚ is typically the
squared deviation: `˚ps, π, π˚q “ }π˚psq ´ πpsq}2.

A standard way to instantiate the smoothness error `R
is via the squared deviation of the velocity: `Rps, πq “
}vpsq ´ vpπpsqq}2, where vpsq denotes the velocity in state
s, which can be computed from the information encoded in
s. One can thus interpret the smoothness error as encourag-
ing the curvature of the predicted trajectories to be low.

We assume the agnostic setting, where the minimizer
of (1) does not necessarily achieve 0 loss (i.e., we cannot
perfectly imitate the human expert). In practice, we ap-
proximate the expectation in (1) with a finite sample (e.g.,
a training set of basketball gameplay sequences), and also
solve (1) via alternating minimization: collect training data
according to current π̂, and then train a new π̂ using that
training data (see Section 5 for more details).

Discussion and Interpretation. By utilizing a recurrent
policy class Π, such as our recurrent decision tree frame-
work (see Section 4), the learner is able to reason about
inherent temporal relationships. For instance, suppose the
learner incorrectly predicted a previous value (see Fig. 1).
Then the learner could make a drastic correction (blue line)
to minimize the discrepancy as quickly as possible, which
might result in unaesthetic high-frequency camera motion.
Instead, a more gradual correction (red line) may better
trade off between instantaneous error and smooth motion.

Estimating the best π̂ is challenging due to its depen-
dence on its own previous predictions. Most notably, this
recurrent relationship makes it nontrivial to extract a set of
independent training examples to use with conventional su-
pervised learning. This issue is formally highlighted in the
learning objective (1), where the distribution that the loss is
evaluated over is induced by the policy under consideration.
In other words, the distribution dπ that the loss is evaluated
on in (1) depends on the π being considered, which leads

to complicated learning problem since conventional super-
vised learning assumes that distribution is fixed.

One straightforward approach is to approximate dπ in (1)
using the distribution of states, dπ˚ , that the human expert
π˚ induces on dx, and then select the π̂ P Π to minimize:

π̂ “ argmin
πPΠ

Es„dπ˚ r`ps, π, π
˚qs . (3)

Note that (3) is easy to evaluate since the expectation is over
dπ˚ and does not depend on the policy π under considera-
tion.1 However, as soon as the behavior of π̂ deviates from
π˚, then the distribution of states experienced by π̂ will dif-
fer from π˚, and thus optimizing (3) will not be aligned with
optimizing (1).2 We show in Section 5 how to address this
distribution mismatch problem via an alternating minimiza-
tion approach that efficiently converges to a stable solution.

4. Recurrent Decision Tree Framework
Decision trees are amongst the best performing learn-

ing approaches, and are popular whenever a non-parametric
predictor is desirable [10, 14, 23]. We propose a recurrent
extension, where the prediction at the leaf node is not nec-
essarily constant, but rather is a (smooth) function of both
static leaf node prediction and previous predictions from the
tree. For simplicity, we present our framework using a sin-
gle decision tree, although our approach extends trivially to
ensemble methods such as random forests [3, 10].

A decision tree specifies a partitioning of the input
space (i.e, the space of all possible states s). Let D “

tpsm, y
˚
mqu

M
m“1 denote a training set of state/target pairs.

Conventional regression tree learning aims to learn a parti-
tioning such that each leaf node, denoted by node, makes
a constant prediction to minimize the squared loss:

ȳnode “ argmin
y

ÿ

ps,y˚qPDnode

py˚ ´ yq2, (4)

where Dnode denotes the training data from D that has par-
titioned into the leaf node. The solution to (4) is:

ȳnode “
1

sizepDnodeq

ÿ

ps,y˚qPDnode

y˚ (5)

One typically trains via greedy top-down induction [10],
which is an iterative process that repeatly chooses a leaf
node to be split based on a binary query of the input state s.

The above formulation (4) can be viewed as the simplest
version of our recurrent decision tree framework. In partic-
ular, the decision tree is allowed to branch on the input state

1In practice, optimizing (3) reduces to a standard supervised learning
scenario. One simply collects the decisions made by the human expert π˚

to use as a static training set, and then choose the π̂ P Π that agrees most
with π˚ on the states induced by π˚.

2One simplified interpretation is that training on (3) does not teach the
predictor how to recover from its own mistakes.



s, which, as discussed in Section 3, includes the previous
predictions ty´1, . . . , y´τu. Thus, decision trees that mini-
mize (4) form a valid recurrent policy class, and can be used
to instantiate Π. In the following, we will describe a more
general class of recurrent decision trees that enforce more
explicit smoothness requirements.

Note that recurrent neural networks (RNNs) [2] impose
a slightly different notion of “recurrent” than our approach.
Whereas our approach is only recurrently defined with re-
spect to the previous predictions of our approach, RNNs are
recurrently defined with respect to the previous hidden unit
activations and (or) previous predictions.

4.1. Jointly Capturing Dynamics and Control

Let fπpy´1, . . . , y´τ q denote an autoregressor of the
temporal dynamics of π over the distribution of input se-
quences dx, while ignoring the exogenous inputs x. In other
words, at time step t, fπ predicts the behavior yt ” πpstq
given only yt´1, . . . , yt´τ . Typically, fπ is selected from a
class of autoregressors F (e.g., smooth autoregressors). For
our experiments, we use regularized linear autoregressors
as F , although one could also use more complex functions
(e.g., based on Kalman filters). See the supplemental mate-
rial for more details on linear autoregressors.

We now present a policy class Π of recurrent decision
trees π that make smoothed predictions by regularizing to
be close to its autoregressor fπ . For any tree/policy π, each
leaf node is associated with a “control” or “target” signal
ȳnode such that the prediction ŷ given input state s is:

ŷ ” πpsq ” argmin
y

py ´ ȳnodepsqq
2 ` λpy ´ fπpsqq

2, (6)

where nodepsq denotes the leaf node of the decision tree
that s branches to, and λ ě 0 trades off between ŷ matching
the target signal ȳnodepsq versus the smooth autoregressor
fπpsq. The closed-form solution to (6) is:

ŷpsq “
ȳnodepsq ` λfπpsq

1` λ
. (7)

Compared to just predicting ŷ ” ȳnodepsq, the prediction in
(6) varies much more smoothly with s, since ŷ is now an
interpolation between the target signal ȳnodepsq and smooth
extrapolation fπpsq from previous predictions.

Training requires estimating both the autoregressor fπ
and the decision tree of target signals ȳnode. In practice,
given training data D, we perform greedy training by first
estimating fπ on D (which ignores the exogenous inputs
x),3 and then estimating the decision tree of target signals
to “course correct” fπ . Given a fixed fπ and decision tree

3Intuitively, if we train fπ onD, then the state distribution ofD should
be similar to the state distribution that will be induced by the resulting
trained π. We address this point further in Section 5.

structure, one can set ȳnode as:

ȳnode “ argmin
y

ÿ

ps,y˚qPDnode

py˚ ´ ŷps|yqq2, (8)

for ŷps|yq defined as in (7) with y ” ȳnodepsq. Similar to
(5), we can write the closed-form solution of (8) as:

ȳnode “
1

sizepDnodeq

ÿ

ps,y˚qPDnode

`

p1` λqy˚ ´ λfπpsq
˘

. (9)

Note that when λ “ 0, then the autoregressor has no influ-
ence, and (9) reduces to (5). Note also that (8) is a simplified
setting that only looks at imitation loss `˚, but not smooth-
ness loss `R. We refer to the supplemental material for more
details regarding our full training procedure.

One can interpret our recurrent decision tree framework
as holistically integrating model-based temporal dynamics
f with model-free control ȳnode. The target signal ȳnode
can thus focus on generating “course corrections” of the
smooth temporal dynamics imposed by f . In practice, the
target signal ȳnode can also be set using an ensemble such
as random forests [3, 10, 18], or regression trees that pre-
dict piecewise-linear variables in the leaf nodes [15]. In this
way, our framework is completely complementary with pre-
vious work on learning smoother regression tree predictors.

Extensions. One could also define the predictions y as ve-
locity rather than absolute coordinates, which coupled with
the current state s, will encode the absolute coordinates.
Such an approach would be desirable if one wants to do per-
form autoregressor regularization in the velocity domain.

Another extension is to replace the L2 autoregression
penalty in (8) with an L1 penalty. With an L1 penalty, small
target signals would not deviate the prediction from the au-
toregressor, thus making the temporal curvature potentially
piecewise linear (which may be desirable). However, the
non-smooth nature of L1 regularization would make the
prediction more sensitive to the choice of λ.

5. Iterative Training Procedure
In general, it can be difficult to exactly solve (1) due to

the circular dependency between the distribution of states
and the policy under consideration. One meta-learning ap-
proach is to alternate between estimating dπ over a fixed π,
and optimizing π over a fixed dπ . At a high level, this can
be described as:

1. Start with some initial policy π̂0

2. At the i-th iteration, use the previously estimated poli-
cies π̂0, . . . , π̂i´1 to construct a new distribution di

3. Estimate the best policy π̂i via:

π̂i “ argmin
πPΠ

Es„di r`ips, π, π˚qs . (10)



Note that the loss function `i need not be the original
loss function, but simply needs to converge to it.

4. Repeat from Step 2 with i Ð i ` 1 until some termi-
nation condition is met.

One typically initializes using the human expert π̂0 “

π˚, which we have demonstrations for in the training set
(i.e., π˚ is memorized on the training set). The estimation
problem in (10) can be solved via standard supervised learn-
ing (see the supplemental material for how we solve (10) for
our recurrent decision tree framework). It remains to decide
how to construct a stable and converging sequence of distri-
butions di. For instance, it is known that simply choosing
di “ dπ̂i´1 does not guarantee stable behavior [12, 29].

We build upon the SEARN approach [12] to iteratively
construct a stable sequence of distributions di for training
each π̂i. Algorithm 1 describes our approach, which is a
meta-learning approach that can be applied to other policy
classes beyond our recurrent decision tree framework (i.e.,
by using a different implementation of Learn). Note also
that we approximate each state distribution di using a finite
empirical sample S̃i — i.e., S̃i is constructed from the given
input sequences X and the predictions iteration i, Ỹi.

Algorithm 1 is an instance of the alternating procedure
described above. Given a state distribution di, the training
problem is a straightforward supervised learning problem
(Line 7). Note that the iteration-specific loss `i is simply
the original loss ` using a (potentially) modified imitation
target Y˚i that converges to the original Y (Line 6).

The key innovation of SEARN [12] is that the new dis-
tribution di should be induced by an exponentially decay-
ing interpolation between every π̂0, . . . , π̂i´1. In practice,
we found it more convenient to interpolate the trajectories
Ŷ0, . . . , Ŷi´1 (Line 10), which leads to a set of trajectories
Ỹi that can be combined with the input X to form an empir-
ical sample of states S̃i to approximate di (Line 5). Because
of this interpolation, the sequence of distributions di will
converge in a stable way (see [12] for a rigorous analysis
of the convergence behavior). This stable behavior is espe-
cially important considering our greedy training procedure
for our recurrent decision tree framework: if the resulting π̂i
has a very different behavior from the training distribution
di, then fπ̂i will not be a good autoregressor of π̂i.

5.1. Implementation Details

Choosing β. A straightforward choice of interpolation
parameter is to set β to a small constant (close to 0) to
ensure that the new distribution di stays close to the pre-
vious distribution di´1, which is the original approach of
SEARN [12]. One drawback of this conservative approach
is slower convergence rate, especially when the learner
needs to quickly move away from a bad policy π̂i.

We can also adaptively select β based on relative empir-
ical loss of learned policies (Line 9 of Algorithm 1). Let

Algorithm 1 Iterative Training Procedure
Input: input sequences X
Input: expert demonstrations Y for X
Input: autoregression function class F
Input: history time horizon τ for generating states //see Section 3
Input: βp. . .q //distribution drift step size

1: Initialize S̃0 Ð state sequences defined by Y and X
2: π0 Ð LearnpS̃0,Yq.
3: Initialize Ỹ1 Ð tπ0pxq|x P Xu //initialize exploration
4: for i “ 1, . . . , N do
5: S̃i Ð state sequences defined by Ỹi and X
6: Y˚i Ð expert feedback on each s̃ P S̃i //see Section 5.1
7: π̂i Ð LearnpS̃i,Y˚i q //minimizing (10)
8: Ŷi Ð tπ̂ipxq|x P Xu //roll-out π̂i
9: β̂i Ð βperrorpŶiq,errorpỸiqq //see Section 5.1

10: Ỹi`1 Ð β̂iŶi ` p1´ β̂iqỸi //distribution interpolation
11: end for
12: return π̂ P tπ̂1, . . . , π̂Nu with best validation performance

errorpŶiq and errorpỸiq denote the loss (2) of rolled-
out trajectories Ŷi, Ỹi, respectively, with respect to ground
truth Y. We can then set β as:

β̂i “
errorpỸiq

errorpŶiq ` errorpỸiq
. (11)

This adaptive selection of β encourages the learner to dis-
regard bad policies when interpolating, thus allowing fast
convergence to a good policy.

Choosing Y˚. Intuitively, whenever the current policy π̂i
makes a mistake, the expert feedback y˚ should recommend
smooth corrections (e.g., follow the red line in Figure 1). In
many cases, it suffices to simply use the original expert tra-
jectories Y˚i Ð Y. However, when Ỹi differs substantially
from Y, especially during early iterations, it can be benefi-
cial to use “smoothed” expert feedback Y˚i in place of Y.

Specifically, each step along Y˚i is computed to be a
gradual 1-step correction of Ỹi towards Y, which will grad-
ually converge to Y in later iterations. It is not strictly nec-
essary, as our recurrent decision tree framework can offset
non-smooth corrections by enforcing a larger regularization
parameter λ (trading higher smoothness for lower imita-
tion accuracy, cf. 8). Generally however, given the same
smoothness weight λ, smoothed expert feedback leads to
more stable learning. One simple way to provide smoothed
Y˚i is to reduce the distance ratio py˚ ´ yq{pỹ ´ yq by a
small decaying rate: y˚ “ y ` e´ηpỹ ´ yq.

6. Experiments
We evaluate our approach automated broadcasting for

basketball and soccer (see Fig. 3). A high-school basketball
match was recorded using two cameras: one near the ceiling



for player detection, and one at ground level for broadcast-
ing (operated by a human expert). The videos were syn-
chronized at 60fps. ‘Timeouts’ were manually removed, re-
sulting in 32 minutes of ‘in-play’ data divided into roughly 
50 segments (each about 40 seconds long), with two held 
out for validation and testing.

A semi-professional soccer match was recorded using 
three cameras: two near the flood l ights f or p layer detec-
tion, and a robotic PTZ located at mid-field remotely oper-
ated by a human expert. The videos were synchronized at 
60 fps. About 91 minutes was used for training, and two 2 
minute sequences were held out for validation and testing.

Features The ground locations of players were deter-
mined from 3D geometric primitives which best justified 
the background subtraction results [4]. Each ground po-
sition was projected to a spherical coordinate system cen-
tered and aligned with the broadcast camera. Because the 
number of detections varies due to clutter and occlusions, 
a fixed length feature vector was constructed using spatial 
frequency counts. The surface of the sphere was quantized 
at three resolutions (1 ˆ 2, 1 ˆ 4, and 1 ˆ 8) resulting in a 
14 dimensional feature vector xt [6].

Labels Pan/tilt/zoom parameters are estimated for each 
frame of the broadcast video by matching detected SIFT 
key points to a collection of manually calibrated reference 
frames in a similar fashion to [20]. The homography be-
tween the current frame and the best match in the database 
of reference images is estimated, from which the camera’s 
pan-tilt-zoom settings are extracted. Because the tilt and 
zoom of the broadcast camera do not vary significantly over 
the dataset, our experiments only focus on building an esti-
mator for online prediction of pan angles.

6.1. Baselines

Savitzky-Golay. [6] learns a predictor using a random for-
est trained using only current player locations. A Savitzky-
Golay (SG) filter smooths the predictions, but induces a de-

lay. Our implementation of this method augments the cur-
rent player locations with previous player locations. This
modification makes the instantaneous predictions more re-
liable, as the predictor has more temporal information.

Kalman Filter. We replace the Savitzky-Golay filter with
a Kalman filter employing a constant velocity process
model. Parameters were determined through validation (see
supplemental material).

Dual Kalman Filter. A dual Kalman filter [21] simulta-
neously estimates the unknown state of the system, as well
as its process matrix. Similar to our formulation, we as-
sume the system adheres to an autoregressive model. This
method then applies two Kalman filters in parallel: one to
estimate the coefficients of the autoregressive function, and
a second to estimate the trajectory of the camera, based on
the current estimate of the autoregressive model. Again, pa-
rameters were tuned through validation.

Conditional Regression Forests. Conditional regression
forests (CRFs) [11] split the training data into multiple sub-
sets. We tested various splitting methods based on camera
position and velocity, such as dividing the data into 4, 8 and
16 subsets of pan angle. We also tried both disjoint sets and
joint sets with different overlap ratios. We report the best
result from 8 subsets with 50% overlap. The output of the
CRF is further smoothed by a SG filter.

Filter Forests. Filter forests (FF) [15] is an efficient dis-
criminative approach for predicting continuous variables
given a signal. FF can learn the optimal filtering kernels
to smooth temporal signals. Our implementation includes
some adaptations, such as limited candidate window sizes,
to improve the performance on our datasets.

6.2. Benchmark Experiments

Fig. 4 shows the benchmark performance evaluated for
both basketball and soccer. We evaluate using joint loss (2)
with ω “ 500. The precision and smoothness losses are
plotted separately to illustrate their relative contributions to
the joint loss. For both settings, we see that our approach
achieves the best performance, with the performance gap
being especially pronounced in basketball.

We note that the soccer setting is significantly more chal-
lenging than basketball, and no method performs particu-
larly well for soccer. One possible explanation is that soccer
camera planning using only player detections is unreliable
due to players not following the ball (unlike in basketball).
A visual inspection of the generated videos also suggests
that lack of ball tracking in the input signal x is a significant
limitation in the soccer setting.

We also observe that our approach achieves very low
smoothness loss, despite not utilizing a post-processing
smoothing step (see Table 1 for a summary description of
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Figure 4. Prediction loss. (a) Basketball; (b) Soccer. Loss mea-
sured by (2). Our method achieves the lowest overall loss.

Method Noise Model Post-Smooth Delay

SG & CRF high-freq required Yes
KF & Dual KF Gaussian required No
FF self-learned not-required No
Ours self-learned not-required No

Table 1. Qualitative comparison. Both our method and FF [15]
learn noise model from the data, do not require post-processing
and achieve real-time response. However, our model requires less
data and is efficient for both training and testing.

the different approaches). For instance, in the basketball
setting, our approach actually achieves the smoothest per-
formance. In fact, for the basketball setting, our approach
dominates all baselines in both imitation loss and smooth-
ness loss. The KF and FF baselines tend to achieve compet-
itive smoothness loss, but can suffer substantial imitation
loss. For soccer, the SG and CRF baselines achieve lower
imitation loss, suggesting that they might be better able to
track the action. However, they suffer from substantial jitter.

6.3. Visual Inspection

Figs. 5 and 6 show a visualization of the predictions.
From this visual inspection, we can verify qualitatively
that our method achieves the best balance of precision and
smoothness. Our predicted trajectory remains close to the
human operator’s trajectory and has less jitter than the other
methods. Even with post-smoothing, SG and CRF exhibit
significant jitter. KF struggles between jitter and over shoot-
ing when the noise is not Gaussian. Surprisingly, dual KF
performance is worse than KF, which is again presumably
because the noise is not Gaussian, and errors in the pro-
cess estimation propagate to the state estimation (see sup-
plemental material). FF is very competitive in the basket-
ball dataset, but its performance suffers from large jitter in
the more challenging soccer dataset.

Table 1 summarizes qualitative properties of all the
methods. SG and CRF assume the noise only has high-
frequency components. As a result, they struggle with low-
frequency noise. KF and dual KF rely on a Gaussian noise
assumption, which is not reasonable on our datasets.

Both our method and FF [15] learn control and dynamics
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Figure 5. Comparison on basketball data. (a) Method of [6], (b)
Kalman filter, (c) Dual Kalman filter , (d) Conditional regression
forests [11], (e) Filter forests [15], (f) Our method. The blue line
is from human operators and the red line is from predictions. Note
our method does not need any post-processing.
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Figure 6. Comparison on soccer data.. (a) Method of [6], (b)
Kalman filter, (c) Dual Kalman filter , (d) Conditional regression
forests [11], (e) Filter forests [15], (f) Our method. The blue line
is from human operators and the red line is from predictions. Note
our method does not need any post-processing.

aspects from the data. Neither requires post-processing and
both are able to generate a zero delay response. In camera
planning, our method has three advantages over FF. First,
our method has fewer parameters so that it requires less data
to train. Second, our model can be trained much faster than
FF because FF has to solve a large linear equation in each
split. Third, the experimental results show that our method
is more stable in both datasets.

Fig. 7 provides a visual comparison of our framework
using a random forest of 100 trees and varying influence of
the autoregressor, λ. When λ “ 0, the autoregressor has no
influence, and so the smoothness of the prediction depends
solely on the smoothness of decision tree ensemble and the
size of the history window, τ . Since decision trees are non-



Figure 7. Comparing varying λ for basketball data. λ “ 300
is a good trade-off between smoothness and accuracy. Very small
λ allows more accurate but noisier predictions, and very large λ
leads to smoother but less accurate predictions.

parametric, one could in principle learn a smooth predic-
tor given sufficient training examples and enough trees, but
the data and computational costs would be immense. As
λ increases, the autoregressor causes the predictions to be
increasingly smooth. Recall that the learner (Algorithm 1)
always seeks to find the predictor within the policy class
with the lowest loss, and so it can adaptively trade off be-
tween smoothness and accuracy depending on the input sig-
nal x (rather than rely on post-processing). As λ becomes
very large, the policy class becomes restricted to extremely
smooth predictors. In practice, λ can be set via a user pref-
erence study or validation performance.

6.4. User Preference Study

We also conducted a user preference study to comple-
ment our benchmark experiments. Fig. 8 shows our user
study interface. Videos were generated by warping the
video captured by the human operator. We evaluated our
approach against the five baseline algorithms for both bas-
ketball and soccer. In each trial, participants were instructed
to choose the video that was more appealing (our method
was randomly assigned the left or right view).

Table 2 shows the results. For basketball, our method
is significantly preferred over the other methods based on a
two-tailed binomial test (p ă 0.001). For soccer, none of
the methods performed particularly well (see Section 6.2),
making it challenging for users to judge which method gen-
erated better videos. Note that there is still a sizable prefer-
ence gap compared to the human expert.

7. Discussion

Although our approach achieved good results for basket-
ball, the results for soccer were much poorer. It is likely that
we require more expressive inputs in order to learn good
policy, such as tracking the ball in addition to the players.

Basketball Soccer
Comparison win / loss win / loss

vs SG 22 / 3 14 / 11
vs KF 23 / 2 12 / 13
vs dual KF 25 / 0 24 / 1
vs CRF 24 / 1 12 / 13
vs FF 23 / 2 14 / 11
vs human 1 / 24 4 / 21

Table 2. User study results. For basketball, our method is signif-
icantly preferred over all baselines. For soccer, all methods per-
formed poorly, and users did not have a strong preference. There
is still a sizable preference gap compared to expert human.

The human demonstrations in the soccer dataset were al-
most entirely piece-wise linear. In other words, the human
expert is almost always directing the camera in a straight
line with very sharp course corrections. As such, it may be
that we require L1 regularization to an autoregressor that
prefers zero acceleration in order to better capture the tem-
poral dynamics of camera planning in soccer.

We chose decision trees due to their non-parametric or
model-free properties as well as ease of training. Using
other complex predictors, such as deep neural nets or Gaus-
sian processes, could potentially also work well.

Finally, our approach only addresses the planning prob-
lem, and cannot be directly applied to physical camera con-
trol without a control model. It would be interesting to
jointly learn to both planning and physical control [7].

8. Summary

We have introduced the problem of smooth online im-
itation learning, where the goal is to learn a predictor to
smoothly imitate a human expert given a stream of in-
put signals. We have also presented a recurrent non-
parametric model class for generating smooth predictions,
which jointly integrates a model-free control signal with a
model-based autoregressor. In order to guarantee stability
of training, we extended previous work on iterative learning
of dynamical models to our setting. We applied our ap-
proach to camera control in sports, where we demonstrated
significant improvements over several strong baselines.
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